
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Web application
vulnerabilities

mailto:edrdo@dcc.fc.up.pt?subject=

Web applications

Web applications

Basic aspects
Browser and server communicate through HTTP or HTTPS (HTTP: plain-text,
HTTPS = HTTP over encrypted TLS connection)
Server-side features: Dynamic HTML generation, business logic, persistence
layer (e.g., SQL database)
Client-side: renders HTML, executes scripts.

Q: what do you think an adversary may try to do ? For what purpose?
 3

web
server

request
browser

app
reply

databaseuser

HTTP/HTTPS

adversary

HTTP requests

 4

GET http://127.0.0.1:8081/vulnerabilities/xss_r/?
 name=Eduardo&user_token=64e7a89cf687e5b53c4115f899ec438b HTTP/1.1
Proxy-Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
 apng,*/*;q=0.8
Referer: http://127.0.0.1:8081/vulnerabilities/xss_r/
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
Cookie: PHPSESSID=lhtuupa7c6jl5v3ekdjp63nv56; security=impossible
Host: 127.0.0.1:8081

POST http://127.0.0.1:8081/login.php HTTP/1.1
Content-Length: 88
. . .
Referer: http://127.0.0.1:8081/login.php
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
Cookie: PHPSESSID=lhtuupa7c6jl5v3ekdjp63nv56; security=impossible
Host: 127.0.0.1:8081

username=admin&password=password&Login=Login&user_token=ddafd9974dfb2b686c99fa1b36e2
823d

GET request —
arguments are encoded

in URL

POST request —
arguments are encoded

in the request body

POST
request

Browser id

Cookie stored in
browser

Referrer URL

browser
web

server

http://127.0.0.1:8081/vulnerabilities/xss_r/?

HTTP replies

 5

HTTP/1.1 200 OK
Date: Mon, 15 Oct 2018 14:44:24 GMT
Server: Apache/2.4.10 (Debian)
Expires: Tue, 23 Jun 2009 12:00:00 GMT
Cache-Control: no-cache, must-revalidate
Pragma: no-cache
Vary: Accept-Encoding
Content-Length: 1567
Content-Type: text/html;charset=utf-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">

<html >
. . .
</html>

data (HTML in this case

HTTP version id + status code + info message

browser web
server

Vulnerabilities

We will look at the following types of vulnerability, that are web-application specific:
Cookie related vulnerabilities
Cross-Site Request Forgery (CSRF)
Cross-Site Scripting (XSS)

Injection vulnerabilities (last class) like SQL injection and OS command injection
are also omnipresent in web applications (as we showed for DVWA) but not specific
to them.

 6

web
server

request
browser

app
reply

databaseuser

HTTP/HTTPS

adversary

Cookie-related
vulnerabilities

Cookies

HTTP is stateless
Session = set of request-reply interactions possibly using the same connection (or not)
HTTP does not maintain state => it merely echoes request headers issued by
browser/web server.

State is typically maintained through cookies. These are issued by the web
server and stored by the browser. Some common uses are:

authentication cookies — identifying logged-on users
tracking cookies — used to track users as they navigate the web
maintaining info regarding user interactions (e.g. shopping baskets)

Other mechanisms such as the URL query string or hidden form fields may be
used to maintain state, but are typically less convenient and prone to ad-hoc
logic. 8

web
serverbrowser

app
request

reply

HTTP/HTTPS

Cookies Cookies → Info

Cookie setup

Server: emits cookie, a key-value pair with possible additional atributes.
Client: stores it and transmits it in subsequent connections to the same
server (Cookie header in the fragment above).
In the example: key = PHPSESSID , value = eib49g3fajovj3165e0uvv2gn1
and an attributes is set : path = /

 9

HTTP/1.1 302 Found
Date: Mon, 15 Oct 2018 14:44:24 GMT
Server: Apache/2.4.10 (Debian)
Set-Cookie: PHPSESSID=eib49g3fajovj3165e0uvv2gn1; path=/
. . .

