The software development
life-cycle (SDLC)
& security touch points

Questoes de Seguranca em Engenharia de Software (QSES)
Mestrado em Seguranca Informatica y -
Departamento de Ciéncia de Computadores e

Faculdade de Ciéncias da Universidade do Porto l 0 \ C
O

[WPORTO
Eduardo R. B. Marques, edrdo@dcc.fc.up.pt



mailto:edrdo@dcc.fc.up.pt?subject=

The SDLC

Waterfall XP

Planning/Feedback Loops

Images from Wikipedia

Requirements |:> Product requirements document
DeSign |:> Software architecture
Implementationf > sorer-

Verification

—

Maintenance

m You probably heard about different types of software development
methodologies.

m They are not just about writing code. Instead, they account for the entire
software development life-cycle (SDLC) — that defines how to engineer
software.

m Are they really needed ? Does the SDLC need to be disciplined/systematic?
o In a word: yes.

o Software plays a crucial role in everyday life. It needs to be engineered
properly. Quite frequently, that is not the case.



SDLC stages

m Whatever the software system / development at stake, a SDLC
typically considers:

O

@)
@)
@)

Requirements — What should the software do ?
Design — How should it be structured ?
Implementation — Implementing the actual system.

Verification — Ensuring (with some degree of confidence) that
the implemented system meets the requirements. This is usually
done through testing.

Deployment/maintenance — Setting up the system for use and
maintaining it.

+ During the semester we will mostly focus on aspects of implementation and
verification from a security perspective.

m Some old methodologies like the “waterfall model” view these
stages in sequence. In modern methodologies, the SLDC works
more like a feedback loop.

m In any case, where does security fitin ?



Security touch-points

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based Risk .
cases analysis security tests analysis ity
jon

AOALT N

Requirements Design Test Code Test Field
and use cases plans results feedback

Image source: “Software security”, G. McGraw, IEEE SECURITY & PRIVACY

m Security is a cross-cutting concern and an emergent
property. It must be accounted for during the entire
SDLC.

m With that in mind, Gary McGraw proposed the influential
touch-point model. The idea is that touch-points define
security-oriented tasks for different stages of the SDLC.



Software
requirements



Requirements

m Software requirement
o Description of an expected feature of the software.

o It must be: “verifiable as an individual feature as a functional requirement or
at the system level as a nonfunctional requirement’ - |EEE SWEBOK guide

m Functional requirements:
o Feature = function of the system
o typically some kind of abstract input-output relation: given X, compute f(X)

o Silly example: given X calculate X + 1”

m Non-functional requirements
o Feature = constraint on the system

o Example constraints: resource (memory, bandwidth, ...) quality-of-service
guarantees (latency, throughput), environment setting

o Silly examples: “the calculation of X+1 MUST be done in less than 1
second” (constraint on latency) or “without spending more than 4 GB of
memory” (constraint on memory usage)


https://www.computer.org/web/swebok/v3

Requirements engineering

I NEED A SYSTEM TO
RECORD MY CUSTOMERS’
DETAILS. DO YOU WANT
REMOTE AUTOSAVE?

NO PROBLEM! BROW;Ef WHAT ABOUT
JUST A FEW QUICK QCCESS? e cLRiTY?

QUESTIONS... PRIVATE KEY

ENCRYPTION?
64- OR

128-BIT?

JUST DO
WHATEVER YOU
THINK IS BEST!

Image source:
Computer Science Field Guide

m Deriving requirements can be a process in itself, called requirements

engineering.

m For instance, the (dense) IEEE SWEBOK guide describes the following activities

for requirements engineering:

o 1. Elicitation: Feedback is first collected from all stakeholders (people with an interest in
the software), clients, users, consortium partners, the technical development team

o 2. Analysis: Requirements are then identified, possibly employing a number of modelling

methodologies.

o 3. Specification: requirements are formalised in documents.
o 4. Validation: the specification is validated and subject to approval.


https://www.computer.org/web/swebok/v3
http://www.csfieldguide.org.nz/en/index.html

Example requirements — RFC style

5.1.1 Method

The Method token indicates the method to be performed on the
resource identified by the Request-URI. The method is case-sensitive.

