
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Buffer overflow 
vulnerabilities
— part 1 —

mailto:edrdo@dcc.fc.up.pt?subject=


What is a buffer overflow?
CWE-119 - Improper Restriction of Operations within the 
Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but it 
can read from or write to a memory location that is outside of 
the intended boundary of the buffer. “

This is a general definition for buffer overflow, that makes no 
distinction for:

the type of operation: read or write
the memory area: stack, heap, …  (Q: heap? stack?)
the position of invalid memory position relative to buffer: 
before (“underflow”) or after 
the reason for invalid access: iteration, copy, pointer 
arithmetic 

A number of CWEs are specific instances of CWE-119 (next).
 2

https://cwe.mitre.org/data/definitions/119.html


Specific types of buffer overflow

CWE-120: Buffer Copy without Checking Size of Input 
('Classic Buffer Overflow’)
CWE-121 — Stack-Based Buffer Overflow — “[…] the buffer 
being overwritten is allocated on the stack […]”
CWE-122 — Heap-Based Buffer Overflow — “[…] the buffer that 
can be overwritten is allocated in the heap portion of memory […]“
CWE-123: Write-what-where Condition - “ability to write an 
arbitrary value to an arbitrary location, often as the result of a 
buffer overflow”.
CWE-124: Buffer Underwrite ('Buffer Underflow’)
CWE-125: Out-of-bounds Read
CWE-126: Buffer Over-read
CWE-127: Buffer Under-read

 3

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html


Memory address space of a process

“Text” section = code
Data segment

global variables  
constants

Stack 
contains stack frames, one per active 
function,  grows “downwards” 
each stack frame is used to hold data 
for a function activation
in multithreaded programs each thread 
has its independent stack and program 
counter

Heap 
dynamically allocated memory 
grows “upwards”

 4

stack

heap

data section

text section (code)

free memory

low 
(0x00…00)

high
(0xFF..FF)

libc_start

main

someFunc PC



The C language

Buffer overflows are normally associated with the C 
language and “relatives” C++ and Objective-C.
These languages (especially C and C++) are used for for 
implementing critical software :

Operating system kernels and utilities — Linux, Windows, 
MacOS, …
Core building blocks of the Internet — Apache, Webkit, 
OpenSSL, …
Embedded system programming—Arduino, ROS,micro-
controller programming in general, …
VMs/runtime systems for other languages — Java, Python, 
PHP, …

 5



Popularity of C and C++

C and C++, together with Java, have been taking the top 3 positions in 
the TIOBE index for programming language popularity for many years

The rankings are derived from search engine query statistics for programming 
languages 6

https://www.tiobe.com/tiobe-index/


“Popularity” of buffer overflows

 7
Source:  NIST NVD

# reported 
vulnerabilities

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119


“Popularity” of buffer overflows (2)

 8
Source:  NIST NVD

close to 20 %
of all reported
vulnerabilites
in 2017 / 2018!

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119


C vulnerabilities

common issues & 
a few examples



C vulnerabilities
C is not memory-safe ( = buffer overflows out-of-the-box)

Read/write access to out-of-bounds or logically undefined/
inacessible memory, beyond memory pertaining to program 
variables, that  can arbitrarily affect the stack, internal heap data, …

C is not type-safe
The types of data associated to program variables (memory 
locations) can be re-interpreted at will.
In particular arbitrary casts are allowed and unchecked.

Programs written in memory/type-safe languages trap the 
execution & raise runtime errors when memory and type 
safety are violated.
… but C has either “liberal” semantics or, sometimes even 
worse, undefined behavior in these cases and others

 10



C vulnerabilities (2)

Undefined behavior gives “room” for a C compiler to 
generate the “most convenient” code. 
In particular, behavior may differ:

according to the compiler in use, even for different versions of 
the same compiler
according to compiler settings - for instance optimisation 
settings may sometimes lead to quite unexpected / unsafe 
behavior!
depending also on the underlying processor architecture and 
operating system

 11



C vulnerabilities (3)
Dynamically-allocated memory must be explicitly managed 
by the programmer

no garbage collection
no built-in constructs at the language level for C: malloc and 
variants plus free are functions the programmer must use 
explictly manipulate the heap
C++ does have the built-in new and delete operators, but these 
are really equivalent to malloc and free in memory terms

Strings are represented by null-terminated character 
sequences

many string-related functions easily lead to buffer overflows 
(strcpy, gets, printf, scanf, …)
the source of many (security) problems

 12



Stack overflow example

A particular execution may print 20, not 15  as expected. A small re-arrangement of 
variable declarations may lead to other results, but not 15  anyway. The code does 
not print 15, because the second for loop has an “off-by-one” error: i goes from 0 
up to N=5, not N-1=4 !  The expected behavior is undefined. Analogous programs 
written in memory-safe languages would throw a runtime exception signalling the 
invalid array access (e.g. ArrayIndexOutBoundsException in Java).
There is a stack overflow in the access to number, given that local variables are 
allocated in the stack.  Let’s see how using the GNU debugger (gdb) …

