
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Web application
vulnerabilities

(part 2)

mailto:edrdo@dcc.fc.up.pt?subject=

DOM — Document Object Model

The Document-Object model (DOM) is a tree-abstraction for documents:
an HTML (but also XML, XHTML, SVG, …) document is treated as a tree structure
where in each node is an object representing a part of the document.
tree nodes can be visited, created/added/deleted, and have associated attributes like
event handlers and styles.
A W3C standard until 2004, now maintained by the WHATWG group — check the live
document for the current DOM specification.
Browsers represents HTML document in an internal structure similar to the DOM - major browsers
use the WebKit Webcore component for that purose 2

Image source: W3 Schools
Firefox DOM Inspector

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
http://webkit.org
https://www.w3schools.com/js/js_htmldom.asp

The W3 School form example again

Javascript interaction with the DOM:
1. showUser() function invoked as an event handler for the HTML form
2. This function in turn performs an asynchronous server request

3. The response callback changes the document by filling the HTML of the txtHint element.
 3

<script>
function showUser(str) {
 . . .
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
 }
 xmlhttp.open("GET","getuser.php?q="+str,true);
 xmlhttp.send();
}
</script>
</head>
<body>
<form>
<select name="users" onchange="showUser(this.value)">
<option value="">Select a person:</option>
<option value="1">Peter Griffin</option>
. . .
</select>
</form>
<div id="txtHint">Person info will be listed here...</div>

Source: "PHP - AJAX and MySQL", W3 schools

http://www.w3schools.com/php/php_ajax_database.asp

Javascript DOM API — outlook
A brief overview of some of the functionality in the Javascript DOM API
… accessible through document, the top-level object that represents
the DOM:

Basic attributes:
title referrer URL hash cookie readyState

Page elements:
head body forms scripts links

getElementById(elementId)

querySelector(cssSelector)

Modification methods:
write(anything) writeln(anything): append output to the
document
createElement() createEvent() execCommand()
addEventListener()

A wide attack surface for malicious scripts!
 4

https://www.w3schools.com/jsref/dom_obj_document.asp

Javascript — language & API
Java is self-modifiable. Even core functionality may be
overridden (e.g. array functionality).
Like most scripting languages, an eval() function is part of the
standard library, allowing arbitrary input to be interpreted as code
(basic principle: don’t use it!)
The language has quite cumbersome aspects , lack of
abstractions, and “strange” corner-cases:

James Mickens on Javascript: “Life is Terrible, Let’s Talk about the web”
John K. Paul — “Javascript: The real bad parts”
wtfjs.com

Javascript is weakly typed coupled with “strange” corner-cases.
This also aids in unreliable or insecure behavior.

but you can use (or gradually transition Javascript code to) TypeScript!
… and consider emerging languages like Elm or PureScript

 5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#Description
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#Do_not_ever_use_eval!
https://mickens.seas.harvard.edu/
https://www.youtube.com/watch?v=D5xh0ZIEUOE
http://johnkpaul.github.io/presentations/empirejs/javascript-bad-parts/#/
https://wtfjs.com/
https://www.typescriptlang.org/
https://elm-lang.org/
http://www.purescript.org/

DOM-based XSS

Malicious input is delivered in several forms: untrusted Javascript library, email links, etc.
Attack takes advantage of a client-side browser vulnerability for executing
malicious scripts.
Remote (i.e. server) interaction may play some role in serving the adversary’s purpose
(e.g. storing the malicious link, scripts, etc), but this need not happen.

Stored or Persistent XSS: exploits executed when page is sent and rendered - relies on a server
vulnerability.
DOM-based XSS: exploits executed at some point after page is loaded, relying on a DOM-based
vulnerability.

 6

browser serverapp

XSS types compared

Source: Unraveling some of
the Mysteries around DOM-
based XSS by Dave
Wichers, AppSec USA 2012

 7

https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf

Simple code injection example

Query string associated to HTML page. No server
interaction for triggering the exploit.
Anchor ‘#’ (i.e., document.hash instead of document.URL)
also exploitable in similar 8

<script>
 // Get malicious input from query string and unescape it
 var pos = document.URL.indexOf("evil=")+9;
 var evilScript=document.URL.substring(pos,document.URL.length);
 // Make it take effect
 document.write(unescape(evilScript));
</script>

queryStringAttack.html?evil=<script>. . . </script>

Malicious script

Code injection possible using:

Eval-based injection example

One of the most common uses of eval was (and ma still is) to parse
JSON data onto Javascript objects.

“The Eval that Men Do — A Large-scale Study of the Use of Eval in
JavaScript Applications”, Richards et al., ECOOP’11

JSON encoding/decoding functions were not available initially for Javascript.