Method = "OPTIONS" ; Section 9.2
"GET" ; Section 9.3
"HEAD" ; Section 9.4
"POST" ; Section 9.5
"PUT" ; Section 9.6
"DELETE" ; Section 9.7
"TRACE" ; Section 9.8
"CONNECT" : Section 9.9
extension-method

extension-method = token

The list of methods allowed by a resource can be specified in an
Allow header field (section 14.7). The return code of the response
always notifies the client whether a method is currently allowed on a
resource, since the set of allowed methods can change dynamically. An
origin server SHOULD return the status code 405 (Method Not Allowed)
if the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is
unrecognized or not implemented by the origin server. The methods GET
and HEAD MUST be supported by all general-purpose servers. All other
methods are OPTIONAL; however, if the above methods are implemented,
they MUST be implemented with the same semantics as those specified
in section 9.

m From: RFEC 2616 - HTTP/1.1
m Note the capital “MUST”, “SHOULD”, “OPTIONAL” ...



https://tools.ietf.org/html/rfc2616#section-5.1.1

RFC documents typically include this section to explain how to interpret requirements and compliance with
requirements.

1.2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"”; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant.”

RFC 2119 in turn specifies (fragment):

MUST This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", mean that the
definition is an absolute prohibition of the specification.

SHOULD This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that
there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed
before implementing any behavior described with this label.


https://tools.ietf.org/html/rfc2616#section-1.2

10

Security requirements

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based Risk
cases analysis security tests analysis

[N VAN R B A

Requirements Design Test Code Test Field
and use cases plans results feedback

m Security requirements are driven by goals in the security policy:

o Recall from last class: they may relate to confidentiality, integrity,
availabllity, privacy, non-repudiation, ...

ldentifying requirements in general may be driven by use cases,
that model how a system may be used.

ldentifying security requirements may also be driven by abuse
cases, that model how a system may be abused.



11

Use cases / Abuse cases

uc Use Cases J

place/order

X

Clien

X

Cashier

m\
Serve Cook
Food

System Boundary

é <extend¥> QOrder
Wine

(o)
Food

<<extend>> {|f wine was ordered}

< <extend>
{lf wine
was

served}
<<extend>

{lf wine Pay for

was W|ne
consumed}

Images from Wikipedia

Use Cases and misu sgl

place/order

payment

Cashier

S erve
Food

<<extend>> {|f wine was ordered}

System Boundary

<<e><tend> Order
Wln e

>®

<<extend>

{|f wine was
served} Steal
facilitayep ayment Clients
<<extend>> Pav f
<= Winld
{if wine was

consumed}

Chef

Steal
Food

%

C k
Steal roo

m Use case:

o High-level description of interactions among actors in a system, modelling normal use.

m Abuse case (also called misuse case)

o Like an use case, but focused on modelling adversarial actions as well.

m Aids:

o Modelling languages with a visual syntax like UML or LML may help (a bit; see
discussion next).



12

Deriving abuse cases

m Some general advice (from “Misuse and Abuse Cases:
Getting Past the Positive” by Hope, McGraw, and
Anton)

o “Informed brainstorming” rather than the use of “rigorous formal
models and logics [that] are extremely time and resource intensive.”

o Threat modelling: ‘“security experts ask many questions of a
system’s designers to help identify the places where the system is
likely to have weaknesses. This activity mirrors the way attackers
think.”

+ Taxonomies like STRIDE help in this regard .
o Consider Attack patterns (“blueprint[s] for creating an attack.”)

+ CAPEC (Common Attack Patterns Enumeration and Classification)

+ The list of attack patterns from “Exploiting Software: How to break code” by G.
McGraw

+ Attack pattern modelling definitions in US-CERT website.



https://www.garymcgraw.com/wp-content/uploads/2015/11/bsi2-misuse.pdf
https://www.garymcgraw.com/wp-content/uploads/2015/11/bsi2-misuse.pdf
https://capec.mitre.org/
http://www.exploitingsoftware.com/attackpatterns/
https://www.us-cert.gov/bsi/articles/knowledge/attack-patterns

Software design



14

Software design

Q X/ User

Programs

ol ASJEEY.

2 & b

& ”

Your computer as a layered system

Operating System

Hardware

m Software design seeks to define a model for a software system.

m Some basic aspects of design:

'C_J \X/ User

Image source:
Computer Science Field Guide

Presentation Layer

Algorithm for

- Finding friends
- Deciding what goes in home feed .
g - Finding friend's whose birthday is Loglc Laye r
20Oy today
- - And many more

Data Layer

Facebook as a three-tier system

o Decomposition: identifying necessary components and their modular role.

o Architecture: define how components assemble together and interact, often organised in

layers.

o Abstraction & refinement: to be able to model behavior as abstract at high level, and then
refine it / instantiate it in more detail at a lower level of design.

o Data types and functions: model types of data and associated functionality.

