
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Injection vulnerabilities

mailto:edrdo@dcc.fc.up.pt?subject=

Injection
Vulnerability class — CWE-74

Improper Neutralization of Special Elements in Output Used by a
Downstream Component
Short name: ’Injection’

Description
“The software constructs […] a command, data structure, or
record using externally-influenced input […] but it does
not neutralize or incorrectly neutralizes special elements that
could modify how it is parsed or interpreted […]”
“[…] the execution of the process may be altered by sending
code in through legitimate data channels, using no other
mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. “

 2

https://cwe.mitre.org/data/definitions/74.html

Injection examples

What is wrong with both fragments?
SQL injection and OS command injection are the top two entries in the CWE/
SANS Top 25 Most Dangerous Software Errors
We will look at these two types of injection vulnerabilities in more detail today. 3

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

SQL injection CWE-89

 // PHP fragment
 $userName = $_POST["user"];
 $command = 'ls -l /home/' . $userName;
 system($command);

OS command injection CWE-78

http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

CWE TOP 25 - http://cwe.mitre.org/top25/

#1 and #2 are SQL and Command injection
#3 and #4 - Buffer overflows and cross-site scripting (discussed later in the
course)

require complementary mechanisms beyond plain data parsing
but also relate to bad input handling and rely on a blurred distinction between code
and data

 4

http://cwe.mitre.org/top25/

Injection — general attack pattern
General attack pattern

Malicious input is supplied to a software system.
The input is used to build part of a command or executable code, that alters the
expected flow of execution.

Basic problem
Distinction between code and data is blurred !
Data disguised as code/command !

What must be do ?
Ensure that (malicious) input cannot be construed as code or command.
“All Input is Evil” / “Trust no input”: security mantras we should keep in
mind (for injection and various other types of vulnerabilities).

Terminology — Prevention vs mitigation vs detection
Detection: plain detection of a vulnerability
Mitigation: limit possible damage
Prevention: take measures to eliminate the vulnerability

 5

Running example — DVWA

DVWA: Damn Vulnerable Web Application
Homepage
GitHub repository
Docker image

 6

http://dvwa.co.uk/
https://github.com/ethicalhack3r/DVWA
https://hub.docker.com/r/vulnerables/web-dvwa/

OS Command
injection

OS commands

OS commands are often handy as “glue”, for example to
invoke third-party software / OS utilities.
Example ways to execute OS commands:

Traditional system call in C, Python, Perl, or equivalent support
in other languages.
Within SQL in some database engines (!!!): xp_cmdshell in
SQL Server
exec directive in "server-side includes"

 8

 // PHP fragment
 $userName = $_POST["user"];
 $command = 'ls -l /home/' . $userName;
 system($command);

OS command injection CWE-78

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql
http://httpd.apache.org/docs/2.2/mod/mod_include.html#element.exec

OS command injection attacks

Special meta-characters are interpreted by the system shell.
Above you have something like:

system(“someBeautifulCommand $input”)

Now consider
$input = “someArg; rm -fr /“

The executed commands are in fact
someBeautifulCommand someArg

rm -fr /

 9

Example injection:
userName = ‘john; rm -fr /’ // PHP fragment

 $userName = $_POST["user"];
 $command = 'ls -l /home/' . $userName;
 system($command);

OS command injection CWE-78

Handling OS command injection
#1 — Do not use OS command execution !

Not always practical !

#2 — Prevention by input validation
Blacklisting strategy — disallow commands with special shell characters
Sanitisation — Meta-character escaping for sanitisation
Whitelist — allow only (validated) commands that adhere to a strict format
Blacklisting / sanitisation are prone to loopholes: system shells can be very
heterogeneous and feature-rich; escaped characters may still be dangerous
due to sub-command invocation.

#3 — Run with least privilege (mitigation)
Make sure commands are not invoked by processes with more privileges than
necessary (e.g. process is not executed as root user!)