 13

#include <stdio.h>
#define N 5
int main(int argc, char** argv) {
  int sum = 0;
  int numbers[N]; // fill as { 1, 2, 3, 4, 5 }
  for (int i=0; i < N; i++) 
    numbers[i] = i+1;
  for (int i = 0; i <= N; i++) 
    sum += numbers[i];
  printf("Sum=%d\n", sum);
  return 0;
}



Stack overflow example (2)

Position 5 of numbers corresponds to the address of i ! 
In the last iteration of the buggy for loop,  i = 5, so the 
program will add 5 to sum, obtaining 15+5 = 20

 14

$ gcc -g stack_overflow.c -o stack_overflow
$ gdb ./stack_overflow
(gdb) br 8
Breakpoint 1 at 0x40056e: file stack_corruption.c, line 8.
(gdb) r
. . .

Breakpoint 1, main (argc=1, argv=0x7fffffffde08) at 
stack_overflow.c:8
8   for (int i = 0; i <= N; i++) 
(gdb) p &i
$1 = (int *) 0x7fffffffdd14
(gdb) p &sum
$2 = (int *) 0x7fffffffdd1c
(gdb) p numbers
$3 = {1, 2, 3, 4, 5}
(gdb) p &numbers
$4 = (int (*)[5]) 0x7fffffffdd00

(gdb) p &numbers[5] - &i
$5 = 0

sum 0x7fffffffdd14

number[0]
number[1]
number[2]
number[3]
number[4]

i 0x7fffffffdd00 



  char name[32];
  char email[32];
  printf("Enter your name: ");
  gets(name);
  printf("Enter your email: ");
  gets(email);
  printf("Name: %s Email: %s\n", name, email);

Stack overflow with string-manipulation 
functions

Variables are allocated contiguously in the stack (or nearby in the general 
case) 
gets reads an arbitrary number of bytes until a newline, ‘\0’ or EOF is found.
In this case, second gets call may overflow the capacity of email.

 15

Enter your name: Eduardo
Enter your email: very_long_email_I_guess@dcc.fc.up.pt
Name: p.pt Email: very_long_email_I_guess@dcc.fc.up.pt

stack overflow (5 bytes) ! email (32) name (32)

“p.pt\0”



Heap-allocated memory programming 
errors

Use-after-free: NO ! Pointer a should not be used after being freed up, it 
becomes a dangling reference. 
Free-after-use: YES ! On the other hand b is not freed up at the end, we 
will have a memory leak (allocated but not freed up).
Double-free: NO! It is also incorrect to free a twice.
Q: what to expect from the execution? 

 16

  int n;  unsigned char *a, *b;
  n =  . . .;
  a = (char*) malloc(n);   // allocate memory for a
  memset(a, 'x', n);       // set all positions to 'x'
  free(a);                 // free memory
  // a is now a dangling reference (to freed up memory)
  b = (char*) malloc(2*n);  // allocate memory for b
  printf("a == b ? %s\n", a == b ? "yes" : "no");
  memset(b, 'X', 2*n);       // set all positions to 'X'
  memset(a, 'x', n);         // use dangling reference, set to ‘x’
  free(a);                   // double free! (and what about b?)



Numerical overflow example

Integer overflow
malloc takes size_t (unsigned long) arguments, 64-bit unsigned integers, n is 64-bit 
signed integer, the argument conversion causes an overflow
malloc cannot allocate UINT_MAX=2^63-1 bytes, hence it returns NULL

The faults in this program are several:
argc / argv[1] not checked — program crashes without arguments 

atol used to parse argv[1] : will return 0 on a parse error, strtol should be used instead
and if conversion is succesful (as in the example), bounds for n are not verified

 17

…
int main(int argc, char** argv) {
  long n = atol(argv[1]);
  printf("Allocating %lu (%lx) bytes for n=%ld (%lx)\n", 
         (size_t) n, (size_t) n, n, n);
  char* buffer = (char*) malloc(n);
  printf("Allocated buffer: %p\n”, buffer);
  free(buffer);
  return 0;
}
$ ./integer_overflow  -1
Allocating 18446744073709551615 (ffffffffffffffff) bytes for n=-1 (ffffffffffffffff)
Allocated buffer: 0x0



Heap-allocated memory:
dangling references & memory leaks (2)

In this execution, both calls to malloc  yield a pointer to the same 
memory segment (the segment is reused after being freed up for a) 
Hence a and b end up referring to the same memory segment. Using 
the dangling reference (a) will necessarily corrupt the memory pointed 
to by b.