Cookie to set

Name: PHPSESSID
Value: eib49g3fajovj3165e0uvv2gn1

Attributes: path=/

GET http://localhost:8081/login.php HTTP/1.1
. . .
Cookie: PHPSESSID=eib49g3fajovj3165e0uvv2gn1; security=impossible
Host: localhost:8081

subsequent GET request
includes cookie

Cookie semantics

Server in this case indicates that the cookie
is named 1P_JAR and has value 2018-10-15-15
has an expiration time set to “14-Nov-2018 15:42:07 GMT” — the cookie will
not — so this is a persistent cookie ; cookies without expiration time are
deleted once a browser session is terminated and are called session cookies
(note: Expires and MaxAge attributes may both be used to specify expiration)
servers can send an expiration time in the past to delete the cookie
should be sent for any requests specified by the domain/path setting, i.e.,
“.google.pt" + “/“ in this case. This will match “<ANY>.google.pt/<ANY>

Reference — RFC 2965 (HTTP State Management Mechanism)
 10

Set-Cookie: 1P_JAR=2018-10-15-15;
 expires=Wed, 14-Nov-2018 15:42:07 GMT;
 path=/;
 domain=.google.pt

http://google.pt
https://tools.ietf.org/html/rfc6265

Attack surface

Cookies:
… may be persistent and even not expire
… may be read and modified by Javascript
… may be intercepted by “man-in-the-middle”
… may be predictable (e.g. session ids)
… may contain/leak confidential data

This may help
Session hi-jacking (next)
Cross-site request forgery attacks (also discussed in this class)

 11

Session hijacking
Basic scenario:

Adversary steals an authentication cookie.
Adversary may then impersonate a legitimate user (spoofing).
… and materialize other threats afterwards

How can cookie be stolen?
By compromising the browser or server.
By prediction — to prevent this an authentication cookie should
be truly random and sufficiently long.
MIM attacks facilitated if cookie is sent over plain HTTP.
More complex MIM attacks may employ DNS cache poisoning:
adversary impersonates host of interest, browser sends cookies
for the site’s domain willingly.

 12

Session hijacking story — Twitter
In 2013, Twitter used an authentication cookie that facilitated session
hijacking:

The cookie persisted even after user logged out and did not expire.
So the same cookie value was used in every session for the same user.
More details ; other similar vulnerabilities here and here

If an adversary stole an authentication cookie once, it could
impersonate the user at stake indefinitely.
Vulnerability instantiates CWE-539 — Information Exposure Through
Persistent Cookies and CWE-384 - Session Fixation
Defences

Cookie should be deleted after user logs off. This deals with session fixation.
Regarding persistency, application may use session cookies (non-
persistent). This compromises usability though, since user must log in again
after closing session.
Alternatively, limited persistency is a common compromise by having an
expiration time set.

 13

https://packetstormsecurity.com/files/119773/twitter-cookie.txt
https://github.com/jupyterhub/jupyterhub/issues/1491
https://github.com/plataformatec/devise/issues/3031
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/384.html

Session hijacking story — Firesheep
Firesheep (2010)

A Firefox extension that sniffs traffic in WiFi networks (in particular public WiFi
networks!)
Vulnerability classes explored - CWE-614: “Sensitive Cookie in HTTPS Session
Without 'Secure' Attribute”
Login typically encrypted using HTTPS, but authentication cookie subsequently
transmitted over plain HTTP. Session hijacking could then proceed at will for
Facebook, Twitter, ….

Preventions — by design:
Security-sensitive cookies should be set with the Secure attribute; they are not
allowed to be transmitted over HTTP.
Sites should use HTTPS uniformly.

Mitigations
Extensions like HTTPS Everywhere may be used to transforms HTTP onto HTTPS
requests.
VPNs generally protect against sniffing/lack of encryption (FireSheep illustrates well
that one should generally beware of public WiFi networks).

 14

https://codebutler.com/2010/10/24/firesheep/
https://cwe.mitre.org/data/definitions/614.html
https://www.eff.org/https-everywhere

Other common cookie-related
vulnerabilities

CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag
Cookies without HttpOnly flag are accessible by scripts in a web
page through the DOM.
Cookies with HttpOnly flag are only handled by the browser.

CWE-315: Cleartext Storage of Sensitive Information in a
Cookie

in particular usernames and passwords !

CWE-565: Reliance on Cookies without Validation and
Integrity Checking

 15

https://cwe.mitre.org/data/definitions/1004.html
https://cwe.mitre.org/data/definitions/315.html
https://cwe.mitre.org/data/definitions/565.html

Detecting (some) cookie vulnerabilities —
static analysis

SpotBugs + FindSecBugs scan over JavaVulnerableLab
(application for 1st project).

 16

Detecting (some) cookie vulnerabilities —
pen-testing

ZAP passive scan over JavaVulnerableLab (application for
1st project).

 17

Bad cookie usage may be “obvious” but
can be missed by automated detection !