#4 — Environment-based attacks (prevention)
Only use commands with full path specified and explicitly control PATH setting /
other dangerous variables

#5 — Detect statically or in live execution in “tainted mode” (detection)
 10

Input validation examples — DVWA

Have a look at the source code for command injection:
low.php : input is used directly to execute command

Exploit easy : 127.0.0.1 ; cat /etc/passwd or 127.0.0.1 && cat /etc/passwd

medium.php: blacklisting of “;” and “&&”, that are erased from input
Still easy: 127.0.0.1 | cat /etc/passwd

high.php: blacklisting of more characters, but a small typo breaks the
validation logic!

Check the source code to understand why the following exploit works: 127.0.0.1 || cat /etc/
passwd

impossible.php: whitelist strategy, validates that input is strictly an
IP address, reject all other input

 11

OS command injection — other
techniques

Environment may determine what commands are
executed.
Suppose you have

system(“someBeautifulCommand $input”)

This assumes someBeautifulCommand is in the PATH of
the running program …
If at tacker can “ infect” the PATH, a mal ic ious
myBeautifulCommand may be executed instead.
Variations

The path for dynamically-linked code can also be controlled by
e n v i r o n m e n t v a r i a b l e s , e . g . L D _ P R E L O A D a n d
LD_LIBRARY_PATH in Unix
IFS separator variable changes the interpretation of file names!

 12

Shellshock
ShellShock: A “family” of securi ty bugs start ing with
CVE-2014-6271
Base vulnerability:

The UNIX bash shell unintentionally executed commands that
were concatenated to the end of function definitions stored in
environment variables (!).

Environment variables should also be considered as program inputs!
Example

export X=‘() { }; maliciousCommand’

runAnything # does not need to access X!!

… and maliciousCommand would run!

Example exploits — HTTP request headers converted to
environment variables to CGI programs in many platforms! So …

Check more info here and here.
 13

https://nvd.nist.gov/vuln/detail/CVE-2014-6271
https://en.wikipedia.org/wiki/Shellshock_(software_bug)#Specific_exploitation_vectors
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html

Static analysis example — using WAP

WAP (Web Application Protection) tool
Static analysis tool for PHP web applications
Developed at University of Lisbon

 14

 File: /Users/edrdo/qses19/tools/dvwa/DVWA/vulnerabilities/exec/
source/low.php

= = = = Vulnerability n.: 1 = = = =
Type: OS Command Injection

Vulnerable code:
5: $target = $_REQUEST['ip'];
10: $cmd = shell_exec('ping ' . $target);

Corrected code:
5: $target = $_REQUEST['ip'];
10: if (san_osci($_REQUEST['ip']) == 0)
11: $cmd = shell_exec('ping ' . $target);

http://awap.sourceforge.net

Perl’s “taint mode”

Small Perl program (similar to the Java example)
Malicious use: unsafe.pl “someUserName; arbitraryCommand”
-T switch activates “taint mode” which tries to keep track of “tainted” (unsecure)
data and their use in security-sensitive spots
This is for Perl, but “tainted modes” are available for other languages like PHP and
Python

 15

#! /opt/local/bin/perl
$username = $ARGV[0];
system("finger $username");

#! /opt/local/bin/perl -T
$username = $ARGV[0];
system("finger $username");

-T switch

Input-based command
injection through command-line

argument.

Environment-based command
injection also possible. PATH

may be arbitrarily set.

This will force us to
transform the program.

Let’s run it and see how!

https://perldoc.perl.org/perlsec.html#Taint-mode
https://perldoc.perl.org/perlsec.html#Taint-mode
http://php.net/manual/en/intro.taint.php
https://github.com/felixgr/pytaint

Perl’s “taint mode” (2)

 16

#! /opt/local/bin/perl -T
$username = $ARGV[0];
system("finger $username");

Insecure $ENV{PATH}

#! /opt/local/bin/perl -T
$ENV{PATH} = ‘/usr/bin’;
$username = $ARGV[0];
system("finger $username");

#! /opt/local/bin/perl -T
$ENV{PATH}='/usr/bin';
$username = $ARGV[0];
if ($username =~ /^([\w_]+)$/) {
 system("finger $1");
} else {
 print "Invalid argument: '" . $username . "'\n";
}

Insecure dependency in system

Set PATH to a safe value.

