
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

The software development
life-cycle (SDLC)

& security touch points

mailto:edrdo@dcc.fc.up.pt?subject=

The SDLC

You probably heard about different types of software development
methodologies.
They are not just about writing code. Instead, they account for the entire
software development life-cycle (SDLC) — that defines how to engineer
software.
Are they really needed ? Does the SDLC need to be disciplined/systematic?

In a word: yes.
Software plays a crucial role in everyday life. It needs to be engineered
properly. Quite frequently, that is not the case.

 2

Waterfall XP SCRUM

Images from Wikipedia

SDLC stages
Whatever the software system / development at stake, a SDLC
typically considers:

Requirements — What should the software do ?
Design — How should it be structured ?
Implementation — Implementing the actual system.
Verification — Ensuring (with some degree of confidence) that
the implemented system meets the requirements. This is usually
done through testing.
Deployment/maintenance — Setting up the system for use and
maintaining it.

During the semester we will mostly focus on aspects of implementation and
verification from a security perspective.

Some old methodologies like the “waterfall model” view these
stages in sequence. In modern methodologies, the SLDC works
more like a feedback loop.
In any case, where does security fit in ?

 3

Security touch-points

Security is a cross-cutting concern and an emergent
property. It must be accounted for during the entire
SDLC.
With that in mind, Gary McGraw proposed the influential
touch-point model. The idea is that touch-points define
security-oriented tasks for different stages of the SDLC.

 4

Image source: “Software security”, G. McGraw, IEEE SECURITY & PRIVACY

Software
requirements

Requirements
Software requirement

Description of an expected feature of the software.
It must be: “verifiable as an individual feature as a functional requirement or
at the system level as a nonfunctional requirement” - IEEE SWEBOK guide

Functional requirements:
Feature = function of the system
typically some kind of abstract input-output relation: given X, compute f(X)
Silly example: given X calculate X + 1”

Non-functional requirements
Feature = constraint on the system
Example constraints: resource (memory, bandwidth, …) quality-of-service
guarantees (latency, throughput), environment setting
Silly examples: “the calculation of X+1 MUST be done in less than 1
second” (constraint on latency) or “without spending more than 4 GB of
memory” (constraint on memory usage)

 6

https://www.computer.org/web/swebok/v3

Requirements engineering

Deriving requirements can be a process in itself, called requirements
engineering.
For instance, the (dense) IEEE SWEBOK guide describes the following activities
for requirements engineering:

1. Elicitation: Feedback is first collected from all stakeholders (people with an interest in
the software), clients, users, consortium partners, the technical development team
2. Analysis: Requirements are then identified, possibly employing a number of modelling
methodologies.
3. Specification: requirements are formalised in documents.
4. Validation: the specification is validated and subject to approval.

 7

Image source:
Computer Science Field Guide

https://www.computer.org/web/swebok/v3
http://www.csfieldguide.org.nz/en/index.html

Example requirements — RFC style

From: RFC 2616 - HTTP/1.1
Note the capital “MUST”, “SHOULD”, “OPTIONAL” … 8

https://tools.ietf.org/html/rfc2616#section-5.1.1

RFC documents typically include this section to explain how to interpret requirements and compliance with
requirements.

 9

RFC 2119 in turn specifies (fragment):

https://tools.ietf.org/html/rfc2616#section-1.2

Security requirements

Security requirements are driven by goals in the security policy:
Recall from last class: they may relate to confidentiality, integrity,
availability, privacy, non-repudiation, …

Identifying requirements in general may be driven by use cases,
that model how a system may be used.
Identifying security requirements may also be driven by abuse
cases, that model how a system may be abused.

 10

Use cases / Abuse cases

Use case:
High-level description of interactions among actors in a system, modelling normal use.

Abuse case (also called misuse case)
Like an use case, but focused on modelling adversarial actions as well.

