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portant non trivial task with multidisciplinary applicability. Discovering net-
works motifs or computing graphlet signatures are two examples of method-
ologies that at their core rely precisely on the subgraph counting problem.
Here we present the g-trie, a data-structure specifically designed for discover-
ing subgraph frequencies. We produce a tree that encapsulates the structure
of the entire graph set, taking advantage of common topologies in the same
way a prefix tree takes advantage of common prefixes in strings. We thus avoid
redundancy in the representation of the graphs, allowing for both memory and
computation time savings. We introduce a specialized canonical labeling de-
signed to highlight common substructure and we annotate the tree with a set
of conditional rules that break symmetries, avoiding repetitions in the com-
putation. In the end we are able to produce a novel efficient algorithm that
takes as input a set of small graphs and is able to efficiently find and count
them as induced subgraphs of a larger network. We perform an extensive em-
pirical evaluation of our algorithms, focusing on efficiency and scalability, on
a set of diversified complex networks. We show that g-tries are able to clearly
outperform previously existing algorithms by at least one order of magnitude.
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1 Introduction

A wide variety of natural and artificial systems can be represented by complex
networks [3,33]. Mining interesting features from these networks is a crucial
task with an inherent multidisciplinary impact [13]. One way to analyze a com-
plex network is to use a bottom-up approach, trying first to understand small
topological substructures, and how they fit in the global overall behavior. We
want to discover patterns of interconnections and understand why they exist
and what is their meaning. These patterns can be thought of as subgraphs.

One foundational problem in subgraph mining, is the subgraph counting

problem, that is, the ability to compute subgraph frequencies. Figure 1 illus-
trates the concept, by showing the frequency and occurrences of all induced
subgraphs with 3 nodes in another network. This is the core problem that we
are trying to solve in this article, and we give a more complete and formal
description of it in Section 2.2.
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Fig. 1: An example of induced subgraphs frequency. The 5-node network has
7 induced subgraphs of size 3.

Subgraph frequencies have a great potential for network characterization
and have wide applicability. One example of this are network motifs [30], a
fundamental concept that has been used as a very useful tool to uncover
structural design principles in networks from many different fields [48,2,49,
51]. They are basically subnetworks that appear with a higher frequency than
it would be expected in similar random networks. Another example is the
comparison of networks using fingerprints based on the graphlet degree distri-

bution [39], which basically imply storing and counting the frequencies of a
pre-defined set of small subgraphs.

Computing subgraph frequencies is however computationally hard, being
closely related to the subgraph isomorphism problem, which is known to be
NP-complete [11]. As the size of the subgraphs or networks increases, the
time needed to compute the frequencies grows exponentially. This limits the
applicability to very small sizes in order to obtain results in a reasonable
amount of time. Being able to compute more efficiently would allow us to
enlarge these limits and give practitioners of several scientific fields new angles
in which to look at the networks in their application areas. Augmenting the
size of the subgraphs we are able to count by even one node can bring new
powerful insights.

Past approaches to subgraph frequency discovery are based on two extreme
approaches: either search for all subgraphs of a certain size, or search just
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for one subgraph at a time. By acknowledging that we are in fact trying to
compute the frequency of a certain set of subgraphs, we can look at the problem
from a new intermediate angle and take advantage of that, only looking for
the subgraphs that interest us.

In this article we present the g-trie, a novel general data-structure able to
efficiently store a collection of graphs. Its main property is that it identifies
common smaller substructures and organizes them hierarchically in a tree. The
first consequence is that we are able to compress the topological information
given by the collection. This property enables us to create an efficient method
capable of finding the frequency of these graphs as subgraphs of another graph.
By traversing the tree, we can identify that a set of nodes is already a structural
partial match to several possible descendant graphs. This avoids the need to
postpone the isomorphism comparison to the end of the computation and also
avoids having to start over when searching for another graph.

We extend preliminary work [42] and describe a fast algorithm for cre-
ating g-tries that iteratively inserts sugbraphs using a specialized canonical
labeling procedure, based on a polynomial transformation over the canoniza-
tion produced by nauty [27], one of the fastest isomorphism tools available.
We also detail an efficient g-trie based frequency algorithm. By adding sym-
metry breaking conditions to the g-trie nodes and by exploiting the common
substructure, we avoid redundant work.

We do an extensive and thorough empirical evaluation of the developed
algorithms on a large set of representative networks from various fields. We
study the details on efficiency and scalability of g-tries creation and its usage
for frequency discovery. We also compare its results with the previously exist-
ing best algorithms, on a common platform, showing that g-tries consistently
outperforms all competing methodologies by at least an order of magnitude.
In doing this, we effectively push the limits on the applicability of network
motifs, allowing the identification of larger motifs in larger networks.

The remainder of the article is organized as follows. Section 2 establishes
a common graph terminology, gives a formal definition of the problem, and
reviews previous approaches and related problems. Section 3 describes the g-
tries data-structure, including algorithmic details on how to create and use
it for counting subgraphs. Section 4 provides results about the experimental
evaluation of the data-structures and associated algorithms on a large set of
representative networks. Finally, Section 5 gives the final comments on the
obtained results and concludes the article.

2 Preliminaries

2.1 Graph terminology

In order to establish a coherent graph terminology for this article, this section
reviews the main concepts used. A network is modeled with the mathematical
object graph, and we will use these two terms interchangeably.
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A graph G is composed of a set V (G) of vertices or nodes and a set E(G)
of edges or connections. The size of a graph is the number of vertices and is
written as |V (G)|. A k-graph is a graph of size k. Every edge is composed of
a pair (u, v) of two endpoints in the set of vertices. If the graph is directed,
the order of the pair expresses direction, while in undirected graphs there is
no direction in edges.

The degree of a node is the number of connections it has to other nodes. In
directed nodes, we can also define the indegree and outdegree as, respectively,
the number of ingoing and outgoing connections. A graph is classified as simple

if it does not contain multiple edges (two or more edges connecting the same
pair of nodes) and it does not contain self-loops (an edge connecting a node
to itself). In the context of this work, we will be working with simple graphs.

The neighbourhood of a vertex u ∈ V (G), denoted as N(u), is composed by
the set of vertices v ∈ V (G) such that v and u share an edge. In the context
of this article, all vertices are assigned consecutive integer numbers starting
from 0. The comparison v < u means that the index of v is lower than that of
u. The adjacency matrix of a graph G is denoted as GAdj , and GAdj [u][v] is 1
when (u, v) ∈ E(G) and is 0 otherwise.

A subgraph Gk of a graph G is a graph of size k in which V (Gk)⊆V (G)
and E(Gk)⊆E(G). This subgraph is said to be induced if ∀u, v ∈ V (GK),
(u, v) ∈ E(Gk) if and only if (u, v) ∈ E(G). The neighborhood of a subgraph
Gk, denoted by N(Gk) is the union of N(u), ∀u ∈ V (Gk).

Two graphs G and H are said to be isomorphic, denoted as G∼H, if there
is a one-to-one mapping between the vertices of both graphs and there is an
edge between two vertices of G if and only if their corresponding vertices in
H also form an edge.

A match of a graph H in a larger graph G is a set of nodes that induce
the respective subgraph H. In other words, it is a subgraph Gk of G that is
isomorphic to H. The set of isomorphisms of a graph into itself is called the
group of automorphisms and is denoted as Aut(G). Two vertices are said to
be equivalent when there exists some automorphism that maps one vertex into
the other. This equivalence relation partitions the vertices of a graph G into
equivalence classes denoted as GE .

A path is a sequence of vertices such that there is an edge connecting any
adjacent pair of vertices in the sequence. Two vertices are said to be connected
if there is a path between them. A connected graph is a graph in which every
pair of nodes is connected. An articulation point is a node from a connected
graph that, when removed, disconnects the graph and creates two or more
separated subgraphs.

2.2 The subgraph counting problem

The main initial motivation for the creation of g-tries was the discovery of
network motifs. This terminology was introduced by Milo et al. [30] in 2002,
and motifs were informally defined as patterns of inter-connections occurring
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in complex networks in numbers that are significantly higher than those in
similar randomized networks. Note that for the sake of simplicity, the term
motifs in the context of this article will refer to network motifs.

This definition means that a motif is a subnetwork which is statistically
over-represented. The key aspect to ensure statistical meaning is to be able to
generate a large set of random networks as similar as possible to the original
one, so that the intrinsic global and local properties of the network do not
determine the motif appearance and that the motif is indeed specific to a par-
ticular network. The original proposal was therefore to maintain all single-node
properties, namely the in and out degrees. Figure 2 exemplifies the concept.

Fig. 2: An example network motif of size 3. The random networks preserve
the ingoing and outgoing degrees of each node in the original network. The
example motif appears at most once in each random network, but has three
occurrences on the original one.

This definition is very general and can be applied equally to directed or
undirected networks, or to colored networks, giving origin to colored motifs [23].
Several variations on the standard definition exist, such as looking for under-
represented subgraphs (anti-motifs [29]), or using different constraints for the
similar random networks [49].

The basic premise for finding motifs lies on the ability to compute the
frequency of the subgraphs both on the original network and the randomized
networks. In order to count the number of occurrences of a subgraph, the
standard is to allow overlapping between two occurrences (matches), that is,
they can share nodes and edges. This has an associated functional meaning
as in, for example, biological applications. It is possible for several different
overlapping subgraphs to be active and functioning at the same time with the
same motif assuming different functions on each occurrence, as is the case of
proteins in PPI networks [10]. Different frequency concepts exist [47] associated
with the introduction of further constraints, for example not allowing sharing
of nodes and edges. This leads to new problems with their own specifities in
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choosing the “correct matches”. The standard definition, which is the most
widely adopted, will be used in this article.

In order to discover motifs, one has to compute a subgraph census on the
original network, that is, calculate the frequency of all the subgraphs of a
certain type. The typical application is to find all subgraphs of a given size k.
Afterwards, one needs to compute the frequency of this set of subgraphs on the
randomized similar networks, which is generally constituted by several dozens
or even hundreds of networks. The bottleneck of the entire motif discovery
process is therefore to compute subgraph frequencies, and this is the core
computational problem that we are trying to solve, as stated in definition 1.

Definition 1 (General Subgraph Counting Problem)
Given a set of subgraphs SG and a graph G, determine the exact count of all

induced occurrences of subgraphs of SG in G. Two occurrences are considered

different if they have at least one node or edge that they do not share. Other

nodes and edges can overlap.