Regular expression match assumed
to yield untainted data. The

reasoning is to force program to
perform input validation. Regular
expression can still potentially be

inadequate.
Note: $1 in the call to system

denotes the regular expression
match result, assumed to be secure

by the “taint mode” module.

SQL injection

SQL injection — Context

SQL (Structured Query Language): the standard query language for
interfacing with relational databases.
SQL code is defined by arbitrary programs in interface to a database engine, in
conjunction with some language-specific API (e.g. JDBC for Java as above).
SQL injection: malicious inputs affect SQL code to execute unintended
functionality.

 18

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

SQL injection CWE-89

SQLi — example attacks

The id parameter, used for building the query, is a “front door” for
arbitrary command execution possible leading to
Command sequences (also called piggy-backed queries)

id = “1234 ; DELETE FROM USERS”

UNION queries
id = “1234 UNION SELECT PASSWORD FROM USERS WHERE
ID=1234”

Tautologies
id = “1234 OR 1=1”

 19

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

Further reading: "A Classification
of SQL Injection Attacks and
Countermeasures”, Halfond et al.,
 ISSSE’06

SQL injection is possible
through the ‘id’ input!

SQLi — threats

The id parameter, used for building the query, is a front
door for arbitrary SQL injection possible leading to

Data tampering - modifying the database
Information disclosure - disclosing unauthorised data, e.g. the
even the entire database schema
Denial of Service - by issuing a time-consuming query
…

 20

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

Tales of ‘Bobby tables’

SQLi attacks are common and cause serious damage
SQL injection hall of shame
The History of SQL Injection, the Hack That Will Never Go
Away

Some people just try to be funny (?) about it:
Did Little Bobby Tables migrate to Sweden?
; DROP TABLE "COMPANIES";-- LTD

 21

Exploits of a mom https://xkcd.com/327/

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will-never-go-away
https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will-never-go-away
https://alicebobandmallory.com/articles/2010/09/23/did-little-bobby-tables-migrate-to-sweden
https://beta.companieshouse.gov.uk/company/10542519
https://xkcd.com/327/

SQLi probes — malformed SQL

Use malformed SQL
id = “1234 FOLLOWED_BY_INVALID_SQL”

Server may yield back detailed error messages providing
positive indication that SQLi is possible

 22

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

SQLi probes — Blind SQL injection

Blind SQL injection works by issuing false / true
statements and comparing the responses

id = “1234 AND 1=2”: server may report no data, but we may
not be aware if the query was rejected / malformed
id = “1234 AND 1=1”: if output is different then SQLi should be
possible

 23

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

Blind SQLi - DVWA example

Looks like a vulnerable answer …
SQLi may be possible, how can we be sure ? Perhaps
input was sanitised instead ?

 24

yields

Blind SQLi - DVWA example (2)

Different answer!
SQLi point identified!

 25

yields

SQLi probes — time-based blind SQL
injection

Time-based SQL injection works by issuing functions that
may cause a delay in the query

if a delay is noticeable, SQLi should be possible
E.g. SLEEP function for MySQL - info here at sqlinjection.net
for different databases
DVWA demo: you may use 1’ AND SLEEP(5)-- x

 26

 int id = input();
 String query = "SELECT NAME FROM USERS WHERE ID=" + id
 Statement conn = db.createStatement();
 ResultSet rs = conn.executeQuery(query);
 // ...

http://www.sqlinjection.net/time-based/
http://sqlinjection.net

SQLi and stored procedures

Example taken from sqlinjection.net : we can attain SQL
injection through the vname parameter
Stored procedures are not necessarily more secure than
embedded SQL.

 27

CREATE OR REPLACE PROCEDURE
prodDescr(vname IN VARCHAR2, vresult OUT VARCHAR2) AS
 vsql VARCHAR2(4000);
BEGIN
 vsql := 'SELECT description FROM products
 WHERE name=''' || vname || '''';
 EXECUTE IMMEDIATE vsql INTO vresult;
END;

http://www.sqlinjection.net/advanced/pl-sql/

Handling SQLi
Applying general principles (mitigation)

Fail safely: do not leak internal database schema details in error
messages.
Run with least privilege: standard programs should not connect as
database administrator.