m All these important for code too ... design and implementation are often blurred.


http://www.csfieldguide.org.nz/en/index.html

15

Design — architectural risk analysis

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based Risk S
cases analysis security tests analysis Security

operations

I\ AN Y RN S

Requirements Design Test Code Test Field
and use cases plans results feedback

m Architectural Risk analysis (ARA)

o Assess a architecture with respect to security risks.
m Aids:

o Model threats and their risk — recall the STRIDE and DREAD models from last class
— accounting for the system architecture, dependencies, roles, ...

o Design principles

o Design patterns for security



16

Design principles

m 1. Secure the weakest link

o Security defense should be seen as a chain, attackers will look for the weakest link in
that chain.

m 2. Defense in depth

o Manage risk by defense at all layers / components, such that if one of them fails, the
other has a fair chance.

m 3. Fail securely

o Handle failures correctly & securely; failure handling is often overlooked in
reliability and security terms.

m 4. Least privilege

o Execute software with the minimum required privileges to mitigate possible
impact of an attack (e.g. do not run servers with super-user privileges)

m 5. Compartmentalize

o Try to limit the damage by compartmentalizing (e.g. using VPNs, containers, firewalls

)

m 6. Keep It Simple (KISS) !!!

[Viega and McGraw, Building Secure Software, chapter 5]



https://www.pearson.com/us/higher-education/program/Viega-Building-Secure-Software-How-to-Avoid-Security-Problems-the-Right-Way/PGM262222.html

Design patterns

User Interface System
|
access rights | log-in
>
adjust
]
G q--
call operation operation
> >
<_ ______________________
< ______________________________

m Design patterns

o description of a general solution to a recurrent problem
o unlike design principles: concrete formulation, specific problem

o the "Gang of Four" book has been quite influential

Peter Sommerlad

SECURITY
PATTERNS

Integrating Security
and Systems Engineering

Design Patterns
Elements of Reusable
Object-Or jented Software

LEd

m Security patterns have been be defined in the same spirit

o Check “Security Patterns: Integrating Security and Systems Engineering”,
by Schumacher et al.

17



https://en.wikipedia.org/wiki/Design_Patterns
https://www.wiley.com/en-us/Security+Patterns:+Integrating+Security+and+Systems+Engineering-p-9780470858844

Software
Implementation



19

Discussion

HOW TO WRITE GOOD CODE:

ALMOST, BUT M5
BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.

NO, AND THE
REQUIREMENTS
HAVE CHANGED,

THROW IT ALLOUT |
AND START OVER.

GooD
CODE

xked: Good Code

m What do you think ...
o ...Is good code?

O

... can someone be confident
about 1t? How do you trust

your own code oOr someone
else’s?


https://xkcd.com/844/

20

Good code

m Some key desirable properties for code ... (what have we been
talking about after all? ):

O

O

O

Reliable: does what it supposed to.
Secure: ... and nothing else.

Flexible: composes well in interaction with other components,
may be used in different environments.

Verifiable: can be tested properly or verified / analysed by other
means

Maintainable: is adaptable to change over time and easy to
understand & maintain by others.

m How to get some level of confidence in the quality (and in particular
the security) of my code ?

O

Code reviewing (next)

o Verification (the most common approach is testing, covered also

In these slides)



Code review

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based | Risk S
cases analysis security tests analysis Security

operations

I\ AN S RN S

Requirements Design Test Code Test Field
and use cases plans results feedback

m Code reviewing
o The activity of auditing code.
o Strictly involves the (static) code only! No execution!

m General aim — identify problems with early in the software development:
o enforce coding standards

o finding software defects (code location of standard bugs) and security
vulnerabilities

o to identify problems in code during the implementation stage.



Static analysis tools & code reviewing

211
212 public User getUserUnsafe(String login) throws SQLException {

213 String sql = "SELECT ID, NAME, PASSWORD, ROLE, CREATED FROM USERS WHERE LOGIN = '" + login + "'";
2214 try (ResultSet rs = db.prepareStatement(sql).executeQuery()) {

215 return rS.neXt() ? issue detected
/2! Problems @ Javadoc [E\ Declaration %2 Diagrams E# Bug Explorer % Buginfo 53 in the source COde
UserDAO.java: 214
-] Navigation

A prepared statement is generated from a nonconstant String in gses.sqli.UserDAO.getUserUnsafe(String)

Bug: A prepared statement is generated from a nonconstant String in gses.sqli.UserDAQ.getUserUnsafe(String)

The code creates an SQL prepared statement from a nonconstant String. If unchecked, tainted data from a user is used in building this
String, SQL injection could be used to make the prepared statement do something unexpected and undesirable.