2.3 Related work

We will now give a brief historical overview of the subgraph frequency compu-
tation algorithms, in the context of network motifs discovery. The first prac-
tical implementation of a sequential backtracking algorithm coincided with
the origin of the term, with mfinder [30], in 2002. The first improvements
appeared two years later, with the possibility of trading accuracy for better
execution times by sampling subgraphs (Kashtan [21]). In the same year dif-
ferent frequency concepts were introduced and the algorithms were adapted
accordingly (FPF [47]). In 2005 a breakthrough was reached, with the appear-
ance of the first specialized algorithm that could avoid symmetries (ESU [54,
55]), thus avoiding redundancy in computation. In 2006, the first algorithm
able to reach subgraph sizes of two digits appeared, although it succeeded in
doing so by twisting a little bit the definition of motifs and only looking for
a subset of all possible candidates (NeMoFinder [9]). In 2007, the capability
of searching and counting individual subgraphs was introduced with the in-
tent to avoid doing a complete subgraph census (Grochow [15]). In 2009, two
new algorithms appeared, similar in concept and asymptotical behavior to ESU
(Kavosh [20]) and Grochow (MODA [37]).

Finally, the concept of g-tries was introduced in 2010 [42]. This article
differs from that previous work, given that we have expanded and refined
the data structure and associated algorithms. For instance we now present
a custom canonical labeling for the subgraphs and we introduce a filtering
mechanism that reduces the number of symmetry breaking conditions. With
this we are more efficient, as demonstrated with a much larger and thorough
experimental evaluation, using both directed and undirected networks, and by
comparing to three past state-of-art algorithmic competitors.
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2.4 Related problems

There exists a vast amount of work on graph mining. Particularly, the field of
frequent subgraph mining has been very prolific. Although related, this prob-
lem, which derives from the frequent itemset problem [38], is substantially
different because its goal is to find the most frequent subgraphs that appear
in a set of graphs, while in the network motifs domain we aim to find the
frequency of all subgraphs on a single larger graph.

Frequent subgraph mining has produced algorithms like MOFA [6], gSpan [57],
FFSM [18] or Gaston [35]. Because of their goal, these algorithms differ sub-
stantially in concept and applicability. For instance, they can prune possible
unfrequent subgraphs based on their frequency, while we need to find the fre-
quency of all possible subgraphs, even if they are infrequent. We should note
that some authors use the term motif in the context of this related problem
for subgraphs which simply occur frequently, but are not necessarily over-
represented [52,17].

Subgraph search is another related problem, which given a single individ-
ual query graph G retrieves all graphs of a database that contain G as their
subgraph. This is again different from our problem because we are looking
for a set of queried subgraphs (as opposed to just one) on a single graph (as
opposed to a set of graphs on a database) and we need to find the frequency
of the subgraph (and not just if it appears at all). Given this, the algorithmic
techniques used on subgraph search are different and not directly applicable.
Index-like structures such as gIndex [58] or Lindex [59] are built around the
database of graphs and are optimized for keeping the database between differ-
ent queried subgraphs, while g-tries and are built around the subgraphs and
are optimized for making the same query to different individual graphs.

3 G-Tries

3.1 Motivation and Prefix Trees

Previous methods for computing a k-subgraph census follow one of two con-
ceptually extreme approaches [44]. On one side we have the network-centric

methods (like mfinder, ESU and Kavosh), meaning that the algorithm used
relies on first enumerating all k-subgraphs, and then finding which ones are
isomorphic. The enumeration itself can be very time consuming and afterwards
we basically have several instances of the graph isomorphism problem, which
is computationally hard [27,22]. These methods must compute a complete cen-
sus of the respective network, regardless of it being the original or a similar
random network. However, the random networks can contain more types of
subgraphs than the original one, and we are only interested in knowing the
frequency of the subgraphs that do appear in the original network (more than
that, the motifs definition implies a certain minimum frequency, and that may
imply that even more subgraphs do not need to be considered for the random
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networks). This means we will be doing a significant proportion of unnecessary
work by computing the frequency of subgraphs that are not interesting from
the point of view of motifs discovery.

At the other side, we have subgraph-centric methods (like Grochow and
MODA) which consist in computing the frequency of a single subgraph each
time, by finding isomorphic matchings of that individual subgraph. For dis-
covering motifs we would need to first generate the list of subgraphs we are
interested in (for example, all subgraphs of a determined size), and then apply
the individual counting, in turn, to all list elements. Each of these instances is
at least as hard as the NP-complete subgraph isomorphism problem [11], and
therefore also computationally intractable. Moreover, no information is reused
from one subgraph to another. For example, two subgraphs that are exactly
the same with the exception of a single node, will be computed extensively
and separately without taking advantage of that similarity.

The main idea for a new methodology for discovering motifs is therefore
to explore the described drawbacks of previous algorithms in order to gain
computational efficiency. We wanted an algorithm specialized in finding a set
of subgraphs: not necessarily all possible subgraphs, but also not just one single
subgraph. This is the core of what motif algorithms are really doing on the
random network census computation, which constitutes the bottleneck of the
whole motif discovery process.

When dealing with sequences, if we want a data structure that can store a
set of a words, that is, a dictionary, we could use the trie data structure, also
known as a prefix tree [14]. Tries make use of common prefixes and they are
basically trees, where all descendants of a node have the same common prefix.
Algorithmically, tries can be considered an efficient structure, providing linear
execution time for verifying if a word of size n is in the set. Basically we can
just descend the trie, one letter at a time. In memory terms they also provide
big saves when comparing to actually storing all the words, because common
prefixes are only stored once, avoiding redundancy.

One of the possible usages of a trie is to discover instances of all the words
contained in the trie. When we have a partial match of a word, we know exactly
which words can be formed from that particular subsequence. In that sense we
do not need to do the redundant work of searching again for the same prefix.
More than that, at a certain point, we could know that there is no possible
word of a determined size starting with a certain prefix, since there are no
descendant nodes, and we could stop the computation on that search branch.

The core idea for the g-trie data structure is to take advantage of these
conceptual advantages and apply them in the graphs realm.

3.2 G-Tries Definition

A trie takes advantage of common prefixes. By analogy, g-tries take advan-
tage of common substructures in a collection of graphs. In the same way two
or more strings can share the same prefix, two or more graphs can share a
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common smaller subgraph. Like tries, g-tries are trees. Each trie node has a
single letter and each g-trie node will represent a single graph vertex. Each
vertex is characterized by its connections to the respective ancestor nodes.
We represent these connections as an array of boolean values (0-1), where 1
means a connection and 0 its absence. The first value of the array represents
the connection to the first node, the second value represents the connection to
he second node and so on. All of this can be visualized in Figure 3.

Fig. 3: A g-trie representing a set of 6 undirected graphs. Each tree node adds
a new vertex (in black) to the already existing ones in the ancestor nodes (light
vertices). The 0-1 boolean arrays represent the connections to already existing
nodes.

Note that all graphs with common ancestor tree nodes share common sub-
structures that are characterized precisely by those ancestor nodes. A single
path through the tree corresponds to a different single graph. Children of a
node correspond to the different graph topologies that can emerge from the
same subgraph. Graphs of different sizes can be stored in the same tree if each
tree node also signals if it corresponds to the “end” of a graph. All of this is
easily applicable to both undirected and directed subgraphs.

We call these kind of trees g-tries, from the etymology “Graph reTRIEval”.
We now give an informal definition of this abstract data structure. Note that
a multiway tree has a variable number of children per node.

Definition 2 (G-Trie) A g-trie is a multiway tree that can store a col-

lection of graphs. Each tree node contains information about a single graph

vertex, its corresponding edges to ancestor nodes and a boolean flag indicating

if that node is the last vertex of a graph. A path from the root to any g-trie

node corresponds to one single distinct graph. Descendants of a g-trie node

share a common subgraph.
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In order to avoid further ambiguities, throughout this article we will use
the term nodes for the g-trie tree nodes, and vertices for the graph network
nodes.

3.3 Creating a G-Trie

The first task one must be able to do in order to use g-tries is of course to be
able to create one. The following sections will show how we do this.

3.3.1 Iterative Insertion

In order to construct a g-trie, we just repeatedly insert one subgraph at a
time, starting with an empty tree (just a root node). In each insertion, we
traverse the tree and verify if any of the children has the same connections to
previous nodes as the graph we are inserting. With each increase in depth we
also increase the index of the vertex we are considering. Figure 4 exemplifies
this process.

Fig. 4: Sequential insertion of 3 graphs on an initially empty g-trie. Gray
squares are new g-trie tree nodes after each insertion. White squares are the
already existing nodes. Dashed squares correspond to an adjacency matrix
implementation, with ’1’ representing a connection to a previous vertex, and
’0’ its absence, while the other boxes give a visual representation.

Note that the g-trie root node must be empty since there are two possible
direct child nodes: a vertex with or without a connection to itself. In this way,
g-tries are also able to accommodate self-loops.

3.3.2 The Need for a Canonical Representation of Graphs

Following the described insertion procedure, the insertion is completely defined
by the adjacency matrix of the inserted graph. However, there are many dif-
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ferent possible adjacency matrices representing the same class of isomorphic
graphs. The problem with this is that different matrices will give origin to
different g-tries. We could even have two isomorphic graphs having different
g-trie representations, leading to different branches of the tree representing
the same graph, which would contradict the purpose of the g-trie. In order
to avoid that we must use a canonical labeling, to guarantee that isomorphic
graphs will always produce the same unique adjacency matrix, and therefore
the same set of subgraphs is guaranteed to produce the same g-trie.

There are many possible canonical representations, and the representation
used directly, and significantly, impacts the g-trie structure. In order to illus-
trate this, consider the string formed by the concatenation of all adjacency
matrix rows, and call it adjacency string. Any choice of canonical represen-
tation will give origin to different adjacency strings. Two possible options of
forming a canonical adjacency string would be to consider the lexicographically
larger or the lexicographically smaller one for each graph.

Figure 5 illustrates the g-tries generated for each of these possible choices
for the same set of six 4-graphs. Note the contrast between these two choices,
with completely different structures of the g-trie formed. One can clearly ob-
serve a variation on the number of g-tries nodes needed and a different balance
on the nodes of each size of the g-trie.

Fig. 5: Two different g-tries using lexicographically larger and smaller adja-
cency strings. 1’s and ’0’ represent respectively the existence or absence of
a connection.
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If we increase the amount of common ancestor topologies, we decrease
the size of the tree and effectively we compress the representation, needing
less memory to represent it than when we had the original set of subgraphs
(represented by their adjacency matrices). We can measure the amount of
compression if we take into account the number of nodes in the tree and
the number of vertices in the subgraphs (equation (1)). By using a tree we
do have to spend some auxiliary memory to represent the tree edges, but the
total memory needed for the tree structure is very small compared to the actual
information stored in the nodes (the graph adjacency matrix) and loses relative
weight as we increase the amount of subgraphs and their size. Hence, the real
memory bottleneck is in the storage of node values, and equation (1) is a good
indicator of how much space we save and how much common substructure we
identified.

compression ratio = 1−
nodes in tree

∑
nodes of stored graphs

(1)

As an example, the two g-tries constructed in figure 5 have a compres-
sion ratio of respectively 58.34% = 1 − 10/24 (lexicographically larger) and
45.84% = 1− 13/24 (lexicographically smaller). We can ignore the root, since
it uses constant memory space and only exists as a placeholder for the initial
children representing the first vertex. A tree with no common topologies would
need a node for each graph vertex and would have a 0% compression ratio.