 18

$ ./dangling_reference_example 9
a - line 19 >  78 78 78 78 78 78 78 78 78
a == b ? yes
a - line 25 >  00 00 00 00 00 00 00 00 78
b - line 25 >  00 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00
a - line 27 >  58 58 58 58 58 58 58 58 58
b - line 27 >  58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
a - line 29 >  78 78 78 78 78 78 78 78 78
b - line 29 >  78 78 78 78 78 78 78 78 78 58 58 58 58 58 58 58 58 58
a - line 31 >  00 00 00 00 00 00 00 00 78
b - line 31 >  00 00 00 00 00 00 00 00 78 58 58 58 58 58 58 58 58 58



Lack of type safety

 19

  long   a = 12345678912345;   
  double b = 12345678912345.9;
  char   c[8] = "1234567";
  printf("a: %ld b: %.3lf c: \"%s\"\n", a, b, c);
   
  // Memory and type-safe
  a = (long) b; // truncation errors possible but well-defined
  b = (double) a;  // long converted to double 
  strcpy(c,"7654321");
  printf("a: %ld b: %.3lf c: \"%s\"\n", a, b, c);
 
  // Memory-safe but not type-safe
  a = * (long*) &b;
  b = * (double*) &main;
  strcpy(c, (char*) &a);  
  printf("a: %ld b: %.3lf c: \"%s\"\n", a, b, c);

a: 12345678912345 b: 12345678912345.900 c: "1234567"
a: 12345678912345 b: 12345678912345.000 c: "7654321"

a: 4802654590752698880 b: 0.000 c: ""

it “works”



Lack of type safety (2)

 20

long a = 12345678912345;
  a: addr: 0x7ffe6d109b28 | data:  59 5b ce 73 3a 0b 00 00 | 12345678912345
double b = 12345678912345.9;
  b: addr: 0x7ffe6d109b20 | data:  cd b3 b6 9c e7 74 a6 42 | 12345678912345.900
char c[8] = "1234567";
  c: addr: 0x7ffd08ba6f70 | data:  31 32 33 34 35 36 37 00 | "1234567"
a = (double) b;
  a: addr: 0x7ffe6d109b28 | data:  59 5b ce 73 3a 0b 00 00 | 12345678912345
b = a;
  b: addr: 0x7ffe6d109b20 | data:  00 b2 b6 9c e7 74 a6 42 | 12345678912345.000
strcpy(c,"7654321");
  c: addr: 0x7ffe6d109b10 | data:  37 36 35 34 33 32 31 00 | "7654321"
a = * (long*) &b;
  a: addr: 0x7ffe6d109b28 | data:  00 b2 b6 9c e7 74 a6 42 | 
4802654590752698880
b = * (double*) &main
  b: addr: 0x7ffe6d109b20 | data:  55 48 89 e5 48 81 ec 90 | -0.000
strcpy(c, (char*) &a);
  c: addr: 0x7ffe6d109b10 | data:  00 36 35 34 33 32 31 00 | ""

A closer look:



NULL pointer access example

Dereferencing a NULL  pointer is undefined behavior, but what do 
you expect / prefer from this code? Crash or no crash?
NULL is actually 0 (only a matter of programming style to use NULL)

 21

#include <stdio.h>

typedef struct {
  int data;  
} Foo;

int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}

int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}



NULL pointer access example (2)

Compiling the program without optimisation leads to a 
segmentation fault. The execution is  trapped due to 
access to an invalid memory segment.
Compiling the program with optimisation leads to a 
“normal” execution without crash ! 
Why so? We must look at the generated code.

 22

$ gcc null_pointer_example.c -o null_pointer_example_no_opt
$ ./null_pointer_example_no_opt 
Segmentation fault (core dumped)

$ gcc null_pointer_example.c -O2 —o null_pointer_example_with_opt
$ ./null_pointer_example_with_opt 
-1

Using gcc 6.3 on Linux x86_64 without code optimisation:

Now enabling optimisation level 2 (-O2):



NULL pointer access example(3)

Since flawed_function is small in size, GCC decides to inline its (intermediate 
representation) code within main. Given that the argument is NULL, pointer-
>data is undefined behavior, hence a C compiler can do whatever it pleases. 
GCC  decides to treat v=pointer->data  is dead code since according to the 
data flow -1 should be returned! Under that assumption the result must “logically” 
be -1 !
Variations:

Using -O2 -fno-inline we get the segmentation fault instead!
Other GCC versions may handle it differently - check the Compiler Explorer site 23

int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}

int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}

int main(int argc, char** argv) {
  printf(“%d\n", -1);
  return 0;
}

subq $8, %rsp
movl $-1, %esi
movl $.LC1, %edi
xorl %eax, %eax
call printf

becomes “equivalent” togcc -O2 generated code

https://godbolt.org/


Common programming mistakes

Data manipulation
“Off-by-one” (OBO) errors (1st example)
Lack of input validation, buffer/array length in particular
Type conversion errors
Bad use of pointers
Numeric overflows

Use of dangerous API calls, particularly string-related 
functions

gets, printf, scanf, … 

Heap management errors 
use-after-free, no free-after-use,  double-free

 24