Rank: Troubling (10), confidence: High .
Pattern: SQL_PREPARED_STATEMENT GENERATED_FROM_NONCONSTANT_STRING explanation &
Type: SQL, Category: SECURITY (Security) advice

Screenshot: SpotBugs + FindSecBugs in action (Eclipse IDE)

m QOperation:

o 1) Static analysis is configured by a set of rules & associated parameters.

o 2) The code is analysed automatically.

o 3) A human-readable report is produced for all the problems found in the code.
m Good things

o Exact locations of potential problems are spotted.

22 o Tools also almost always provide explanation & advice on code changes.


https://spotbugs.github.io/
https://find-sec-bugs.github.io/

23

Static analysis tools & code reviewing

m Keep in mind — lack of soundness & completion:
o The analysis will not always be sound. “False positives” arise.

o The analysis will not be complete. It will not detect all problems.

m Developer must then perform the actual code review (the
tools just help!):

o verify if detected issues are real problems to fix in the code or
iInstead false positives ...

o ... and examine issues not covered by static analysis.

m |n particular, code review meetings may be held during
development.



Software Testing



25

Software testing

m Testing

o Observe if software meets the expected behavior when
executed.

o Does not guarantee absence of bugs, in fact it seeks to expose
them.

m [esting vs static analysis

o When a test fails, it does not identify the defect(s) in source
code, only their manifestation.

o No false positives.



Test case

set define compare
up test case execute test

values (inputs) software outputs
under VS

test (SUT) expected

values
/ \ ' teardown
failure success
execution

m Atest case has the following ingredients:

o The subject-under-test (SUT), e.g. function, class, component.

o The inputs for the test and the expected outputs.

o Also, optional setup/teardown actions (we won'’t go into detail for now).

20



Test case programming — xUnit style

@Test
public void testNumZeroArrayWithNoZeros() {

int[] x = { 1,2, 3 }; 1) setup test case values

int n = numZero(x); 2) execute SUT (numZero)

assertEquals(0, n);
}
3) assert expected vs. test outputs

m A simple example in Java using JUnit
m SO tests take form as code too ...
o that need to be (well) coded, maintained, etc



http://junit.org

28

Remarks on testing

m Black-box testing vs white-box testing

o Black-box: tests are based on the abstract requirements, not the structure of
the code

o White-box: tests are guided by the structure of the code

m How to assess the quality of a test suite?
o Some criteria is required, that should translate to a precise metric. For
Instance:
+ Line coverage = % of lines of code that are exercised by tests (a “white-box” metric)
+ Requirements coverage = % of requirements tested (a “black-box” metric)
m [ests should be reproducible
o Non-determinism may arise in a fragile test environment or inherent to the
software itself

+ “Did you just delete that database entry | inserted yesterday for testing purposes?”

+ Concurrent code (e.g. multi-threaded code) is prone to non-determinism. Infamous “heisen-bugs” arise:
they happen in particular circumstances that are hard to replicate.



Testing levels & the SDLC

Requirements . Acceptance
Analysis Test
Test

. Desi
Architectural esign . System
Design Information Test
Subsystem . Integration T
Design Test
“—>{Detailed Design > Mﬁedslf[le T
Implementation —> _Il_JerQI T

From: “Introduction to Software Testing”, Amman & Offutt



How important is testing?
History of Software Testing

What? I've done the coding and OK’. maybe you v nght about
: testing. It looks like a nasty bug made
now you want to test it. Why? it into the Li . fand - .
We haven't got time anyway s way Into the Live environment an esters! you must work

harder! Longer! Faster!

1960s - 1980s 1990s 2000+
Constraint Need Asset

Image source: History of software testing, blog article, Ashish Singh, 2012

m Jesting is the standard approach for ensuring that
software has a high level of reliability.

» W No (serious) SDLC process goes without testing.


http://ashishqa.blogspot.pt/2012/12/history-of-software-testing.html

31

How “mature” should testing be?

m Beizer’s scale for test process maturity

O

Level 0: “There’s no difference between testing and
debugging.”

+ Question: What is debugging?

Level 1: “The purpose of testing is to show that the software
works.”
Level 2: “The purpose of testing is to show that the software

doesn’t work.”

Level 3: “The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software.”

Level 4: “Testing is a mental discipline that helps all IT
professionals develop higher quality software.”



