Security in Mobile Ad Hoc Networks

Source: Rudi Belotti, Frank Lyner
Contents

- Basic introduction to ad hoc networks
- Basic Mechanisms
 - Routing
 - Physical location
- Security Mechanism
 - Public Key infrastructure
 - Key establishment
- Optimized Link State Routing (OLSR)
 - Security Problems
 - Reputation-based Scheme (joint work with JP Vilela)
Introduction

- **Definition of Mobile Ad Hoc Network**
 - Collection of mobile nodes that can dynamically form a network that does not rely on any infrastructure.

- **Characteristics of the nodes**
 - Wireless
 - Limited power and CPU resources
Characteristics and Constraints

- **Limited Range**
 - Due to limited power supplies
 - Each node acts also as router to relay packets

- **Mobility**
 - Nodes can dynamically join and leave the network
 - Routing information only valid for limited time.

- No (centralized) public key infrastructure
Security Goals

- **Availability**
 - Very challenging due to all characteristics

- **Confidentiality, Integrity, Authentication**
 - Usually require a public key infrastructure
 - Security mechanisms must be distributed
Basic Mechanisms

- Basic Mechanism
 - Services and/or guarantees that would usually be provided by the infrastructure

- Major Security Goal: Availability
 - Nearly all attacks are DoS attacks
 - Even more difficult to handle than in “normal” networks due to collaboration requirement,
 mobility and nature of communication channel
Physical

- Threat of capture and compromise
 - Most scenarios of ad hoc networks include nodes without surveillance

- Attacks
 - Theft, demolition, changes in environment
 - Manipulation of hard-/software

- Counter measures
 - Tamper resistant devices, very difficult for sensors
“Over the Air”

- Threats due to wireless communication
- Attacks
 - Eavesdropping, jamming, spoofing, “message attacks”
 - Sleep deprivation torture
- Counter measures
 - First attacks are not specific to ad hoc networks, well researched in military context: frequency hopping, spread spectrum
Collaboration

- Every algorithm in ad hoc networking depends on some extents from the collaboration of the other nodes
- Main example: Routing Protocols
 - Here: explaining the route discovery protocol
Route Discovery Protocol

- Used by DSR (Dynamic Source Routing)
- Simplified
Route Discovery Protocol (2)

- Behavior in case of error
Route Discovery Protocol (3)

- Great number of attacks possible by
 - Not participating at all to save battery or partition the network
 - Spamming the network with RREQ
 - Changing routing information in RREP messages
 - Constantly or never replying with RERR
 - …
Solutions

- The CONFIDANT Protocol
 - Idea: punish non collaborative/malicious nodes by non-forwarding their traffic
 - Detection through “neighborhood watch”
 - Building a distributed system of reputation
 - Enable “re-socialization” through timeouts in the black list.

Solutions (2)

Nuglets
- Idea: virtual currency to buy the collaboration
- Nuglets are attached to the message
- Each relaying node takes nuglets form the message which can use to buy the routing of its own message
- Nuglet module must be implemented in a tamper resistant hardware to avoid cheating

Solutions (3)

- Securing Routing Information
 - Idea: share the routing information through a secure channel
 - Requires Key Management and Security Mechanisms
Security Mechanisms

- Most critical and complex issue: Key Establishment
 - Key agreement
 - Key transport

- Asymmetric cryptography is appropriate for ad hoc networks to authenticate nodes
Asymmetric cryptography

- Each node has a public/private key pair
 - For efficiency reasons and to limit power consumption, use asymmetric cryptography to exchange symmetric keys, then use them to secure communication
- Threat: man-in-the-middle

\[
C = E(K_{UCharlie}, M)
\]
\[
M = E^{-1}(K_{RCharlie}, C)
\]
Asymmetric cryptography

- How to authenticate the owner of a device?
- Classical solutions need a central trusted authority
 - Not suited for ad hoc networks
Resurrecting Duckling