3.3.3 An Efficient Custom Built Canonical Form

The lexicographically largest adjacency string seems like a good candidate
for the canonical representation and in fact it was the first we experimented.
However, it is not the only possible choice, and we will now give the rationale
behind our chosen canonization.

In general, a canonical label suitable for our purposes should try to high-
light the main characteristic of g-tries, which is the identification of common
substructure. Given that, we are aiming to create the smallest possible g-
trie, that is, the one with the highest compression, or the one which identifies
more common topology. This has the immediate effect of reducing the mem-
ory needed but at the same time has implications on the actual computation
of frequencies. As you will be able to see in detail in the following sections,
we will try to produce partial matches of graph nodes along g-trie traversals.
This means that at a given point in our search, we know that a certain set
of network vertices corresponds to a certain g-trie node. By having less g-trie
nodes, we actually decrease the structural matching that this process needs.

If we really look into this search, we will be trying to augment our partial
match by adding another network vertex, descending one level in our g-trie.
In order to improve the efficiency of our search, we need to constrain as much
as possible the vertices which are suitable candidates for this augmentation of
our partial match. For this we take into account that real networks are usually
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sparse: they have much less connections than the maximum possible number
of edges.

Given this, we want to produce the labeling which maximizes the number
of connections to ancestor vertices. When we are adding a new vertex, it will
have to match these connections, and since the network is sparse, the more
connections we have, the less candidates will precisely match those needed
edges. As an example, consider that the extreme case of having a label that
produces disconnected subgraphs. This means we will have a node inside the
subgraph which is not connected to any other node. The candidates for this
position would be all the vertices not connected to any of the vertices already
matched, which would be a really large set given the sparsity of the network. By
contrast, if we require connected subgraphs, we guarantee that we can only use
the nodes that are neighbours of the partial match. With more connections to
ancestor nodes, we potentially reduce even more the suitable vertex candidates.

The lexicographically largest string is not geared specifically towards these
desired properties. It is also very time consuming to compute. Given this,
we opted to create our own more efficient canonical representation, geared to
being more efficient to compute and to create as much constraints as possible
for later use when matching the g-trie graphs as subgraphs of another larger
network. Algorithm 1 describes our method for computing a canonical form,
and we call it GTCanon.

Algorithm 1 Converting a graph to a canonical form

Require: Graph G

Ensure: Canonical Form of G

1: function GTCanon(G)
2: G := nautyLabeling(G)
3: for all i ∈ V (G) do

4: current degree[i] := nr ingoing+outgoing connections of i
5: global degree[i] := last degree[i] := current degree[i]

6: for pos : |V (G)| down to 1 do

7: Choose umin subject to:
8: • umin is still not labeled and is not an articulation point
9: • umin has minimum current degree
10: • In case of equal min. current degree, choose umin with min. last degree
11: • In case of equal min. last degree, choose umin with min. global degree
12: labelCanonG[umin] := pos

13: last degree[] := current degree[]
14: update current degree[] removing umin connections

15: return CanonG

The first step of GTCanon is to apply any other canonical representation.
In our case we use nauty [27], a proven and very efficient third-part algorithm
(line 2). Then, several lookup tables are initialized with the degrees of every
node of the graph. The core of the algorithm is iterative and in each step
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we select a new node for being labeled at the last available labeling position.
The idea is to choose a node that has the minimum amount of connections as
possible (lines 9 to 11), guaranteeing that it does not divide the graph in two
(line 8) and then label it (line 12) and remove it from the graph. Before the
next iteration, the lookup tables with degree information are updated (lines
13 and 14).

By removing a node not densely connected to the rest of the graph, we
increase the number of connections in lower labeling positions, and therefore
we increase constraining. By not choosing articulation points, we guarantee
connectivity in the subgraph. Finally, each time we remove a node, we get a
smaller instance of the same problem, having to compute a canonical form of
the graph with one less vertex. By using the same criteria on each phase for all
graphs, we increase the compressibility. When our criteria does not suffice to
chose an unique candidate, the fact that we first used another canonical form
guarantees that GTCanon will also be canonical and always return the same
labeling for isomorphic graphs.

Note that computing a canonical form is always a computational hard
problem because solving it is at least as hard as the isomorphism problem
(two graphs are isomorphic if they have the same canonical form). How-
ever, GTCanon takes advantage of an efficient third party algorithm, nauty,
which is state-of-art, and uses an efficient polynomial algorithm after that
computation. Computing the articulation points can be done in linear time
O(|V (g)| + |E(G)|) with a simple depth-first search [50]. Computing and up-
dating the three degree arrays can also be done in linear time.

Figure 6 illustrates GTCanon in action and was automatically created us-
ing our own code. The results section gives more empirical verification that
GTCanon is indeed a good choice for the labeling (see Section 4.3).

3.3.4 Insertion Algorithm

With the considerations made in the previous sections we are now ready to
detail our algorithm for creating a g-trie. Algorithm 2 details a method to insert
a single graph in a g-trie. As said, constructing a complete g-trie from a set of
subgraphs can be done by inserting the graphs, one by one, into an initially
empty tree. In each g-trie node, in represents the incoming connections, out
represents the outgoing connections and isGraph is a boolean value indicating
if a stored subgraph ends at that node.

Explaining in more detail, we start by computing the canonical adjacency
matrix of the graph being inserted (line 2). Then we recursively traverse the
tree, inserting new nodes when necessary, with the procedure insertRecursive().
This is done by going through all possible children of the current node (line
8) and checking if their stored value is equal to the correspondent part of the
adjacency matrix (lines 9 and 10). If it is, we just continue recursively with
the next vertex (line 11). If not, we create a new child (lines 13 to 16) and
continue as before (line 18). When there are no more vertices to process, we
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Fig. 6: A g-trie containing the 11 undirected 5−subgraphs found in an elec-
tronic circuit network.

stop the recursion (line 5) and set the isGraph variable, indicating the end of
the graph (line 6).

Regarding the complexity of the algorithm, insertRecursive() takesO(|V (G)|2),
the size of the adjacency matrix. We could reduce this by using for instance
an hash table, but as we will see later, the insertion will not be at all the
bottleneck of the entire subgraph search algorithm and this procedure, as it
is, keeps simplicity and memory usage as low as possible. The whole insertion
also needs to calculate the canonical labeling of the graph.

After constructing the g-trie, if we want to retrieve the initial set of graphs
a simple depth-first search of the tree will suffice. A path from the root to any
given g-trie node at depth k with isGraph set to true, represents a k-graph.

3.4 Computing subgraph frequencies

Once the g-trie is built, the next logical step is to create a method for finding
instances of the g-trie graphs as subgraphs of another larger network.

3.4.1 An Initial Approach

Algorithm 3 details a method for finding and counting all occurrences of the
g-trie graphs as induced subgraphs of another larger graph. The main idea
is to backtrack through all possible subgraphs, and at the same time do the
isomorphism tests as we are constructing the candidate subgraphs. We take
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Algorithm 2 Inserting a graph G in a g-trie T

Require: Graph G and G-Trie T

Ensure: Inserts graph G in G-Trie T

1: procedure gtrieInsert(G, T )
2: M := adjacency matrix of GTCanon(G)
3: insertRecursive(M,T, 0)

4: procedure insertRecursive(M,T, k)
5: if k = numberRows(M) then

6: c.isGraph = true
7: else

8: for all children c of T do

9: if (c.out = first k + 1 values of k-row of M) AND
10: (c.in = first k + 1 values of k-column of M) then

11: insertRecursive(M, c, k + 1)
12: return

13: nc := new g-trie node
14: nc.in := first k + 1 values of k-row of M
15: nc.out := first k + 1 values of k-column of M
16: nc.isGraph := false
17: T .insertChild(nc)
18: insertRecursive(M,nc, k + 1)

advantage of common substructures in the sense that at a given time we have
a partial isomorphic match for several different candidate subgraphs (all the
descendants).

At any stage, Vused represents the currently partial match of graph vertices
to a g-trie path. We start with the g-trie root children nodes and call the
recursive procedure match() with an initial empty matched set (line 2). The
later procedure starts by creating a set of vertices that completely match the
current g-trie node (line 4). We then traverse that set (line 5) and recursively
try to expand it through all possible tree paths (lines 7 and 8). If the node
corresponds to a full subgraph, then we have found an occurrence of that
subgraph (line 6). Note that at this time no isomorphic test is needed, since
this was implicitly done as we were matching the vertices.

Generating the set of matching vertices is done in the matchingVertices()
procedure. The efficiency of the algorithm heavily depends on the above men-
tioned constraints as they help in reducing the search space. To generate the
matching set, we start by creating a set of candidates (Vcand). If we are at a
root child, then all graph vertices are viable candidates (line 10). If not, we
select from the already matched vertices that are connected to the new vertex
(line 12), the one with the smallest neighborhood (line 13), thus reducing the
possible candidates to the unused neighbors (line 14). Then, we traverse this
set of candidates (line 16), and if one respects all connections to ancestors
(lines 17 and 18) we add it to the set of matching vertices (line 20). Since we
are using the lexicographically larger representation, the initial nodes will have
the maximum possible number of connections. This also helps in constraining
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Algorithm 3 Census of subgraphs of T in graph G

Require: Graph G and G-Trie T

Ensure: All occurrences of the graphs of T in G

1: procedure gtrieMatch(T, G)
2: for all children c of T.root do match(c, ∅)

3: procedure match(T, Vused)
4: V := matchingVertices(T, Vused)
5: for all node v of V do

6: if T.isGraph then output Vused ∪ {v}

7: for all children c of T do

8: match(c, Vused ∪ {v})

9: function matchingVertices(T, Vused)
10: if Vused = ∅ then Vcand := V (G)
11: else

12: Vconn := {v : v ∈ N(Vused)}
13: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
14: Vcand := {v ∈ N(m) : v 6∈ Vused}

15: V ertices := ∅
16: for all v ∈ Vcand do

17: if ∀i∈[1..|Vused|]:
18: T.in[i] := GAdj [Vused[i]][v] ∧ T.out[i] = GAdj [v][Vused[i]] then
19: V ertices := V ertices ∪ {v}

20: return V ertices

the search and reducing the possible matches. Figure 7 exemplifies the flow of
the previously described procedure. Note how the subgraph {0, 1, 4} is found
twice.