Aids:
Modelling languages with a visual syntax like UML or LML may help (a bit; see
discussion next). 11

Images from Wikipedia

Deriving abuse cases
Some general advice (from “Misuse and Abuse Cases:
Getting Past the Positive” by Hope, McGraw, and
Antón)

“Informed brainstorming” rather than the use of “rigorous formal
models and logics [that] are extremely time and resource intensive.”
Threat modelling: “security experts ask many questions of a
system’s designers to help identify the places where the system is
likely to have weaknesses. This activity mirrors the way attackers
think.”

Taxonomies like STRIDE help in this regard .

Consider Attack patterns (“blueprint[s] for creating an attack.”)
CAPEC (Common Attack Patterns Enumeration and Classification)
The list of attack patterns from “Exploiting Software: How to break code” by G.
McGraw
Attack pattern modelling definitions in US-CERT website.

 12

https://www.garymcgraw.com/wp-content/uploads/2015/11/bsi2-misuse.pdf
https://www.garymcgraw.com/wp-content/uploads/2015/11/bsi2-misuse.pdf
https://capec.mitre.org/
http://www.exploitingsoftware.com/attackpatterns/
https://www.us-cert.gov/bsi/articles/knowledge/attack-patterns

Software design

Software design

Software design seeks to define a model for a software system.
Some basic aspects of design:

Decomposition: identifying necessary components and their modular role.
Architecture: define how components assemble together and interact, often organised in
layers.
Abstraction & refinement: to be able to model behavior as abstract at high level, and then
refine it / instantiate it in more detail at a lower level of design.
Data types and functions: model types of data and associated functionality.

All these important for code too … design and implementation are often blurred.

 14

Image source:
Computer Science Field Guide

http://www.csfieldguide.org.nz/en/index.html

Design — architectural risk analysis

Architectural Risk analysis (ARA)
Assess a architecture with respect to security risks.

Aids:
Model threats and their risk — recall the STRIDE and DREAD models from last class
— accounting for the system architecture, dependencies, roles, …
Design principles
Design patterns for security

 15

Design principles
1. Secure the weakest link

Security defense should be seen as a chain, attackers will look for the weakest link in
that chain.

2. Defense in depth
Manage risk by defense at all layers / components, such that if one of them fails, the
other has a fair chance.

3. Fail securely
Handle failures correctly & securely; failure handling is often overlooked in
reliability and security terms.

4. Least privilege
Execute software with the minimum required privileges to mitigate possible
impact of an attack (e.g. do not run servers with super-user privileges)

5. Compartmentalize
Try to limit the damage by compartmentalizing (e.g. using VPNs, containers, firewalls
…)

6. Keep It Simple (KISS) !!!
…

 16 [Viega and McGraw, Building Secure Software, chapter 5]

https://www.pearson.com/us/higher-education/program/Viega-Building-Secure-Software-How-to-Avoid-Security-Problems-the-Right-Way/PGM262222.html

Design patterns

Design patterns
description of a general solution to a recurrent problem
unlike design principles: concrete formulation, specific problem
the "Gang of Four" book has been quite influential

Security patterns have been be defined in the same spirit
Check “Security Patterns: Integrating Security and Systems Engineering”,
by Schumacher et al.

 17

9.6 Limited Access 315

Implementation

To implement LIMITED ACCESS (312), several aspects need to be considered:

1. Implement the association of access rights with users. CHECK POINT (287) and
SECURITY SESSION (297) are typical means of providing a user log-in and at-
taching their access rights. In the case of CHECK POINT (287) the interface can
rely on the Check Point object to provide access to the set of enabled user in-
terface elements. For further details about user identification and authentica-
tion, see Chapter 7, Identification and Authentication (I&A). For the modeling
and management of access rights, see Chapter 8, Access Control Models.

2. Design the user interface and define the mapping of access rights to interface
elements. The issues surrounding the design of a good (graphical) user inter-
face are far beyond the scope of this pattern. However, you should model your
individual access rights close to the available user interface elements, so that
management and checking of access rights for your application is straightfor-
ward. If your application requires complex rules to decide whether an option
is valid for a user, evaluating these rules every time the interface is (re-) drawn
can be too costly, so you should either use FULL ACCESS WITH ERRORS (305) in
that case, or cache the results of such an evaluation, for example within the
user’s SECURITY SESSION (297). The latter approach is viable as long the user’s
rights will not change during a session.

