
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Input validation
- wrap-up discussion &

complementary aspects -

mailto:edrdo@dcc.fc.up.pt?subject=

General context
“All input is evil!” or “Trust no input!” are common
security “mantras”.

Over these last classes, we learned why …

Wrap-up discussion:
What is an “input” ? We’ve seen several kinds …
The notion of trust boundary.
Syntactic vs semantic input validation
A brief look at a few particular techniques and input validation
issues (with an eye on some themes we will cover in later
classes)

 2

What is an “input” ?
Input:

every item of data that comes from an external source and
affects program behavior

Possible data sources
Command line arguments
Configuration data (files, environment vars, etc)
Network servers
Database
File system
Shared memory
Hardware devices
…

 3

Evil input >> “unintended functionality”

A program executes according to the input it takes !
Unintended functionality / security vulnerabilities arise when
untrusted input is let on the loose …
Recall quote from class 1: “Reliable software does what it is
supposed to do. Secure software does what is supposed to
do, and nothing else.”

 4

specification
(requirements)

implementation
(code)

security
problems

bugs

[from class 1]

“All input is evil” / “Trust no input”
The input sources define the attack surface.

Thus “All input is evil” (or “trust no input”) is a common mantra in secure
software development.

What may be wrong with the input?
invalid format => we need syntactic checks …
be well-formed but convey inappropriate data => we need semantic
checks …

Input validation mechanisms should sit at trust boundaries:
points in a program where the level of trust of a data item is changed
(promoted or demoted).
Chokepoint: validation point at trust boundary transition

Evil input should not reach security-sensitive data sinks:
Sink: point in a program that consumes data (database access, OS
command execution, …)

 5

Trust boundary [Howard & Leblanc, chap. 10]

 6

Service
service
data

configuration
files

trust boundary

clients

external
cloud services

chokepoint

chokepoint

chokepoint

trusted

untrusted

Trust boundary [Howard & Leblanc, chap. 10]

 7

Service
service
data

configuration
files

trust boundary

clients

external
cloud services

chokepoint

chokepoint

chokepoint

A choke point defines a validation
point for data arriving from a

untrusted data source.

No chokepoints inside the trust
boundary, relying on the fact that
untrusted data never enters the

boundary without being validated
at a chokepoint.

Refinements: more chokepoints /
trust boundary levels

trusted

untrusted

Trust boundary violation

Trust boundary violation (OWASP CWE-501)
“A trust boundary can be thought of as line drawn through a
program. On one side of the line, data is untrusted. On the other
side of the line, data is assumed to be trustworthy.”
“A trust boundary violation occurs when a program blurs
the line between what is trusted and what is untrusted. By
combining trusted and untrusted data in the same data
structure, it becomes easier for programmers to mistakenly trust
unvalidated data.”

 8

https://cwe.mitre.org/data/definitions/501.html

Trust boundary violation (2)

Example from Trust boundary violation (OWASP
CWE-501)

 9

https://cwe.mitre.org/data/definitions/501.html

Syntactic and semantic checks
What may be wrong with the input?

invalid format => we need syntactic chokepoints …
be well-formed but convey inappropriate data => we need semantic
chokepoints …

Syntactic chokepoints
are placed at points where input data is read
validate (and possibly sanitize) the raw format of input without other concerns

Semantic chokepoints
are placed at points in the application logic is accessed
possibly deal with inputs from (or affected by) disparate sources, previously
validated by syntactic chokepoints
validate that the conveyed in appropriate in semantic terms taking the
application logic into account
usually perform no sanitization, should fail gracefully!

 10

Different checks / different trust boundaries

Defence in depth principle at work
Syntactic chokepoints → right after reading data
Semantic chokepoints → part of the application logic

 11

syntactic checks

well-formed
input

raw
input

semantic checks

valid
input

A few mechanisms for syntactic checks

We have seen several examples comprising the use of sanitisation for input
validation or output encoding. We have also mentioned white-lists and
black-lists, but discuss them now in more detail.
Whitelist

defines a set comprising all inputs that are valid
all others will be rejected

Blacklist
defines a set of all inputs that should be rejected
all others will be accepted

How to implement black-lists / white-lists
Regular expressions can be useful in many cases, we will go through a simple
examples
more sophisticated input may be dealt with by special-purpose parsers e.g. XML
and JSON schema-based parsers

XML schema example at W3 schools

JSON schema

 12

Whitelist — simple example

Whitelist defines the set of valid inputs. All others will be
rejected.

 13

 private static final String[] ALLOWED_FILE_EXTENSIONS = {
 ".gif", ".jpeg", ".png"
 };

 static boolean isValidFileExtension(String fileName) {
 for (String ext : ALLOWED_FILE_EXTENSIONS) {
 if (fileName.endsWith(ext)) {
 return true;
 }
 }
 return false;
 }

Blacklist — simple example

Blacklist defines the set of invalid inputs. All others will be
accepted.
Whitelists vs blacklists: what do you think it’s best?