Fig. 7: An example of a partial program flow of the recursive g-trie match()

procedure, when searching for a 3-subgraph on a graph of 6 vertices.
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3.4.2 Symmetry Breaking Conditions

One problem with the gtrieMatch() method described is that we do not avoid
subgraph symmetries. If there are automorphisms on a subgraph, then that
specific subgraph will be found multiple times. In the example of figure 7, we
would not only find {0, 1, 4} but also {0, 4, 1}, {1, 0, 4}, {1, 4, 0}, {4, 0, 1} and
{4, 1, 0}. At the end we can divide by the number of automorphisms to obtain
the real frequency, but a lot of valuable computation time is wasted.

G-tries need to avoid this kind of redundant computations and find each
subgraph only once. In order to achieve that we generate a set of symmetry
breaking conditions for each subgraph, similarly to what was done by Grochow
and Kellis [15]. The main idea is to generate a set of conditions of the form
a < b, indicating that the vertex in position a should have an index smaller
than the vertex in position b. This is illustrated in Figure 8.

Fig. 8: Symmetry breaking conditions for an example graph. The conditions
only allow one automorphism, disallowing all others.

Although inspiration was taken from Grochow and Kellis [15], a slightly
different method for generating the conditions is used, which we detail in algo-
rithm 4. Our algorithm differs from Grochow and Kellis [15] essentially because
of the method by which we choose the candidates for the conditions. Instead of
choosing arbitrary nodes inside the same equivalence class, we always choose
the smallest possible index, so that any condition of the form a < b implies
that a is smaller than b, as you can see in Figure 9. This simplifies later the
actual application of the conditions, as we will detail in the next section.

We start by emptying the set of conditions (line 2). We then calculate
the set Aut of automorphisms of the graph (line 3), and start adding condi-
tions that when respected will reduce the above mentioned set to the identity
map. Note that although calculating automorphisms is thought to be com-
putationally expensive, in practice it was found to be almost instantaneous
for the subgraph sizes used, and with nauty [27] we were able to test much
bigger subgraphs (with hundreds of nodes) and obtain their respective auto-
morphisms very quickly, in less than 1 second. Thus, this calculation is very far
from being a bottleneck in the whole process of generating and using g-tries.

In each iteration, to add a new condition, the algorithm finds the minimum
index m corresponding to a vertex that still has at least another equivalent
node (line 5). It then adds conditions stating that the vertex in position m
should have an index lower than every other equivalent position (lines 6 and



G-Tries: a data structure for storing and finding subgraphs 19

Algorithm 4 Symmetry breaking conditions for graph G

Require: Graph G

Ensure: Symmetry breaking conditions of G
1: function gtrieConditions(G)
2: Conditions := ∅
3: Aut := setAutomorphisms(G)
4: while |Aut| > 1 do

5: m := minimum v : ∃map ∈ Aut,map[v] 6= v

6: for all v 6= m : ∃map ∈ Aut,map[m] = v do

7: add m < v to Conditions

8: Aut := {map ∈ Aut : map[m] = m}

9: return Conditions

7), which in fact fixes m in its position. We choose the minimum index vertex
in order that, when searching, we can know as soon as possible that a certain
partial match is not a suitable candidate. Note that lower indexes mean lower
depths in the g-trie.

After this, the algorithm reduces Aut by removing the mappings that do
not respect the newly added connections, that is, the ones that do not fix m.
It repeats this process until there is only the identity left Aut′ (line 4), and
finally returns all the generated conditions (line 9). In the case of the graph
of figure 8, this algorithm would create the exact same set of conditions as
depicted there. Figure 9 illustrates the symmetry conditions found.

Fig. 9: Symmetry conditions computed for all possible undirected 4-subgraphs.
All the graphs are in the GTCanon canonical form.

3.4.3 Using the Conditions to Constraint Search

In order to use the symmetry breaking conditions in g-tries, we store the graph
symmetry conditions in all the nodes corresponding to its g-trie path. The
matching algorithm can then determine if the partial subgraph constructed
respects the conditions of at least one possible descendant g-trie node, that
is, there is at least one possible subgraph that can still be constructed by ex-
panding the current partial match and still obeys to the symmetry conditions.

Algorithms 5 details how the insertion of the conditions is done. For the
sake of understanding, we repeat several lines that are the same as the previ-
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ous insertion algorithm, and indicate which lines are new. Basically, the only
difference is that we now compute the symmetry breaking conditions (line 3)
and then we store those conditions along the g-trie path that leads from the
root to the final graph node (line 18).

Algorithm 5 Inserting a graph G in a g-trie T [with symmetry breaking]

Require: Graph G and G-Trie T

Ensure: Inserts graph G in G-Trie T

1: procedure gtrieInsert(G, T )
2: M := adjacency matrix of GTCanon(G)

3: C := symmetryConditions(G) ⊲ NEW CODE

4: insertCondRecursive(M,T, 0, C) ⊲ NEW FUNCTION HEADER

5: procedure insertCondRecursive(M,T, k, C) ⊲ NEW FUNCTION HEADER

6: if k = numberRows(M) then
7: c.isGraph = True
8: else
9: for all children c of T do
10: if (c.out = first k + 1 values of k-row of M) AND
11: (c.in = first k + 1 values of k-column of M) then
12: insertCondRecursive(M, c, k + 1, C) ⊲ NEW F. HEADER

13: return
14: nc := new g-trie node
15: nc.in := first k + 1 values of k-row of M
16: nc.out := first k + 1 values of k-column of M
17: nc.isGraph = False
18: nc.addConditions(C) ⊲ NEW CODE

19: T .insertChild(nc)
20: insertCondRecursive(M,nc, k + 1, C) ⊲ NEW FUNCTION HEADER

With the symmetry breaking conditions placed in the g-trie nodes, we are
now able to search more efficiently for subgraphs. Algorithm 6 details how a
census with symmetry breaking is done. The same conventions of the insertion
algorithm are followed, meaning that we repeat lines that were already on the
previous census algorithm and we indicate the new lines of code.

The basic difference is that we now only accept matchings that respect
at least one of the sets of conditions stored, that is, can still correspond to a
descendant graph (line 11). Moreover, we detect the minimum possible index
for the current node being matched (line 12) and use it to further constraint
the generation of candidates (lines 13 and 15). This is easy to find since in all
stored conditions a < b the node being matched is always on the b position
and therefore the minimum index is one plus the largest index of nodes that
must have lower indexes than this new node. If the neighbours of each network
node are sorted (which can be done only once before starting the census), we
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Algorithm 6 Census of subgraphs of T in graph G [with symmetry breaking]

Require: Graph G and G-Trie T

Ensure: All occurrences of the graphs of T in G

1: procedure gtrieMatchCond(T, G)

2: for all children c of T.root do matchCond(c, ∅) NEW FUNCTION HEADER

3: procedure matchCond(T, Vused) ⊲ NEW FUNCTION HEADER

4: V := matchingVerticesCond(T, Vused) ⊲ NEW FUNCTION HEADER

5: for all node v of V do
6: if T.isGraph ∧ T.ConditionsRespected() then ⊲ UPDATED CODE

7: output Vused ∪ {v}

8: for all children c of T do
9: matchCond(c, Vused ∪ {v}) ⊲ NEW FUNCTION HEADER

10: function matchingVerticesCond(T, Vused) ⊲ NEW FUNCTION HEADER

11: if NOT ∃C ∈ T.cond : Vused respects C then return ∅ ⊲ NEW CODE

12: labelmin := minimum possible index for current position ⊲ NEW CODE

13: if Vused = ∅ then Vcand := {v ∈ V (G) : v ≥ labelmin} ⊲ UPDATED CODE

14: else
15: Vconn := {v : v ∈ N(Vused) ∧ v ≥ labelmin} ⊲ UPDATED CODE

16: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
17: Vcand := {v ∈ N(m) : v 6∈ Vused}

18: V ertices := ∅
19: for all v ∈ Vcand do
20: if ∀i∈[1..|Vused|]:
21: T.in[i] := GAdj [Vused[i]][v] ∧ T.out[i] = GAdj [v][Vused[i]] then
22: V ertices := V ertices ∪ {v}

23: return V ertices

can use this minimum to discover that further smaller neighbours will never
be suitable candidates. In the end we must verify that a particular matching
respects all symmetry breaking conditions for that subgraph. If the end of the
graph is in a g-trie leaf, this step can be skipped, since for sure the conditions
are respected. However, if the g-trie node is not a leaf, the search might have
arrived there because of the conditions of another descendant subgraph, and
therefore the algorithm must assure that the conditions for that particular
subgraph are respected.

The method for choosing the minimum possible index for the current node
that still respects the symmetry conditions (labelmin on line 12) consists in
computing, for each set of conditions, the maximum already mapped node
that must be smaller than the current node, and then we pick the minimum
of these. Illustrating with an example, imagine that we are trying to match
a node to position 2, the symmetry conditions are {{0<1, 1<2}, {0<2, 1<2}},
and the current matching is Vused = {34, 12}, which means that network node
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number 34 is matched to position 0, and node 12 is matched to position 1.
Since we are matching position 2, only the conditions with 2 matter. For the
first set this is 1<2, which means that the current node must be larger than
12. For the second set, we must take into consideration 0<2 and 1<2, which
means that the node must be simultaneously larger than 34 and 12. We take
the maximum, which is 34. Afterwards, we know that the node must be larger
than 12 (first set) or larger than 34 (second set), and therefore we take the
minimum, and we would have labelmin := 12. If any set of conditions is empty,
than labelmin := 0, that is, there is no minimum for the index of the node.

With these two symmetry aware algorithms (insertion and census), a sub-
graph will only be found once. All other possible matchings of the same set
of vertices will be broken somewhere in the recursive backtracking. Moreover,
since the conditions generation algorithm always create conditions of the min-
imal indexes still not fixed (line 5 of algorithm 4), the census algorithm can
discover early in the recursion that a condition is being broken, therefore cut-
ting branches of the possible search tree as soon as possible.

3.4.4 Reducing the Number of Conditions

By using the last two algorithms, we may end up having a large number of
symmetry conditions on a single g-trie node, since it can have a very large
number of descendants. This can have a severe impact on memory costs and
influence the performance, and we should reduce as much as possible this
cost. With that in mind, we use four steps to filter and reduce the symmetry
conditions.

Step #1 reduces the set of conditions by using the transitive property of
the “less” relationship, and in the cases where a < b, a < c and b < c are in
the set of conditions, we remove the condition a < c.