A third way to optimize a LIMITED ACCESS (312) user interface is to provide an
individual design for each role in ROLE-BASED ACCESS CONTROL (249). This
works if your system only needs to support a few defined, stable and clearly-
distinguished user roles. You can opt to design separate visual user interface

Interface System

log-in

User

operation

adjust
UI

call operation

access rights

c09.fm Page 315 Monday, November 28, 2005 4:26 PM

https://en.wikipedia.org/wiki/Design_Patterns
https://www.wiley.com/en-us/Security+Patterns:+Integrating+Security+and+Systems+Engineering-p-9780470858844

Software
implementation

Discussion

What do you think …
… is good code?
… can someone be confident
about it? How do you trust
your own code or someone
else’s?

 19

xkcd: Good Code

https://xkcd.com/844/

Good code
Some key desirable properties for code … (what have we been
talking about after all?):

Reliable: does what it supposed to.
Secure: … and nothing else.
Flexible: composes well in interaction with other components,
may be used in different environments.
Verifiable: can be tested properly or verified / analysed by other
means
Maintainable: is adaptable to change over time and easy to
understand & maintain by others.

How to get some level of confidence in the quality (and in particular
the security) of my code ?

Code reviewing (next)
Verification (the most common approach is testing, covered also
in these slides)

 20

Code review

Code reviewing
The activity of auditing code.
Strictly involves the (static) code only! No execution!

General aim — identify problems with early in the software development:
enforce coding standards
finding software defects (code location of standard bugs) and security
vulnerabilities
to identify problems in code during the implementation stage.

 21

Static analysis tools & code reviewing

Operation:
1) Static analysis is configured by a set of rules & associated parameters.
2) The code is analysed automatically.
3) A human-readable report is produced for all the problems found in the code.

Good things
Exact locations of potential problems are spotted.
Tools also almost always provide explanation & advice on code changes. 22

Screenshot: SpotBugs + FindSecBugs in action (Eclipse IDE)

issue detected
 in the source code

explanation &
advice

https://spotbugs.github.io/
https://find-sec-bugs.github.io/

Static analysis tools & code reviewing

Keep in mind — lack of soundness & completion:
The analysis will not always be sound. “False positives” arise.
The analysis will not be complete. It will not detect all problems.

Developer must then perform the actual code review (the
tools just help!):

verify if detected issues are real problems to fix in the code or
instead false positives …
… and examine issues not covered by static analysis.

In particular, code review meetings may be held during
development.

 23

Software Testing

Software testing

Testing
Observe if software meets the expected behavior when
executed.
Does not guarantee absence of bugs, in fact it seeks to expose
them.

Testing vs static analysis
When a test fails, it does not identify the defect(s) in source
code, only their manifestation.
No false positives.

 25

Test case

 26

setup define
test case

values (inputs)
execute
software

under
test (SUT)

compare
test

outputs
vs

expected
values

teardown

execution

failure success

A test case has the following ingredients:
The subject-under-test (SUT), e.g. function, class, component.
The inputs for the test and the expected outputs.
Also, optional setup/teardown actions (we won’t go into detail for now).

Test case programming — xUnit style

A simple example in Java using JUnit
So tests take form as code too …

that need to be (well) coded, maintained, etc

 27

@Test
public void testNumZeroArrayWithNoZeros() {

 int[] x = { 1,2, 3 };

 int n = numZero(x);

 assertEquals(0, n);
}
 ...

1) setup test case values

2) execute SUT (numZero)

3) assert expected vs. test outputs

http://junit.org

Remarks on testing

Black-box testing vs white-box testing
Black-box: tests are based on the abstract requirements, not the structure of
the code
White-box: tests are guided by the structure of the code

How to assess the quality of a test suite?
Some criteria is required, that should translate to a precise metric. For
instance:

Line coverage = % of lines of code that are exercised by tests (a “white-box” metric)

Requirements coverage = % of requirements tested (a “black-box” metric)

Tests should be reproducible
Non-determinism may arise in a fragile test environment or inherent to the
software itself

“Did you just delete that database entry I inserted yesterday for testing purposes?”