 9

 goodJSON = '{ "x": "1", "y": "2" }';
 jsObj = eval('(' + goodJSON + ‘)');

 evilJSON = '{ "x": "1", "y": window.alert(“oho”) }';
 jsObj = eval('(' + evilJSON + ‘)');

 // The right way to parseJSON
 jsObj = JSON.parse(evilJSON); // throws SyntaxError

https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4

Functionality overriding

Javascript fragments above:
(1) overrides the Array() constructor such that a leakVar will point to the created array
(2) normal code that uses Array() to define an array with two entries
(3) makes use of leakVar to leak the array data

Example inspired by Anatomy of a Subtle JSON Vulnerability”, combining functionality
overriding with CSRF, JSON parsing and same-origin policy vulnerabilities

 10

<script type="text/javascript">
var leakVar;
var oldArray = Array;
Array = function () {
 a = oldArray();
 leakVar = a;
 return a;
}
</script>

1 <script>
var myArray = Array();
myArray[0] = 'data 1 ';
myArray[1] = 'data 2';
</script>

2

<script>
 window.alert(‘The data: ' + leakVar);
</script>

3

https://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx/

The recent ESLint backdoor case
ESLint is a popular static analysis tool for Javascript. It used by developers to
ensure their code adheres to certain standards and coding rules, in some cases
including security aspects.
Attackers gained access to the NPM repository account for ESLint and inserted
a “backdoor script” into ESLint package version 3.7.2.
The “backdoor script” essentially fetched a malicious script from PasteBin, the
actual exploit payload. The payload read the NPM authentication token from the
local machine and delivered it
The ESLint 3.7.2 module was subsequently removed from NPM.
Further info:

“ESLint backdoor: revoke all the tokens”, sqreen.io blog
“Postmortem for Malicious Packages Published on July 12th, 2018”, eslint.org

ESLint runs on Node.js rather than a web browser. Still packages used in a web
browser context can be compromised similarly.
In general, malicious Javascript package inclusion is a serious problem. See for
instance: “You Are What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions”, Nikiforakis et al., CCS’12

 11

https://eslint.org/
https://blog.sqreen.io/eslint-backdoor/
http://sqreen.io
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
http://eslint.org
https://dl.acm.org/citation.cfm?id=2382274
https://dl.acm.org/citation.cfm?id=2382274
https://dl.acm.org/citation.cfm?id=2382274

Handling DOM-based XSS
Detection — Dave Wichers remarks that:

“It’s like trying to find code flaws in the middle of a dynamically compiled,
running, self modifying, continuously updating engine while all the gears are
spinning and changing.”
“Manual code review is hell!”
Source: “Unraveling some of the Mysteries around DOM-based XSS”, APPSEC
2012
For code reviewing there are few freely-available security-oriented static
analysis tools, and comparatively less powerful than for other languages — we
will have a quick demo using jsprime next.

Prevention — usual techniques adapted to the context of the DOM-
based environment as in OWASP’s DOM based XSS Prevention Cheat
Sheet

General methodology: Be careful with untrustworthy input reaching security-
sensitive sinks.
Techniques: input validation/sanitization, output encoding, several coding
recipes.

 12

https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
http://dpnishant.github.io/jsprime/
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

Using jsprime — examples

 13

Javascript examples and jsprime reports are provided online in a ZIP file.
Screenshots are shown below for the various examples we considered:
 (1) W3 schools, (2) query string attack, (3) JSON parsing using eval.

(1)

(2)

(3)

http://dpnishant.github.io/jsprime/

Also look out for …

HTML 5 introduced local browser storage of key-value pairs (like
cookies), an extra attack surface.

One more facility to store sensitive or malicious data that can be controlled
programatically.

Above: a “predictable” usage example from w3schools … (!) How can it go
wrong?

WebSQL and IndexedDB allow structured databases, though adoption of
one or the other has not been peaceful (both out of HTML 5). Firefox only
supports IndexedDB, Safari and Google also support WebSQL.

CSS-based vulnerabilities are not covered here
CSS Exfil

Microsoft Internet Explorer Cascading Style Sheets Remote Code
Execution Vulnerability 14

// Store
localStorage.setItem("lastname", "Smith");
// Retrieve
document.getElementById("result").innerHTML = localStorage.getItem("lastname");

https://www.mike-gualtieri.com/posts/stealing-data-with-css-attack-and-defense
https://tools.cisco.com/security/center/viewAlert.x?alertId=19468
https://tools.cisco.com/security/center/viewAlert.x?alertId=19468