Secure programming (prevention)
Input sanitisation by escaping input arguments (fragile) — example
next.
Parameterised queries (secure) — example next.

Detection
static analysis tools
“tainted” execution
pen-testing

 28

Input sanitisation — DVWA example

Helpful, but prone to loopholes …

 29

$id = … mysql_real_escape_string($id, …)
$getid = “SELECT first_name, last_name FROM users WHERE user_id = $id;"

vulnerabilities/sqli_blind/source/medium.php

Parameterised queries

The most secure prevention for SQL injection:
SQL statement is constant and unaffected by input. Syntactic
placeholders define that the statement may have inputs parameters.
Input values are bound after preparing (compiling) the
statement.

 30

$data = $db->prepare('SELECT first_name, last_name FROM users WHERE user_id =
(:id)’);
$data->bindParam(':id', $id, PDO::PARAM_INT);
$data->execute();

PHP (example from DVWA)

String sql = "SELECT ID, NAME, PASSWORD, ROLE, CREATED FROM USERS WHERE LOGIN = ?";
PreparedStatement stmt = db.prepareStatement(sql);
stmt.setString(1, login);

Java

vulnerabilities/sqli/source/impossible.php

Static analysis example — wap

 31

> > > > File: /Users/edrdo/qses/tools/dvwa/DVWA/vulnerabilities/sqli_blind/
source/high.php < < < <
 > Information:
 - Number of Lines of Code: 33
 - It is a include file: no
 - Included files: none
 - Defined user function: none
 - Number of Vulnerabilities detected: 1
 - Real Vulnerabilities: 1
 - False positives: 0

= = = = Vulnerability n.: 1 = = = =
Vulnerable code:
5: $id = $_COOKIE['id'];
8: $getid = "SELECT first_name, last_name FROM users WHERE user_id =

'$id' LIMIT 1;";
9: $result = mysqli_query($GLOBALS["___mysqli_ston"], $getid); //

Removed 'or die' to suppress mysql errors

http://awap.sourceforge.net/

Static analysis example — FindSecBugs

 32

http://find-sec-bugs.github.io/

Pen-testing DVWA with sqlmap

 33

python ./sqlmap.py \
 -u "http://127.0.0.1:8080/vulnerabilities/sqli/id=2&Submit=Submit#" \
 --cookie="PHPSESSID=89qopqq69ja0dggmbqa4mmsis4; security=low” \
 -b --current-db --current-user

GET parameter 'id' is vulnerable. Do you want to keep testing the others (if any)? [y/N] N
sqlmap identified the following injection point(s) with a total of 211 HTTP(s) requests:

Parameter: id (GET)
 Type: boolean-based blind
 Title: OR boolean-based blind - WHERE or HAVING clause (MySQL comment) (NOT)
 Payload: id=2' OR NOT 1576=1576#&Submit=Submit

 Type: error-based
 Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)
 Payload: id=2' AND (SELECT 2030 FROM(SELECT COUNT(*),CONCAT(0x716b707671,(SELECT
(ELT(2030=2030,1))),0x71767a7071,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY
x)a)-- avQj&Submit=Submit

…

http://sqlmap.org/

Other types of
injection

Code injection

Code injection — CWE-94 (click link to see full example)
Malicious input leads to unintended code execution

Typically present in programs written using scripting languages
(Python, PHP, Javascript, …) that facilitate dynamic definition
of code, in particular through eval-like constructs.
A general advice on eval:

“Do not ever use eval” !!
Is it widely used anyway? Yes. Are there ways around it? Yes.

“The Eval that Men Do — A Large-scale Study of the Use of
Eval in JavaScript Applications”, Richards et al., ECOOP’11
“Remedying the eval that men do”, Jensen et al., ISSTA’12

 35

my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

https://cwe.mitre.org/data/definitions/94.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#Do_not_ever_use_eval!%23Do_not_ever_use_eval!
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
http://www.apple.com

A few other types of injection

CWE-117 — Log Injection
CWE-91 — XML injection
CWE-643 — XPATH injection
CWE-90 — LDAP injection

 36

https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/91.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/90.html