Step #2 reduces the conditions to the ones that matter to that particu-
lar node. This means that if we are at a certain g-trie depth, conditions in
which one of the elements is bigger than the depth are discarded, that is, the
conditions that are referring to descendant nodes that are still not matched.

Step #3 discards sets of conditions that are redundant. Since each g-trie
node has a group of sets of conditions (one for each descendant graph) and
it must assure that at least one of those sets is respected (meaning that
that at least one descendant graph is achievable), we search the group for
sets that are redundant, in the sense that they include another one, and we
remove those sets. One example can be given using the sets of conditions
{{0<1}, {0<1, 1<2}}. In this case we can discard the second set since it in-
cludes the first set, that is, if a partial graph respects the second set, it would
also respect the first set, and therefore the second set is redundant if the al-
gorithm is trying to assure that at least one of the condition sets is respected.

Step #4 is the final one and removes conditions that are already assured.
It is applied after having all graphs already inserted in the g-trie, and all
other filtering steps are already made. If at any g-trie node there is a specific
condition a<b that is included in all of the sets, we can be assured that this
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condition is certainly respected and all descendant nodes do not need to verify
it again. As an example, consider the set {{0<1}, {0<1, 1<2}}. The condition
0<1 is in every set and therefore we remove it from all descendant g-trie nodes.

By following the described filtering steps, the resulting g-trie has a much
reduced number of stored conditions, which will not only save memory, but
will also be more efficient for census computation, as there are less conditions
to be verified. Figure 10 shows an example filtered g-trie.

Fig. 10: A g-trie containing all 21 undirected 5-subgraphs, with filtered condi-
tions in place.

3.5 Motif Discovery with G-Tries

With the g-tries algorithms described in this section it is now possible to
discover motifs. The main flow of all exact network motifs algorithms is to
calculate a census of subgraphs of a determined size k in the original network,
then generate a set of similar random networks, followed by the calculation of
the census on all of those, in order to assess the significance of the subgraphs
present in the original network.

The generation of the random networks themselves (normally done by a
Markov chain process [30]) is just a very small fraction of the time that the
census takes. Computing the census on all random networks is the main bot-
tleneck of the whole process (there can be hundreds of random networks) and
g-tries can help precisely in this phase. In order to use g-tries we give two
possible approaches:

– G-Trie use only - generate all possible graphs of a determined size (for
example using McKay’s gtools package [28]), insert them all in a g-trie
and then match to the original network. Create a new g-trie only with the
subgraphs found, and then match it to the random networks.

– Hybrid approach - use another network-centric method to enumerate the
subgraphs in the original network, like the efficient ESU algorithm. Create
a g-trie only with the subgraphs found, and then apply g-trie matching to
the random networks.
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In both cases we will only be trying to discover in the random networks
the subgraphs that appear in the original network, and not spending execution
time trying to find subgraphs that are not interesting from the motifs problem
point of view. Also note that g-tries could easily be extended to really find
and store all occurrences, instead of simply counting them. More than that,
g-tries are general enough to be used for any situation in which we have a set
of initial graphs that we need to consider as subgraphs of a larger network.

4 Experimental Evaluation

We did an extensive experimental evaluation of our proposed approach, show-
ing that for all the data sets used our algorithm outperforms all competing
algorithms, being from two to three orders of magnitude faster. For all the
tests, we used Xeon 5335 processors with 6 GB of RAM. All code1 was devel-
oped in C++ and compiled with gcc 4.1.2. Execution times measure wall clock
time, meaning the real time elapsed from the start to the end of the respective
computation. The time unit used is the second.

We use a large set of real representative networks from several domains,
focusing on getting diversity in topological features and scientific fields. We
now describe each of these networks, indicating the source and providing a
name for future reference.

– Biological networks:

– ppi: an undirected budding yeast (S. cerevisiae) protein-protein inter-
action (PPI) network [7]. Source: [5].

– neural: a directed neural network of the small nematode roundworm
C. elegans, describing its nervous system [56,53]. Source: [32].

– metabolic: a directed metabolic network of the small nematode round-
worm C. elegans [12]. Source: [4].

– Social networks:

– coauthors: an undirected network describing coauthorship between
scientists working on network theory [34]. Source: [32].

– dolphins: an undirected social network of frequent associations be-
tween 62 dolphins in a community living near New Zealand [26]. Source: [32].

– links: a directed network of hyperlinks between weblogs on US poli-
tics [1]. Source: [32].

– company: a directed ownership network of companies in the telecom-
munications and media industries [36]. Source: [5].

– Physical networks:

– circuit: an undirected network representing an electronic circuit. Source:
auxiliary material of [30].

– power: an undirected network representing the topology of the Western
States Power Grid of the United States of America [53]. Source: [32].

1 A preliminary version of the g-tries source code is available at:
http://www.dcc.fc.up.pt/gtries/
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– internet: a symmetrized snapshot of the structure of the Internet
at the level of autonomous systems, reconstructed from BGP tables
posted by the University of Oregon Route Views Project. This data
was compiled by Mark Newman in July, 2006. Source: [32].

– Semantic networks:

– foldoc: Foldoc is an online dictionary of computing terms [16]. This is
a directed network where an edge (X,Y ) means that term Y is used to
describe the meaning of term X. Source: [5].

– oldis: Oldis is the Online Dictionary of Library and Information Sci-
ence [40]. It is a directed network built in the same way as foldoc.
Source: [5].

Table 1 summarizes the topological features of all these networks. They
are shown ordered by increasing number of nodes. All networks are simple
unweighted graphs, in accordance with the definition. Some simplifications
on the original networks were done as necessary. Self-loops were discarded,
multiple edges were transformed in a simple unique edge between the two
nodes, and all weights were ignored.

Network Group Directed |V (G)| |E(G)|
Nr. of Neighbours
Average Max

dolphins social no 62 159 5.1 12
circuit physical no 252 399 3.2 14
neural biological yes 297 2,345 14.5 134

metabolic biological yes 453 2,025 8.9 237
links social yes 1,490 19,022 22.4 351

coauthors social no 1,589 2,742 3.5 34
ppi biological no 2,361 6,646 5.6 64

odlis semantic yes 2,909 18,241 11.3 592
power physical no 4,941 6,594 2.7 19
company social yes 8,497 6,724 1.6 552
foldoc semantic yes 13,356 120,238 13.7 728
internet physical no 22,963 48,436 4.2 2,390

Table 1: Topological features of the networks used to test the algorithms.

For each network we also provide the average and the maximum number of
neighbours per node, since this can provide an insight on how the number of
subgraph occurrences grows as its size increases. Generally speaking, the more
neighbours a single node has, the more subgraph occurrences it will participate
in. Therefore, a larger number of neighbours implies a larger growth ratio on
the number of subgraph occurrences.

In order to perform some systematic tests on our algorithms, we also use
synthetic networks, artificially generated to present some topological con-
straints. In particular we will use a benchmark social network proposed by
Lancichinetti et al. [24], that was originally created with the purpose of eval-
uating community detection algorithms. It provides undirected or directed
networks with features close to a real social network and is fully customizable.
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Since we are using a very large set of possible networks, we will not use all
of them for every aspect tested. For the sake of simplicity and ease of reading,
some sections will only present some representative cases.

4.1 Competing Algorithms

We will compare the performance of our algorithm against the main state-
of-art algorithms that were designed to compute the same task. mfinder is
not used since it is significantly slower, by several orders of magnitude, than
all other major algorithms, as it is shown for example in [55]. For instance,
we empirically verified that it was more than 1000x slower than g-tries when
computing the 5-subgraph census of the undirected network ppi (an undirected
network) and that it was more than 2000x slower than g-tries when computing
the 4-subgraph census of the directed network company.

In order to compare with the network-centric approach, we will use both
the ESU and Kavosh algorithms. We use our own implementation of the algo-
rithms, so that the whole code infra-structure is the same with the exception
of the algorithm itself, allowing for better and fairer comparison. For exam-
ple, both ESU and Kavosh use the nauty third-part algorithm for isomorphism
calculation, but the author’s implementation use different versions of it. In
our implementation, we can make sure that this is not the case and the same
nauty version is used in both algorithms.

Great care was taken in the implementation of these algorithms, with spe-
cial emphasis on guaranteeing the best performance possible. We also down-
loaded, compiled and used as a guide the original source code provided by
the authors of ESU (fanmod tool2) and Kavosh3, and compared the execution
times with our own implementation, to certify that we were not slowing down
the algorithms. Both original implementations use C++.

Table 2 shows this comparison. The Fanmod tool has a mandatory graphi-
cal user interface that is not available at the dedicated cluster we used. There-
fore, for this experiment, we used a personal computer with an Intel Core
i5-450M processor running at 2.4GHz with 4GB of DDR3 memory. We show
the execution times (measured in seconds) for a complete k-subgraph census
on four networks, two undirected and two directed, with increasing k.

We can observe that our Kavosh implementation is very similar to the
original implementation, with a slight gain. With respect to ESU, our imple-
mentation is faster than the original, with an average speedup close to 2x. This
gain seems to be even more pronounced in the undirected networks (coauthors
and power). Moreover, our own implementation of ESU does not impose strict
limits on the motif size, while the original source code is limited to 8 nodes.
We also implemented RAND-ESU, the sampling version of this algorithm.

Regarding the subgraph-centric approach we will use Grochow. However,
given that Grochow is implemented in Java, we do not show a comparison with

2 Fanmod is available at http://theinf1.informatik.uni-jena.de/∼wernicke/motifs/
3 Kavosh source code is available in http://lbb.ut.ac.ir/Download/LBBsoft/Kavosh/
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ESU Kavosh

network k Original Our Implementation Original Our Implementation

coauthors

3 0.02 0.01 0.06 0.05
4 0.17 0.05 0.06 0.05
5 1.16 0.41 0.46 0.41

power

3 0.04 0.02 0.01 0.01
4 0.18 0.07 0.07 0.07
5 0.81 0.31 0.35 0.31

neural

3 0.08 0.03 0.03 0.08
4 2.09 1.29 1.29 1.26
5 76.64 69.27 70.84 63.12

metabolic

3 0.12 0.04 0.05 0.05
4 5.66 3.15 3.22 3.35
5 386.52 270.40 283.55 272.67

Table 2: Execution time of our ESU and Kavosh implementations.

our implementation. Generally speaking, Java is considered to be slower than
C++ [19], although each case may have its particular behaviour. Nevertheless,
our own implementation provides a much fairer comparison to the others, in
the sense that it is written in the same language and with the same code-
infrastructure.

MODA is not used for comparison since it has a very high memory cost
(it needs to store the actual occurrences of all k-subgraphs). This hinders its
applicability, specially when the number of subgraphs found becomes large. In-
stead, we compare with algorithms that base their computation only on storing
subgraph counts, as is the case with g-tries, ESU, Kavosh and Grochow.