- Ducklings emerging from their eggs
 - Recognize their mother as the first moving object emitting sound they see

- Similar approach for electronic devices
 - Recognize the owner as the first entity that sends a private key

- If the owner changes?
 - It should be possible to reinitialize the device (resurrect it)

Threshold cryptography

- Emulate the central authentication authority by distributing it on several nodes acting as servers
- Private Key is divided into n shares s_1, s_2, \ldots, s_n

Threshold cryptography (2)

- \((n, t+1)\) threshold cryptography configuration
 - \(n\) servers, if \(t\) are compromised, it is still possible to perform the service
 - E.g. \((3, 2)\) threshold cryptography scheme

Threshold cryptography (3)

- Threshold cryptography seems to be a very robust solution
- However it needs some nodes to assume special behaviour
- For instance it is appropriate for military applications
- Inadequate for civilian networks
 - Users behave in a completely selfish way
Self-organized PKI

- Similar to PGP
- Certificate issued by users
 - Bind public key to an identity
- Each user maintains a local certificate repository
 - Certificates issued by itself
 - Other certificates selected using some algorithms (Shortcut Hunter)
 - Size of certificate repository is small compared to the total number of users in the system
Self-organized PKI (2)

How it works

- u wants to verify the public key of v
- u and v merge their local certificate repositories (subgraphs)
- u tries to find a certificate chain (path) from u to v in the merged repository
Self-organized PKI (3)

- Only probabilistic guarantee to find an appropriate certificate
- Security self-organized as the WWW?
 - How can these mechanisms be put in place preventing their misuse?
Common context

- The use of symmetric cryptography is also possible
- For the set up of an ad hoc network in case of a conference
 - Password could be written on a blackboard
- Idea: use another medium to exchange the keys
Conclusion

- Security in ad hoc networks is a very challenging issue
- Basic Mechanisms
 - Difficult to force the nodes to collaborate
 - No standard routing protocol yet
Conclusion (2)

- Because of their characteristics, ad hoc networks, are open especially to DoS attacks
- Classical security solutions are not suited for ad hoc networks
 - Security services should be distributed
- Standard protocols?
 - At the moment no universal solution
A Cooperative Security Scheme for Optimized Link State Routing in Mobile Ad-hoc Networks

João P. Vilela, João Barros

LIACC (Laboratory of Artificial Intelligence and Computer Science)

Faculdade de Ciências da Universidade do Porto
Outline

- Optimized Link State Routing (OLSR) protocol
 [Jacquet et al., 2001]
 - Overview
 - Security Issues
- Securing the OLSR protocol
 - Current Proposals
- Cooperative Security Scheme for OLSR
 - Description
 - Discussion
 - Evaluation
- Conclusions and Future Work
Optimized Link State Routing protocol

Overview

- Proactive, link state routing protocol
- Two types of control messages

Hello messages:
- Between direct neighbors
- Info on neighbors up to two hops
Overview

- Proactive, link state routing protocol
- Two types of control messages

Hello messages:
- Between direct neighbors
- Info on neighbors up to two hops

Topology Control messages:
- Diffused to entire network
- Announce reachability to nodes
Simple, but effective optimization

Multipoint Relays (MPR):
- subset of neighbors
- covers all two-hop
- all control traffic through MPRs

Gains:
- reduction of the amount of exchanged control traffic
- reduction of the size of control messages
Optimized Link State Routing protocol