 14

 private static final String[] DISALLOWED_FILE_EXTENSIONS = {
 ".exe", ".com", ".bat"
 };

 static boolean isValidFileExtension(String fileName) {
 for (String ext : DISALLOWED_FILE_EXTENSIONS) {
 if (fileName.endsWith(ext)) {
 return false;
 }
 }
 return true;
 }

Blacklist using regular expressions

Simplistic blacklist-style check: allow optional ‘+’ at the start,
constrain rest of the string to contain only numbers, spaces, or ‘-‘.
"+ - - - - “ is considered valid.

 15

 private static final Pattern PHONE_NUMBER_PATTERN
 = Pattern.compile("\\+?[0-9\\-]+");

 static boolean isValidPhoneNumber(String s) {
 return PHONE_NUMBER_PATTERN.matcher(s).matches();
 }

Whitelist based on regular expressions

Dates are validated with a YYYY-MM-DD format.
Semantic check also to check that date is valid.

 16

// Regular expression for dates in a YYYY-MM-DD format
 private static final Pattern DATE_PATTERN
 = Pattern.compile("(\\d{4})-(\\d{2})-(\\d{2})");

 static boolean isValidDate(String s) {
 Matcher m = DATE_PATTERN.matcher(s);
 if (! m.matches())
 return false;

 int year = Integer.parseInt(m.group(1));
 int month = Integer.parseInt(m.group(2));
 int day = Integer.parseInt(m.group(3));

 return month >= 1 &&
 month <= 12 &&
 day >= 1 &&
 day <= daysInMonth(month, year);
 }

Whitelisting vs. blacklisting

Whitelists are generally preferable
they concretely define what good inputs are
but in some scenarios they can be too restrictive / unfeasible

Blacklists only identifies a set of bad inputs.
The set may be incomplete or hard to enumerate … providing a false
sense of security. Chances are that some bad inputs are not filtered out.
There is a vulnerably class for incomplete black-lists — CWE-184.
Blacklists may however be simpler to implement or more adequate in
some cases, e.g., blacklists of domains associated with e-mail spamming.

Further references (even beyond input validation)
Whitelisting vs blacklisting, OWASP “Input Validation Cheat Sheet”
Whitelisting vs. Blacklisting , Schneier on Security (short blog article by
Bruce Schneier)

 17

https://cwe.mitre.org/data/definitions/184.html
https://mxtoolbox.com/blacklists.aspx
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Whitelisting_vs_blacklisting
https://www.schneier.com/blog/archives/2011/01/whitelisting_vs.html

Semantic checks — the particular case of
bounds checking

Relatively easy to handle in most cases, but also easy to
overlook/forget when programming …
Check input length to avoid:

buffer overflows
unbounded input
…

Check bounds of numeric values to avoid:
numeric overflows
type conversion issues
…

 18

Checking for limits — buffer overflows &
unbounded input

Note:
We’ll talk about buffer overflows in a future class

 19

// In C
char line[128];
gets(line);

// C++
char line[128];
cin >> line

buffer overflows possible unbounded input => CPU or memory DoS

// In C++
std::string line;
cin >> line

// Java
String str;
str = bufferedReader.readLine()

Checking for limits — bounds for numeric
values & numeric overflows

 20

 System.out.println(Integer.MIN_VALUE); // -2147483648
 System.out.println(Integer.MAX_VALUE+1); // -2147483648
 int v = 1073741824; // 2^31
 System.out.println(2 * v); // -2147483648
 System.out.println(4 * v); // 0
 System.out.println(Integer.MIN_VALUE + Integer.MIN_VALUE); // 0

Small Java fragment

Now consider the logic below for a fictitious e-commerce site where input
validation should be stronger. The value “to pay” will be 0 if price == 4 and
quantity == 1073741824 (or vice-versa).

try(Scanner in = new Scanner(System.in)) {
 int price = in.nextInt();
 int quantity = in.nextInt();
 if (price <= 0 || quantity <= 0) {
 System.out.println("Invalid request!");
 } else {
 int toPay = price * quantity;
 System.out.printf("OK! The price to pay is %d\n", toPay);
 }
 }

Bounds checking — numeric values & type
conversions

 21

void* myAlloc(int sn) {
 size_t un = sn;
 printf("Allocating %lu bytes (sn=%d)\n", un, sn);
 return malloc(un);
}

caetano:qses edrdo$./myAlloc -1
Allocating 18446744073709551615 bytes (n=-1)
Allocated buffer: 0x0
caetano:qses edrdo$./myAlloc -10000
Allocating 18446744073709541616 bytes (n=-10000)
myAlloc(11705,0x7fffb551a3c0) malloc: *** mach_vm_map(size=18446744073709543424) failed
(error code=3)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
Allocated buffer: 0x0

int is a signed type
but size_t is unsigned!

if n < 0 , sn will be large,
possibly causing a vast amount

of memory to be allocated or
malloc to fail