4.2 G-Tries Creation

We will start by evaluating the time it takes to construct a g-trie and its ability
to compress the topological information of the original set of graphs.

We first generated all possible simple undirected k-graphs, increasing k,
using the nauty tools. We then experimented reading all those graphs from a
file and inserting them in an initially empty g-trie. No step was bypassed, such
as computing the symmetry breaking conditions, and filtering these conditions
in the g-trie. Note that on a real usage case, this could be avoided by pre-
computing these conditions, but the intention of this experiment is to show
how much time it takes to create a g-trie on the fly.

Table 3 shows the results obtained. We took note on the number of graphs,
the compression ratio (see Equation 1), the time it takes to create the g-tries
and the average number of subgraphs stored per second. We stop at the first k
where the number of different graphs is greater than one million. The smallest
k used throughout this section is 3, since those are the simplest subgraphs
and considering less would correspond to look for single vertices (k = 1) or for
edges (k = 2).



28 Pedro Ribeiro, Fernando Silva

k Nr. Graphs Compression Time (s) Graphs/sec

3 2 33.33% < 0.001 37,736
4 6 58.33% < 0.001 35,088
5 21 70.48% < 0.001 29,494
6 112 77.98% 0.004 25,524
7 853 82.21% 0.040 21,514
8 11,117 85.01% 0.588 18,917
9 261,080 87.12% 15.766 16,559
10 11,716,571 88.78% 917.379 12,772

Table 3: Execution time for inserting all undirected k-graphs in a g-trie.

The table shows that the number of k-graphs grows exponentially and, at
the same time, the compression also increases, meaning that more common
substructure is identified. This is mainly because there are more graphs and
therefore more potential for overlapping of structure. For example, all sub-
graphs will naturally share the same root g-trie ancestor, containing a single
node without a connection to itself. Regarding the execution time, we can see
that it is initially almost instantaneous, but it grows exponentially with the
number of subgraphs. The results show that this approach could become pro-
hibitive as k grows, but it should be noted that the number of graphs would
become so large that even the g-trie itself containing all k-graphs would be
too big to fit in main memory (for k = 11, the number of different subgraph
types would be 1,006,700,565). Note however that g-tries can provide support
for larger graphs, provided that we do not need to store all possible k-graphs,
but instead we are storing a specific (smaller) set [43].

We now show the results for creating a g-trie with all directed k-graphs in
the same way, stopping again as soon as the number of graphs exceeds one
million. The results can be seen in Table 4.

k Nr. Graphs Compression Time (s) Graphs/sec

3 13 56.41% < 0.001 156,627
4 199 71.98% 0.002 83,789
5 9,364 79.07% 0.150 62,535
6 1,530,843 83.03% 50.254 30,462

Table 4: Execution time for inserting all directed k-graphs in a g-trie.

The results are very similar to what happens with undirected networks,
with growing compression and again an exponential growth in the number of
graphs and execution time, exposing the same virtues and limitations.

These complete g-tries containing all possible k-graphs can be reused and
they could be stored in the file system ready to be uploaded to main memory
without really computing them. Tables 5 and 6 show execution times when
reading files of g-tries containing all possible k-graphs. Again we show the
number of graphs and the ratio of graphs per second. In this experiment we
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also take note of the size of the file (in bytes) containing the respective g-trie,
and the number of bytes per graph.

We can observe that reading the previously computed g-trie from a file
is obviously much faster than creating the g-trie on the fly, and the main
bottleneck is the file size itself. The number of necessary bytes per graph
decreases as k increases since the compression ratio also increases.

k Nr. Graphs Time (s) Graphs/sec File Size (bytes) Bytes/graph

3 2 < 0.001 83,333 42 21.0
4 6 < 0.001 193,548 97 16.2
5 21 < 0.001 437,500 281 13.4
6 112 < 0.001 783,217 1,287 11.5
7 853 < 0.001 1,055,693 8,935 10.5
8 11,117 0.010 1,059,670 100,182 9.0
9 261,080 0.209 1,249,288 2,020,172 7.7
10 11,716,571 8.277 1,415,603 79,571,853 6.8

Table 5: Execution time for reading a g-trie with all undirected k-graphs.

k Nr. Graphs Time (s) Graphs/sec File Size (bytes) Bytes/graph

3 13 < 0.001 351,351 126 9.7
4 199 < 0.001 1,463,235 1,398 7.0
5 9,364 0.004 2,084,131 54,354 5.8
6 1,530,843 1.384 1,106,481 8,113,436 5.3

Table 6: Execution time for reading a g-trie with all directed k-graphs.

For motif computation, as discussed before, we will typically find all k-
subgraphs of the original network and then populate a g-trie only with those
that both appear in the network and are meaningful for motif computation,
that is, that appear at least a given minimum of times. This means that in
practice we will be inserting a dynamic set of graphs, which is generally just a
small percentage of the whole set of possible subgraphs of a determined size,
which would mean much smaller creation times. Note that some of the com-
putational costs could be further reduced, for instance by pre-computing the
symmetry conditions, avoiding the necessity of computing the automorphisms.

In practice, this means that we can achieve a very fast g-trie creation, with
the g-trie creation step not being the bottleneck in the motif computation. In
fact, this time will only start to be more meaningful as the number of graphs
reaches a number so high that their g-trie representation cannot be stored in
main memory. This is the main limitation of the g-trie creation process as it is
right now, since all algorithms assume that the g-trie in itself fits in memory.

Given this, for the last experiment in this section, we took note of the total
memory spent by a g-trie residing in memory during motif computation, using
the valgrind tool [31]. Tables 8 and 7 show the amount of memory needed
for a g-trie containing all possible k-graphs, as well as the number of stored
graphs and the average memory per graph.
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k Nr. Graphs Memory (bytes) Bytes/graph

3 2 814 407.0
4 6 2,294 382.3
5 21 7,172 341.5
6 112 34,852 311.2
7 853 241,294 282.9
8 11,117 2,899,538 260.8
9 261,080 63,504,120 243.2
10 11,716,571 2,680,803,240 228.8

Table 7: Memory needed for a g-trie containing all undirected k-graphs.

k Nr. Graphs Memory (bytes) Bytes/graph

3 13 3,004 231.1
4 199 38,210 192.0
5 9,364 1,635,190 174.6
6 1,530,843 260,796,274 170.4

Table 8: Memory needed for a g-trie containing all directed k-graphs.

We can observe that, as expected, the needed memory grows exponentially
with the number of stored graphs. The average memory per graph decreases as
k grows because of larger compression ratios. When comparing this with the
number of bytes per graph needed to store the g-trie in a file, we can see that
the actual memory needed for the computation itself is much larger. Several
factors contribute for this, such as the overhead introduced by using C++
objects or the added extra information, like the actual frequencies found.

4.3 Effect of Canonical Labeling

As explained in detail in Section 3.3.2, the canonical representation will influ-
ence the topology of the g-trie and therefore will have a great impact in the
efficiency of the census algorithm. In order to empirically justify our option for
the canonical labeling, we show the execution time of a complete k-subgraph
census using a g-trie created with four different methods:

– GTCanon: our custom built GTCanon labeling algorithm, as described,
that favors in lower levels nodes with more connections to ancestor nodes
in the g-trie.

– Larger: the lexicographically largest possible adjacency matrix, that will
induce high compression in the g-trie.

– Random: a deterministic pseudo-random labeling (obtained by fixing the
seed) applied after the nauty canonization. We create it by a sequential
random choice of a node that is connected to an ancestor node (when
possible). This is to ensure minimum efficiency, because a purely random
labeling would create many unconnected nodes, for which any unused net-
work node would be a suitable candidate. This would exponentially in-
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crease the execution time needed for computing a census, as was explained
in Section 3.3.2.

– Opposite: a labeling algorithm expressing the opposite of GTCanon, that
chooses the nodes with less connections for the lower levels of the g-trie. As
in the Random labeling case, we ensure connectivity in order to guarantee
minimum efficiency.

Table 9 shows the results obtained for two networks, one directed and one
undirected, for a representative set of sizes k so that the computation is not
instantaneous but at the same time small enough so that even the slowest
labeling method takes only a few minutes. We computed the census by using
a g-trie with all possible k-subgraphs.

network circuit metabolic

k 7 8 9 4 5

Execution time (s)

GTCanon 0.037 0.202 1.230 0.178 10.611
Larger 0.075 0.554 4.202 0.224 19.108
Random 0.251 2.846 45.814 0.292 40.319
Opposite 0.628 8.723 145.116 0.351 55.927

Compression Ratio

GTCanon 82.21% 86.33% 87.12% 71.98% 79.07%
Larger 83.44% 86.33% 88.32% 72.86% 79.48%
Random 67.43% 68.01% 69.00% 68.84% 74.15%
Opposite 78.80% 81.87% 84.28% 72.61% 79.18%

Table 9: Effect of canonical labelings on k-census computation.

We can observe that our chosen strategy has the best behaviour (smaller
execution times) for every pair of network and subgraph size, both in undi-
rected and directed cases.

The lexicographically largest adjacency matrix (larger), which is more
costly to compute, produces higher compression in the g-tries, but this does not
have a proportional impact in lowering the execution time. Indeed, a greater
compression ratio is desirable, but in itself it does not guarantee better per-
formance and the GTCanon labeling takes advantage of the fact that we know
the census algorithm and therefore can optimize it for discovering, as soon as
possible, that a set of nodes will not match to a subgraph. The random labeling
shows that the compression ratio and census efficiency cannot be assumed, and
thus efficiency must be obtained by choosing an appropriate labeling. Finally,
opposite, the reverse of our chosen strategy, is even worst than the random
case, further substantiating the claim that our labeling choice has a positive
effect on the efficiency of the census.

4.4 Effect of Symmetry Breaking Conditions

If we did not use the symmetry breaking conditions detailed in Section 3.4.2,
all automorphisms of each subgraph isomorphic class would be found and the
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census would be substantially slower. Our filtering of symmetry conditions, as
previously explained, reduces the memory needed for storing the g-trie, and
improves the execution times.

Table 10 shows execution times for a k-census on the same two networks
used in the previous section, with a g-trie with all k-subgraphs, varying the
symmetry breaking conditions used:

– Normal: our standard use of symmetry breaking conditions.
– No filtering: symmetry breaking conditions are used, but we do not min-

imize their number by following the 4 filtering steps described on sec-
tion 3.4.4.