Concurrent code (e.g. multi-threaded code) is prone to non-determinism. Infamous “heisen-bugs” arise:
they happen in particular circumstances that are hard to replicate.

 28

Testing levels & the SDLC

introtest CUUS047-Ammann ISBN 9780521880381 November 8, 2007 17:13 Char Count= 0

6 Overview

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed Design

Implementation Unit
Test

Module
Test

System
Test

Integration
Test

Acceptance
Test

Test

Design

Information

Figure 1.2. Software development activities and testing levels – the “V
Model”.

whether the software does what the users want. Acceptance testing must involve
users or other individuals who have strong domain knowledge.

The architectural design phase of software development chooses components
and connectors that together realize a system whose specification is intended to
meet the previously identified requirements. System testing is designed to determine
whether the assembled system meets its specifications. It assumes that the pieces
work individually, and asks if the system works as a whole. This level of testing usu-
ally looks for design and specification problems. It is a very expensive place to find
lower-level faults and is usually not done by the programmers, but by a separate
testing team.

The subsystem design phase of software development specifies the structure and
behavior of subsystems, each of which is intended to satisfy some function in the
overall architecture. Often, the subsystems are adaptations of previously developed
software. Integration testing is designed to assess whether the interfaces between
modules (defined below) in a given subsystem have consistent assumptions and com-
municate correctly. Integration testing must assume that modules work correctly.
Some testing literature uses the terms integration testing and system testing inter-
changeably; in this book, integration testing does not refer to testing the integrated
system or subsystem. Integration testing is usually the responsibility of members of
the development team.

The detailed design phase of software development determines the structure and
behavior of individual modules. A program unit, or procedure, is one or more con-
tiguous program statements, with a name that other parts of the software use to
call it. Units are called functions in C and C++, procedures or functions in Ada,
methods in Java, and subroutines in Fortran. A module is a collection of related
units that are assembled in a file, package, or class. This corresponds to a file in
C, a package in Ada, and a class in C++ and Java. Module testing is designed to
assess individual modules in isolation, including how the component units interact
with each other and their associated data structures. Most software development
organizations make module testing the responsibility of the programmer.

 29
 From: “Introduction to Software Testing”, Amman & Offutt

How important is testing?

Testing is the standard approach for ensuring that
software has a high level of reliability.
No (serious) SDLC process goes without testing. 30

Image source: History of software testing, blog article, Ashish Singh, 2012

http://ashishqa.blogspot.pt/2012/12/history-of-software-testing.html

How “mature” should testing be?

Beizer’s scale for test process maturity
Level 0: “There’s no difference between testing and
debugging.”

Question: What is debugging?

Level 1: “The purpose of testing is to show that the software
works.”
Level 2: “The purpose of testing is to show that the software
doesn’t work.”
Level 3: “The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software.”
Level 4: “Testing is a mental discipline that helps all IT
professionals develop higher quality software.”

 31

Risk-based security testing

Security testing involves:
testing security mechanisms to ensure that their functionality is
properly implemented, like other features
but also performing risk-based security testing motivated by
understanding and simulating the attacker’s approach, for
instance in line with abuse cases …
more on this topic later in the course …

 32

Pen Testing

Pen testing (penetration testing)

Pen testing
Assess security by actively trying to find exploitable security vulnerabilities over a running
system.

Differs from standard software testing in that:
Negative goal: looks for unintended behavior rather than expected (unlike standard testing)
Targets an entire system: not applicable to individual modules (no unit testing)
“black hat” activity: conducted mostly by what are sometimes called “red teams”, typically
distinct from development or functional testing teams.

 “Red teams” are pen-testing specialists, moreover standard developers & testers may also be naturally
biased by their assumptions about the system.