In this fragment from Java Vulnerable Lab, cookies are set with sensitive
information like the user name and his password and in plain-text (an instance
of CWE-315 — Cleartext Storage of Sensitive Information in a Cookie).
Typically, static-analysis and pen-testing tools will not detect context-
dependent vulnerabilities such as this one. SpotBugs and ZAP will only notice
the lack of the Secure and HttpOnly flags.
Defence in this case: we should definitely not store these items of data in
cookies, plain-text format makes matter even worse. Session id should map to
an user name in the server internal logic, and indicates that user is principle
authenticated (so why store password in a cookie?).,

 18

Cookie username = new Cookie("username", user);
Cookie password = new Cookie("password", pass);
response.addCookie(username);
response.addCookie(password);

http://www.apple.com

Secure cookie programming

Cookie attributes can be set programatically for aspects
such as expiration or the HttpOnly + Secure flags

 19

Cookie privilege = new Cookie(key, value);
privilege.setHttpOnly(true);
privilege.setSecure(true);
privilege.setMaxAge(3600);
response.addCookie(privilege);

Cross-site
request forgery

(CRSF)

CSRF — general description

CWE-352 - Cross-Site Request Forgery (CSRF)
“The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.”

Common attack pattern:
User has an authenticated session for a web application.
Adversary tricks user into executing some malicious action, e.g. by clicking a
link or opening a media file sent by email or through a maliciously embedded
script (through cross-scripting, discussed later)
Malicious actions are executed as if intended by the user.

 21

adversary logged-on
user server

malicious
action

browser app
malicious

link

https://cwe.mitre.org/data/definitions/352.html

Example CSRF attacks — Gmail, 2010

GMail Service CSRF Vulnerability (2010)
“GMail is vulnerable to CSRF attacks in the "Change
Password" functionality. The only token for authenticate
the user is a session cookie, and this cookie is sent
automatically by the browser in every request.”
“An attacker can create a page that includes requests
to the "Change password" functionality of GMail and
modify the passwords of the users who, being
authenticated, visit the page of the attacker.”
“The attack is facilitated since the "Change Password"
request can be realized across the HTTP GET method.”
[it suffices to craft a malicious link with an appropriate
query string]

 22

http://www.securiteam.com/securitynews/5ZP010UQKK.html

CSRF example — DVWA

Security levels:
low: no protections, a simple malicious link may be used to change the
password
medium: HTTP request header Referrer; Referrer link may also be forged
by an adversary. Alternatively, malicious link can however be accomplished
by exploiting a XSS vulnerability (hint: try the message forum; more
discussion on this next).
high: automatically generated anti-CSRF token included in hidden form
field - token is attached to session but not the request itself however …
impossible: anti-CSRF token + request for current password confirmation

 23

As in the Gmail example, the password change
functionality is at stake.

Anti-CSRF token in DVWA

Expected value of anti-CRSF token is checked first. Operation does not
proceed on a token mismatch.
The token gets regenerated with a new value once operation is complete.
Javascript / XSS-based exploit possible - check here for an example 24

<form action="#" method=“GET">
 . . .
 <input type='hidden' name='user_token'
 value='d842e88752fd9991fb4dbcfa35649ae4' />
</form>

// Check Anti-CSRF token
checkToken($_REQUEST['user_token'],
 $_SESSION['session_token'], 'index.php');

// Do the passwords match?
if($pass_new == $pass_conf) {
 . . .
}
// Regenerate Anti-CSRF token
generateSessionToken();

function generateSessionToken() {
 if(isset($_SESSION['session_token'])) {
 destroySessionToken();
 }
 $_SESSION['session_token'] = md5(uniqid());
}

https://hd7exploit.wordpress.com/2017/05/27/dvwa-csrf-high-level/
view-source:http://localhost:8081/vulnerabilities/csrf/%23

Synchronizer token pattern

Synchronizer Token Pattern
State changing operation uses a token, generated through a
cryptographically-secure random generator , and that is unique per session.
Token mismatch inhibits state-changing operation.

For enhanced security:
Token can be regenerated after each request (as in DVWA)
Use different tokens per request/operation rather than for the entire session
(DVWA does not do this!). This May hinder usability though (e.g. Back
button reverts to a page with a invalid token).

Token-based mitigation is the most common and recommend
mitigation techniques.
Other alternatives the synchronizer token pattern, other forms of
token-based mitigation can be used — e.g. check the OWASP
Prevention Cheat Sheet.

 25

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Token_Based_Mitigation
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Token_Based_Mitigation

Cross-site
scripting (XSS)

 27 http://cwe.mitre.org/data/definitions/79.html

http://cwe.mitre.org/data/definitions/79.html

XSS attacks

Steps
Malicious input is supplied to a web application (e.g. through
malicious link in email), encoding an executable script.
Server includes the script in the dynamic generation of a web
page.
Browser renders the page and executes the script.