– No conditions: No symmetry breaking conditions are used at all.

network circuit metabolic

k 7 8 9 4 5

Execution time (s)
Normal 0.037 0.202 1.230 0.178 10.611

No filtering 0.062 0.590 38.562 0.238 15.638
No conditions 0.205 1.592 13.155 0.460 56.414

Table 10: Effect of symmetry breaking conditions on k-census computation.

As expected, not using any conditions slows the algorithm. Not filtering also
slows down, albeit by a smaller margin. However, for bigger g-tries, the amount
of unfiltered symmetry conditions starts to be so large that the algorithm
becomes even slower than the g-trie without any conditions (see k = 9 for
circuit). This showcases the need for reducing the number of conditions and
the validity of our filtering process.

4.5 Asymptotic Behavior

We will now have a look at the empirical asymptotic behavior of the g-trie
census algorithm as the size of both the networks and subgraphs grows.

For testing network growth, we will use the described synthetic social
benchmark network, as it allows us to slowly grow network size n while pre-
serving the same topological characteristics. As before, we will be computing
k-census with g-tries containing all possible subgraphs. The network is cus-
tomized with the following parameters: average degree 20; minimum commu-
nity size 20, maximum community size 50, mixing parameter 0.1 (for more
information on these see [25] and the networks generation source code Readme
file4).

Figure 11 shows the execution time for computing a full k-subgraph census
by using a g-trie with all possible k-subgraphs. We vary the size from 500
to 10,000 nodes, with increments of 500 nodes and we use both undirected

4 The source code is available at http://sites.google.com/site/andrealancichinetti/files
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and directed versions of the network. We opted for choosing k, the subgraph
size, so that the execution times are within one minute. For better legibility,
both graphs use the same scale, but one should note that in the case of the
undirected network we are computing subgraphs of size 5, and in the directed
network subgraphs of size 4.
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Fig. 11: Execution time for a census on a social network as the number of
nodes increases.

We can see that the execution time appears to have a linear relation to
the network size, for this particular network. Remember that g-tries (and for
that matter all other current major motif detection algorithms) must explic-
itly pass in every subgraph occurrence in order to have an exhaustive perfect
count. Taking this into account, a more telling statistic is to check the sub-
graph discovery ratio, that is, the number of occurrences found per second.
A constant value would be the desirable situation, since the algorithm (such
as the others) is by now limited by design to those occurrences. Figure 12
illustrates the subgraph discovery ratio for the same experiment.
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Fig. 12: Subgraph discovery ratio for a social network as the number of nodes
increases.

We can see that our algorithm is able to maintain a steady flow on the
number of subgraphs found per second, without losing much performance as
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the network size grows. Note however that the ratio is different in the two
cases, since it is quite different to look for directed or undirected subgraphs,
and their size is different.

In general, two different networks will induce different discovery ratios, as
this depends heavily on the topology of the network itself. For example, a
network with dense regions would be more prone to a bigger ratio, with many
subgraphs packed together, increasing the amount of common topologies that
the g-trie can take advantage of. However, at the same time, it would have
more subgraph occurrences, increasing the total execution time. Table 11 and
Table 12 give a more practical view of this effect, by showing the subgraph ratio
for different networks on subgraphs of the same size, when again computing a
census with a complete g-trie. Note the differences, but also note the magnitude
of the ratio, that stays between 106 and 107. This does not mean however that,
for every network, g-tries subgraph discovery ratio will stay within this margin.

Network Execution Time Subgraph Occurrences Subgraphs/sec

dolphins 3.027 12,495,833 4,128,240
circuit 1.230 13,512,688 10,985,192

coauthors 448.071 886,423,840 1,978,312
power 18.444 183,453,978 9,946,388

Table 11: Subgraph discovery ratio for 9-census on undirected networks.

Network Execution Time Subgraph Occurrences Subgraphs/sec

neural 3.778 43,256,069 11,448,911
metabolic 10.611 195,573,511 18,431,064

links 971.269 7,347,672,714 7,562,022
odlis 713.630 8,655,784,561 12,129,235

Table 12: Subgraph discovery ratio for 5-census on directed networks.

In what concerns the execution time behaviour when we increase the size
of the motifs for the same network, what generally happens is that we have a
subgraph discovery ratio that very slowly starts degrading as the size increases,
but keeping the same magnitude.

4.6 G-Tries Comparison with Other Algorithms

We now provide a thorough comparison of g-tries, with other competing algo-
rithms, namely ESU, Grochow and Kavosh, as explained in Section 4.1.

For the first set of tests we will fully enumerate all k-subgraphs present
in the original network, doing the equivalent to the first step of any motif
discovery process. In the case of network-centric algorithms (ESU and Kavosh),
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this is simply running them. In the case of the subgraph-centric algorithms
(Grochow), we queried all possible k-subgraphs, in the same way we used g-
tries with all those subgraphs inserted.

In order to give a broad overview of how g-tries consistently outperform
every other major motif algorithm, we used for comparison the entire set of
12 real complex networks. For each one of them we did a k-census, increasing
k one by one starting with 3. In order to produce readable tables, we stopped
when the slowest algorithm would take more than 5 hours to run and took
note of the execution times and of the relative speedup of g-tries versus the
other algorithms.

Tables 13 and 14 present the results obtained for the undirected and
directed networks, respectively. All methods are identified by the first three
letters of their name (GTR for g-tries, ESU, KAV for Kavosh and GRO for Grochow).
Every experiment was executed at least three times and average execution
times were recorded.

Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

dolphins

3 < 0.001 < 0.001 < 0.001 < 0.001 14.9x 14.3x 9.8x
4 < 0.001 0.006 0.006 0.003 15.5x 15.6x 8.3x
5 0.002 0.036 0.036 0.032 14.7x 14.5x 12.8x
6 0.014 0.251 0.241 0.324 17.7x 17.0x 22.8x
7 0.085 1.499 1.405 3.727 17.7x 16.6x 43.9x
8 0.483 9.182 8.468 55.093 19.0x 17.5x 114.0x
9 3.027 52.431 46.033 1323.984 17.3x 15.2x 437.4x

circuit

3 < 0.001 0.001 0.001 0.002 12.6x 12.4x 18.8x
4 < 0.001 0.007 0.007 0.006 18.0x 18.1x 17.1x
5 0.002 0.034 0.034 0.043 21.9x 21.8x 27.7x
6 0.007 0.221 0.218 0.317 32.4x 32.1x 46.5x
7 0.037 1.365 1.311 2.778 36.7x 35.3x 74.8x
8 0.202 9.267 8.670 32.630 45.9x 42.9x 161.5x
9 1.230 59.804 53.152 632.213 48.6x 43.2x 514.0x

coauthors

3 < 0.001 0.010 0.010 0.030 14.1x 14.4x 42.0x
4 0.006 0.077 0.077 0.172 12.0x 11.9x 26.7x
5 0.053 0.633 0.617 1.635 12.0x 11.7x 31.0x
6 0.442 5.711 5.568 18.465 12.9x 12.6x 41.8x
7 4.088 50.748 49.579 284.614 12.4x 12.1x 69.6x
8 40.560 481.432 464.540 6669.196 11.9x 11.5x 164.4x

ppi

3 0.004 0.086 0.092 0.092 21.8x 23.4x 23.4x
4 0.068 3.106 3.053 1.450 45.9x 45.1x 21.4x
5 1.507 84.959 84.852 39.182 56.4x 56.3x 26.0x
6 40.275 2922.555 2934.426 1092.221 72.6x 72.9x 27.1x

power

3 0.002 0.017 0.018 0.215 7.9x 8.3x 98.3x
4 0.008 0.101 0.102 0.845 12.6x 12.7x 105.3x
5 0.029 0.481 0.486 5.164 16.6x 16.8x 178.1x
6 0.119 2.947 2.913 35.729 24.7x 24.4x 299.7x
7 0.600 17.891 17.285 313.052 29.8x 28.8x 521.5x
8 3.247 120.695 112.065 3840.250 37.2x 34.5x 1182.7x

internet
3 0.423 11.571 12.206 6.865 27.3x 28.8x 16.2x
4 204.442 11044.788 10827.744 3390.107 54.0x 53.0x 16.6x

Table 13: Comparison of g-tries with other algorithms when doing a full k-
census on original undirected networks.
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Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

neural

3 0.004 0.043 0.047 0.031 12.3x 13.2x 8.9x
4 0.112 1.989 1.981 1.676 17.7x 17.6x 14.9x
5 3.778 107.646 111.350 124.329 28.5x 29.5x 32.9x
6 128.364 5382.221 5837.072 17214.101 41.9x 45.5x 134.1x

metabolic
3 0.003 0.062 0.067 0.035 22.3x 24.0x 12.6x
4 0.178 5.037 5.215 3.214 28.3x 29.3x 18.1x
5 10.611 428.613 424.673 238.696 40.4x 40.0x 22.5x

links
3 0.080 1.086 1.110 0.719 13.6x 13.9x 9.0x
4 9.427 124.496 124.852 110.434 13.2x 13.2x 11.7x
5 971.269 16984.341 16895.159 16766.414 17.5x 17.4x 17.3x

odlis
3 0.062 1.027 1.105 1.015 16.5x 17.8x 16.3x
4 5.394 237.232 237.193 145.371 44.0x 44.0x 26.9x

company
3 0.016 0.296 0.308 0.656 18.7x 19.5x 41.5x
4 1.751 67.476 70.457 35.434 38.5x 40.2x 20.2x
5 241.378 13460.332 13459.479 2127.840 55.8x 55.8x 8.8x

foldoc
3 0.352 2.720 2.799 20.343 7.7x 8.0x 57.8x
4 18.338 379.087 393.359 1124.439 20.7x 21.5x 61.3x

Table 14: Comparison of g-tries with other algorithms when doing a full k-
census on original directed networks.

The main fact to notice is that there is not a single case where g-tries
performs worst than other method, which showcases the efficiency of our algo-
rithm. G-Tries clearly outperform the other algorithms in all the complex net-
works used. Specific speedups obtained can vary from method to method and
from network to network, but g-tries consistently perform better. The exact
speedup obtained is related to the amount of common substructure in different
occurrences of subgraphs in the networks, which depends on the topology of
the original network.

For all the networks, the speedup is at least very close to an order of
magnitude faster. If we consider the last computed subgraph size, there is
only one network (company) where our algorithm is less than 10 times faster
than all the other algorithms, and even so it is 8.8 times faster than the closest
competitor. In the other cases it is much faster, like in the case of circuit
or neural, where it is more than 40 times faster than all other approaches.
Note also that the speedups have the general tendency of growing as the
subgraph size increases, meaning that g-tries appear to scale a little better
than the other algorithms. The only case were this is clearly not the case is
company. Analyzing its topology, we can see that it is specially sparse (among
all networks used, it is the one with the least average number) and, more
than that, it has an almost tree-like structure, that decreases the amount of
common substructure between different subgraph occurrences.