Security Issues

<table>
<thead>
<tr>
<th>Description/Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity spoofing</td>
<td>Conflicting routes to the node being spoofed</td>
</tr>
<tr>
<td>Generation of messages pretending to be another node</td>
<td></td>
</tr>
<tr>
<td>Link spoofing</td>
<td>Traffic interception; Increase of path lengths</td>
</tr>
<tr>
<td>Generation of messages announcing reachability to an unreachable node</td>
<td></td>
</tr>
<tr>
<td>Traffic relay / generation refusal</td>
<td>Loss of connectivity; Degradation of communications</td>
</tr>
<tr>
<td>Refuse to generate its own and to relay control traffic of other nodes</td>
<td></td>
</tr>
<tr>
<td>Replay attack</td>
<td>Outdating and/or conflicting information into the network</td>
</tr>
<tr>
<td>Resend previously sent (authenticated) messages</td>
<td></td>
</tr>
<tr>
<td>Wormhole attack</td>
<td>Traffic interception; Increase of path lengths</td>
</tr>
<tr>
<td>Two nodes collude and exchange encapsulated packets</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)
Securing the OLSR protocol

Current Proposals

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Proposed Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity spoofing</td>
<td>Cryptographic signatures with each message [Raffo et al.]</td>
</tr>
<tr>
<td>Replay attack</td>
<td>Timestamp messages [Adjih et al.]</td>
</tr>
<tr>
<td>Link spoofing</td>
<td></td>
</tr>
<tr>
<td>Traffic relay / generation refusal</td>
<td>Geographical positioning [Adjih et al.]</td>
</tr>
<tr>
<td></td>
<td>Packet counting technique [Adjih et al.]</td>
</tr>
<tr>
<td>Wormhole attack</td>
<td></td>
</tr>
</tbody>
</table>
A Cooperative Security Scheme for the Optimized Link State Routing protocol

“MPR Flooding”
Source: INRIA Project HIPERCOM OLSR webpage
Cooperative Security Scheme for OLSR

Description

- Goal: assure that nodes correctly generate and relay control traffic

- Assumption: key management infrastructure

- Combination of two sources of traffic information:
 - The (unreliable) monitoring of packet relays [Marti et al.]
 - The paths traversed by successfully delivered packets

- Three new elements:
 - Complete path message (CPM)
 - Rating table
 - Warning message
Cooperative Security Scheme for OLSR Specification

1. When a HELLO is received, the source node is added to the Rating Table;

2. If a message is sent and retransmitted, the secondary rating is increased and decreased otherwise;

3. When a TC is successfully received, the path traversed is sent back on a CPM with a certain rate;

4. If the path in the CPM is consistent with the information announced by neighbors:
 1. Increase the primary rating if the secondary rating is higher;
 2. Decrease the primary rating otherwise.
Cooperative Security Scheme for OLSR

Discussion

- Punish nodes accordingly to their primary rating

- **Link spoofing** results in degradation of communications to the malicious node

- **Traffic relay/generation refusal** can be detected by a correlation of the number of CPMs received and the density of the network

- **Identity spoofing** and **replay attacks** are solved by a key management system and timestamps
Cooperative Security Scheme for OLSR
Evaluation – Control traffic overhead

- In terms of IP addresses transmitted

- Random Graph Model \((N\text{ nodes, link probability } p)\)

 - Plain link-state: \(O(N^3)\)
 - OLSR: \(O(N (\log N)^2)\)
 - CSS-OLSR: \(O(N (\log N)^2)\)

- Random Unit Graph \((N\text{ nodes, unit length } L)\)

 - 1D
 - Plain link-state: \(O(N^3 / L)\) (from TCs)
 - OLSR: \(O(N^2 / L)\) (from HELLOs)
 - CSS-OLSR: \(O(N^2 / L)\) (from HELLOs)

 - 2D
 - Plain link-state: \(O(N^3 / L^2)\) (from TCs)
 - OLSR: \(O(N^2 / L)\) (from HELLOs)
 - CSS-OLSR: \(O(N^2 / L)\) (from HELLOs)
Conclusions and Future Work

- **Doing:**
 - Implementing and testing through simulation
 - Fine tuning the protocol parameters

- **Following steps:**
 - Integrate the MPR selection with the rating table and the key management infrastructure
 - Determine the long-term convergence of the protocol using a game theoretic analysis