Two main types of XSS
Reflected XSS: malicious script is reflected immediately by
server.
Persistent XSS (also called Stored XSS): malicious script is
stored by application at the server; web page is rendered some
time later.

 28

XSS and the Same Origin Policy

Motivation for injecting the script in the server: can
malicious scripts be loaded from a third-party site?
The Same Origin Policy (SOP) dictates that only scripts
received from the same origin as the web page have
access to the web page’s DOM data.
The point of XSS attacks is that scripts are treated as
trusted since they originate from the same origin as the
containing web page, hence the Same Origin Policy is not
formally violated.

 29

Reflected XSS

Malicious code delivered to an user through a link e.g. embedded in an
email, web page, …
Server reply “reflects” malicious script that is executed on the victim’s
browser.

 30

adversary victim server

1. link with
embedded
malicious script 2. request

browser app

3. reply includes
malicious script

Reflected XSS — DVWA example

Example above
DVWA set with low security level
Manual test illustrated, but CSRF-style malicious link could be easily crafted
(note that a GET request is used).

 31

echo '<pre>Hello ' . $_GET['name'] . '</pre>';

request

browser

response

browser

server

Persistent XSS

Malicious script stored by adversary exploiting a server-
side vulnerability, then propagated to client browsers.

 32

adversary

1. adversary
causes
malicious script
to be stored by
application

2. request

victim browser serverapp3. reply includes
malicious script

4. browser
executes malicious

script

Persistent XSS — DVWA example

Script stored in the database and echoed back by the
server for execution in the browser in subsequent visits.

 33

$query = "INSERT INTO guestbook (comment, name)
 VALUES ('$message', '$name');";
$result = mysql_query($query)

request

browser

subsequent
request by browser

server
stores script

$query = "SELECT name, comment FROM guestbook";
while($row = mysqli_fetch_row($result)) {
 …
}

Famous XSS attack — Samy XSS worm

Samy attack on MySpace — a few quotes from “Ajax prepares
for battle on the dark side”, by Quinn Norton, Guardian, 2006

“Samy created Ajax code on his MySpace site that ran
automatically when anyone looked at his profile. Because Ajax can
interact with pages users never see, his code pressed all the relevant
buttons to add Samy to the victim's friends, and added the words
"but most of all, samy is my hero" to their page. Finally, the code
pasted itself into the victim's profile, so that any MySpace user
viewing the victim's page would have their page infected. MySpace
users were unaware their computers were doing anything unusual.”
“The code - strictly speaking, a cross-site scripting worm - spread
exponentially. Within 24 hours Samy had a million emails from
MySpace users "wanting" to be his friend and to whom he was their
"hero". MySpace was forced to shut down and make changes to
stop Samy's code spreading. The MySpace Worm, as it came to be
called, served as an alarming example of what malicious hackers could
do, even if they only had access to your browser.”

 34

http://samy.pl/popular/
https://www.theguardian.com/media/2006/mar/09/newmedia.technology
https://www.theguardian.com/media/2006/mar/09/newmedia.technology

Other XSS attacks
Hackers still exploiting eBay’s stored XSS vulnerabilities in 2017,
Paul Mutton, NetCraft.com, 2017

"All of the attacks stem from the fact that eBay allowed
fraudsters to include malicious JavaScript in auction
descriptions.”

Email attack exploits vulnerability in Yahoo site to hijack accounts,
Lucian Constantin, PCWorld, 2013

“The same-origin policy is usually enforced per domain. […]
However, depending on the cookie settings, subdomains
can access session cookies set by their parent domains.
This appears to be the case with Yahoo, where the user remains
logged in regardless of what Yahoo subdomain they visit,
including developer.yahoo.com.
“The rogue JavaScript code […] forces the visitor's browser
to call developer.yahoo.com with a specifically crafted URL
[…]”

 35

https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
http://www.apple.com

XSS vs CSRF

XSS
Trust relation: client trusts the server
Attacker tries to affect what the server sends to the client.

CSRF
Trust relation: server trusts the client
Attacker tries to affect what the client sends to the server.

XSS and CSRF can of course be combined for an attack
(one may enable the other for instance)

 36

Prevention by input validation and output
encoding

Preventing XSS — Server side
Input validation: disallow/sanitise malicious input using conventional
techniques, e.g. “escape” functions.
Output encoding: server sanitizes data before sending it, employing similar
techniques.
DVWA example: high / impossible security levels in DVWA use the
htmlspecialchars PHP function to escape HTML both for input sanitization and
output encoding.

 37

$message = htmlspecialchars($message);
$name = htmlspecialchars($name);

<script> <script>

https://secure.php.net/manual/en/function.htmlspecialchars.php