Risk-based security testing

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based Risk | .
cases analysis security tests analysis Security

li)lt)t'I'dT_lul'I\

I\‘ /I\ Il L I\ ¢ I/

Requirements Design Test Code Test Field
and use cases plans results feedback

m Security testing involves:

o testing security mechanisms to ensure that their functionality is
properly implemented, like other features

o but also performing risk-based security testing motivated by
understanding and simulating the attacker’s approach, for
instance in line with abuse cases ...

o more on this topic later in the course ...



Pen lesting



34

Pen testing (penetration testing)

Security External Code Penetration
requirements review review testing
(tools) -
Abuse Risk Risk-based Risk .
cases analysis security tests analysis Security

Requirements Design Test Code Test Field
and use cases plans results feedback

m Pen testing

o Assess security by actively trying to find exploitable security vulnerabilities over a running
system.

m Differs from standard software testing in that:
o Negative goal: looks for unintended behavior rather than expected (unlike standard testing)
o Targets an entire system: not applicable to individual modules (no unit testing)

o “black hat” activity: conducted mostly by what are sometimes called “red teams”, typically
distinct from development or functional testing teams.

4 “Red teams” are pen-testing specialists, moreover standard developers & testers may also be naturally
biased by their assumptions about the system.



35

Penetration testing tools

m Pen-testing tools run in automated fashion. Typical operation
o (1) passively scan for vulnerabilities (“probing mode”),

o (2) then try to see if they are exploitable (“attack mode”)

m Common aids:
o “Libraries” of known exploits per type of vulnerability.

o Fuzz testing techniques to derive malicious inputs.

m Some popular tools

o Kali: a Linux distribution specifically aimed at pen-testing, including a vast
amount of tools.

o ZAP Web proxy

o Metasploit framework

o sqlmap for database pen-testing

o nmap for network scanning


https://www.kali.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.metasploit.com/
http://sqlmap.org
https://nmap.org/

36

Example pen-testing tool — ZAP

8 Web
Aliatiiit Application

Image source: OWASP ZAP 2.7 Getting Started Guide

m Probing mode

o ZAP behaves as a HTTP proxy, sitting between the browser and a
web application under tes

o Potential aspects of vulnerability are detected & reported on-the-fly

m Attack mode
o ZAP checks if potential vulnerabilities are exploitable

o Pen-test results are reported


https://github.com/zaproxy/zaproxy/releases/download/2.7.0/ZAPGettingStartedGuide-2.7.pdf

37

Pen-testing DVWA — example

User ID: Submit

ID: 1
First name: admin
Surname: admin

http://www.dvwa.co.uk/

Probing mode

Vv 8 X-Frame-Options Header Not Set

| GET: http://localhost:8081 /vulnerabilities /sqli/?id = 1&Submit=Submit
Vv U Web Browser XSS Protection Not Enabled

| GET: http://localhost:8081 /vulnerabilities/sqli/?id = 1&Submit=Submit
Vv i X-Content-Type-Options Header Missing

| GET: http://localhost:8081 /vulnerabilities/sqli/?id = 1&Submit=Submit

Attack mode

Vv 8 Cross Site Scripting (Reflected)

| GET: http://localhost:8081 /vulnerabilities/sqli/?id=%27%2 2 %3 Cscript%3Ealert%2 8 1%2 9%3
v 8 SQL Injection

.| GET: http://localhost:8081 /vulnerabilities /sqli/?id=1%27+AND+%27 1%27%3D%27 1%2 7 + -


http://www.dvwa.co.uk/

Pen-testing and the SDLC

m So0: pen-testing found a few issues that were fixed, great!

m But wait: how can you have have confidence that pen-testing is really being
effective?

m McGraw warns:

o ‘people often use penetration testing as an excuse to declare victory. When a
penetration test concentrates on finding and removing a small handful of bugs
(and does so successfully), everyone looks good: the testers look smart for finding
a problem, the builders look benevolent for acquiescing to the test, and the
executives can check off the security box and get on with making money.
Unfortunately, penetration testing done without any basis in security risk
analysis leads to this situation with alarming frequency.”

o ‘security penetration testing can be effective, as long as we base the testing
activities on the security findings discovered and tracked from the beginning
of the software life cycle [...]. To do this, a penetration test must be structured
according to perceived risk and offer some kind of metric relating risk measurement
to the software’s security posture at the time of the test. Results are less likely to
be misconstrued and used to declare pretend security victory.”

m Similar arguments can be made for other methodologies in the SDLC e.g. code
reviews, risk-based security testing, ...


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1392709