Regarding this experiment, one can observe that the behaviour of the
network-centric methods (ESU and Kavosh) is very similar to each other, with
only a marginal difference. Grochow, on the other hand, performs differently,
having difficulties when the number of subgraph classes increases. This is also
a problem with our approach, since increasing k will likely make the g-trie too
big to fit in memory. However, remember that this last experiment pertained to
the computation of the full k-census in the original network. As shown in Sec-
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tion 3.5, we can opt for a hybrid approach and use a network-centric method
on the original network, and only after that populate the g-trie with the found
classes of subgraphs, which typically will be a much smaller percentage of the
whole set of possible subgraphs.

Moreover, in the current motif discovery flow, the real bottleneck comes
after the first census, that is, when the frequencies must be computed for the
ensemble of similar random networks. Since the size of this set is normally
large (one hundred is a typical minimum use case) and since the random
networks have the same number of nodes and edges of the original network, the
time spent on this step of the computation takes precedence over everything
else. It is therefore important to test the algorithms on randomized networks
generated in this way.

In order to do this test, we applied a random Markov-Chain process like it
was done in [30], with 3 swaps per edge and computed the census of all sub-
graphs that appeared on the original network. Note that the motif definition
allows one to specify the minimum frequency that a subgraph must have in or-
der to be considered a motif. In a real use case we can discard some subgraphs
that are below this threshold and not count them on the randomized networks.
However, for the sake of a more complete experiment, here we consider that
this threshold is zero, meaning that every subgraph class that appears at least
once in the original network is considered.

We use the same randomized networks in all algorithms, obtained by using
the same pseudo-random number generation seed. For network-centric meth-
ods, the only option is to do an exhaustive census. For subgraph-centric meth-
ods capable of querying a single subgraph, namely Grochow, we only queried
the pertinent subgraphs. For the g-tries, we created a g-trie precisely with the
subgraphs for which we want to know the frequency in the random networks.
We produced the same type of data as we had for the original network, but
this time we ran the algorithms on 25 different random networks.

Considering that in a real use case, normally a minimum number of 100
random networks is used, we stopped when the average time per random net-
work meant that computing the census in a set of 100 randomized networks
with the slowest algorithm for that case would take more than 10 hours. In
other words, the average execution time per randomized network must be
smaller than 360 seconds. In the cases where this means that there would only
be results for 3-subgraphs, we also report results on 4-subgraphs.

Tables 15 and 16 show the obtained average execution time for each similar
randomized network, and the average speedup of g-tries against the other
approaches. The standard deviation for the time spent in each randomized
network, not shown in the table for the sake of legibility, is always smaller
than 25% of the average, meaning that this average is a good indicator and
that the time needed per randomized network does not suffer large variations.

First, observe that the computation time for a single randomized network
tends to be larger than the time to compute the census in the original network.
This is caused by the fact that randomization creates a network with more sub-
graph occurrences to be found, due to a more chaotic structure. Nevertheless,
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Network k
Avg. execution time per network (s) Avg G-Tries Speedup
GTR ESU KAV GRO ESU KAV GRO

dolphins

3 < 0.001 < 0.001 < 0.001 < 0.001 17.7x 18.3x 10.7x
4 < 0.001 0.008 0.008 0.003 24.8x 24.5x 9.4x
5 0.003 0.068 0.065 0.036 25.7x 24.6x 13.6x
6 0.021 0.576 0.572 0.393 27.8x 27.6x 19.0x
7 0.155 4.403 3.988 4.211 28.4x 25.8x 27.2x
8 1.121 32.399 30.140 44.293 28.9x 26.9x 39.5x

circuit

3 < 0.001 0.001 0.001 0.002 11.6x 12.0x 16.9x
4 < 0.001 0.007 0.007 0.006 18.8x 19.3x 17.0x
5 0.002 0.036 0.036 0.037 23.1x 23.2x 23.8x
6 0.008 0.239 0.236 0.231 31.7x 31.3x 30.6x
7 0.040 1.514 1.509 1.412 38.0x 37.9x 35.5x
8 0.228 10.799 10.656 8.641 47.4x 46.8x 37.9x
9 1.403 74.652 72.969 55.307 53.2x 52.0x 39.4x

coauthors

3 < 0.001 0.015 0.016 0.029 19.0x 20.1x 37.1x
4 0.006 0.231 0.229 0.198 38.3x 38.0x 32.9x
5 0.060 2.873 2.900 2.281 48.1x 48.5x 38.2x
6 0.747 48.128 49.532 29.687 64.4x 66.3x 39.7x

ppi

3 0.004 0.097 0.096 0.089 25.9x 25.6x 23.6x
4 0.072 3.657 3.659 1.516 50.6x 50.7x 21.0x
5 1.862 115.058 115.597 47.668 61.8x 62.1x 25.6x

power

3 0.002 0.020 0.020 0.198 8.9x 8.8x 85.9x
4 0.014 0.132 0.134 0.848 9.7x 9.9x 62.4x
5 0.050 0.758 0.746 5.433 15.2x 15.0x 109.2x
6 0.211 5.528 5.499 39.124 26.2x 26.1x 185.6x
7 1.064 40.585 40.399 304.141 38.2x 38.0x 285.9x

internet
3 0.491 11.608 12.378 6.472 23.7x 25.2x 13.2x
4 245.065 11495.764 11148.303 3614.261 46.9x 45.5x 14.7x

Table 15: Comparison of g-tries with other algorithms when computing a k-
census in the similar undirected randomized networks.

Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

neural

3 0.004 0.049 0.055 0.033 13.5x 15.1x 9.2x
4 0.143 2.496 2.431 2.330 17.4x 17.0x 16.3x
5 5.506 139.271 140.120 158.658 25.3x 25.5x 28.8x

metabolic

3 0.003 0.059 0.061 0.019 22.7x 23.6x 7.3x
4 0.109 3.955 4.086 1.271 36.3x 37.5x 11.7x
5 4.418 308.769 304.222 68.257 69.9x 68.9x 15.4x

links
3 0.089 1.369 1.469 0.791 15.5x 16.6x 8.9x
4 13.031 193.734 197.661 171.364 14.9x 15.2x 13.2x

odlis
3 0.075 1.173 1.222 1.165 15.6x 16.2x 15.4x
4 8.848 259.565 262.449 199.647 29.3x 29.7x 22.6x

company
3 0.025 0.308 0.338 0.595 12.1x 13.3x 23.4x
4 1.396 68.241 69.906 35.375 48.9x 50.1x 25.3x

foldoc
3 0.608 4.200 4.252 23.804 6.9x 7.0x 39.1x
4 32.907 520.484 526.030 1661.945 15.8x 16.0x 50.5x

Table 16: Comparison of g-tries with other algorithms when computing a k-
census in the similar directed randomized networks.
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g-tries again consistently outperform all other algorithms, being substantially
faster for every network and for every subgraph size. Moreover, the speedups
versus the network centric methods are generally even better, partially due
to the fact that we are now using smaller g-tries, populated with only the
relevant subgraphs, instead of all possible subgraphs of that size. Observing
the speedup against all other algorithms on the last subgraph sizes computed
in each network, we can see that it always larger than 10x for all networks,
and even larger than 20x for 8 out of the 12 networks. Also note that, again,
the speedups show a tendency to increase as the subgraph size is incremented,
even for the company case, because we are keeping the degree sequence, but
not enforcing a tree-like structure. All of this points to even further gains for
larger sizes.

Combining the observations on the original network with the observations
on the randomized networks, we can estimate the time needed for discovering
motifs, that will be essentially dominated by the time spent in the large set of
similar networks. The result is a new much faster algorithm for motif detection.

Table 17 shows the average speedup obtained with g-tries when compared
against the three other competing algorithms. We used as a basis the results of
the last two tables (execution time for a census in the randomized networks)
and computed the average speedup per network, giving the same weight to
each network in the calculation of the global average. We show the g-tries
speedup against each method category (network-centric: ESU and Kavosh; and
subgraph-centric: Grochow) and subgraph type (undirected and directed). We
also show this average speedup when considering all the subgraph sizes com-
puted and also when only considering the last subgraph size computed for each
network, which corresponds to larger execution times.

Subgraph Subgraph Average Speedup vs method type
Size Type All methods Network-centric Subgraph-centric

All All 30.1x 28.6x 34.4x
Measured Undirected 37.2x 33.5x 47.3x

Sizes Directed 23.0x 23.8x 21.5x

Last All 44.3x 40.1x 49.9x
Measured Undirected 57.2x 46.0x 73.8x

Size Directed 31.4x 34.1x 26.0x

Table 17: Average speedup of g-tries against competing algorithms.

Globally, g-tries are 30.1 times faster, on average, than its competing al-
gorithms. The speedup is more pronounced on undirected subgraphs (37.2x)
than on directed ones (23.0x). The speedup is also larger, on average, against
subgraph-centric methods (34.4x) than against the network-centric methods
(28.6x). This last observation is inverted in the case of directed subgraphs,
where the speedup of network-centric methods (23.8x) is larger than the
subgraph-centric one (21.5x).
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If we just take into account the last subgraph size computed for each net-
work (which factors bigger sizes, more subgraph occurrences, and larger exe-
cution times), the results are similar but the speedup obtained is even larger,
with a global average speedup of 44.3x against the competing algorithms.

5 Conclusions

This article describes g-tries, a novel data-structure created for storing and
finding subgraphs. Inspired by prefix trees, g-tries store the subgraphs in a
multiway tree that encapsulates information about common substructure, with
related subgraphs being stored in common branches. We detailed fast algo-
rithms for creating g-tries, using a customized canonical labeling procedure,
and for computing the frequencies of the graphs stored in the g-trie as sub-
graph instances of another larger network. We described how we use symmetry
breaking conditions in conjunction with the common topologies of the stored
subgraphs in order to devise an efficient non-redundant methodology. We also
empirically evaluated our algorithm on a large set of representative networks,
analyzing in detail the efficiency and scalability of our approach. We have
shown that g-tries can consistently outperform the previous best methods,
thus pushing the limits in the applicability of subgraph frequency discovery.

Taking advantage of the tree based nature of g-tries, we could also use a
sampling methodology capable of trading accuracy for even faster execution
times, further improving the potential of the developed data-structure, and we
have already started working in this direction [41].

A main current limitation of our methodology is that presently it assumes
that the entire network will be available in main memory. This also affects the
other existing algorithms. It is our intention to further develop our methods
and provide support to very large scale networks (such as the twitter inter-
action network collected by Cha et al. [8], with almost 55 million nodes and
2 billion connections). We have already some preliminary work done on the
parallelization of g-tries algorithms [45,46].
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