 34

Penetration testing tools
Pen-testing tools run in automated fashion. Typical operation

(1) passively scan for vulnerabilities (“probing mode”),
(2) then try to see if they are exploitable (“attack mode”)

Common aids:
“Libraries” of known exploits per type of vulnerability.
Fuzz testing techniques to derive malicious inputs.

Some popular tools
Kali: a Linux distribution specifically aimed at pen-testing, including a vast
amount of tools.
ZAP Web proxy
Metasploit framework
sqlmap for database pen-testing
nmap for network scanning

 35

https://www.kali.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.metasploit.com/
http://sqlmap.org
https://nmap.org/

Example pen-testing tool — ZAP

Probing mode
ZAP behaves as a HTTP proxy, sitting between the browser and a
web application under tes
Potential aspects of vulnerability are detected & reported on-the-fly

Attack mode
ZAP checks if potential vulnerabilities are exploitable
Pen-test results are reported

 36

environment which quickly changes, and for which the development may be highly

collaborative and distributed.

The Pentesting Process

Both manual and automated pentesting are used, often in conjunction, to test everything

from servers, to networks, to devices, to endpoints. This document focuses on web

application or web site pentesting.

Pentesting usually follows these stages:

• Explore – The tester attempts to learn about the system being tested. This includes

trying to determine what software is in use, what endpoints exist, what patches are

installed, etc. It also includes searching the site for hidden content, known

vulnerabilities, and other indications of weakness.

• Attack – The tester attempts to exploit the known or suspected vulnerabilities to

prove they exist.

• Report – The tester reports back the results of their testing, including the

vulnerabilities, how they exploited them and how di2cult the exploits were, and the

severity of the exploitation.

Pentesting Goals

The ultimate goal of pentesting is to search for vulnerabilities so that these vulnerabilities

can be addressed. It can also verify that a system is not vulnerable to a known class or

speci)c defect; or, in the case of vulnerabilities that have been reported as)xed, verify that

the system is no longer vulnerable to that defect.

Introducing ZAP

Zed Attack Proxy (ZAP) is a free, open-source penetration testing tool being maintained

under the umbrella of the Open Web Application Security Project (OWASP). ZAP is designed

speci)cally for testing web applications and is both 4exible and extensible.

At its core, ZAP is what is known as a “man-in-the-middle proxy.” It stands between the

tester’s browser and the web application so that it can intercept and inspect messages sent

between browser and web application, modify the contents if needed, and then forward

those packets on to the destination. It can be used as a stand-alone application, and as a

daemon process.

If there is another network proxy already in use, as in many corporate environments, ZAP

can be con)gured to connect to that proxy.

Image source: OWASP ZAP 2.7 Getting Started Guide

https://github.com/zaproxy/zaproxy/releases/download/2.7.0/ZAPGettingStartedGuide-2.7.pdf

Pen-testing DVWA — example

 37

Attack mode

Probing mode

http://www.dvwa.co.uk/

http://www.dvwa.co.uk/

Pen-testing and the SDLC
So: pen-testing found a few issues that were fixed, great!
But wait: how can you have have confidence that pen-testing is really being
effective?
McGraw warns:

“people often use penetration testing as an excuse to declare victory. When a
penetration test concentrates on finding and removing a small handful of bugs
(and does so successfully), everyone looks good: the testers look smart for finding
a problem, the builders look benevolent for acquiescing to the test, and the
executives can check off the security box and get on with making money.
Unfortunately, penetration testing done without any basis in security risk
analysis leads to this situation with alarming frequency.”
“security penetration testing can be effective, as long as we base the testing
activities on the security findings discovered and tracked from the beginning
of the software life cycle […]. To do this, a penetration test must be structured
according to perceived risk and offer some kind of metric relating risk measurement
to the software’s security posture at the time of the test. Results are less likely to
be misconstrued and used to declare pretend security victory.”

Similar arguments can be made for other methodologies in the SDLC e.g. code
reviews, risk-based security testing, …

 38

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1392709

