
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Software testing
approaches

mailto:edrdo@dcc.fc.up.pt?subject=

Testing approaches
Two related questions :

What are meaningul inputs?
What (coverage) criteria should be used to derive them?

In the last class we talked about line/instruction/branch coverage
Easy to understand, easy to measure through program instrumentation, and the
most common metrics for coverage assessment in practice.
But we will also discussed how fragile they can be in transmitting a false notion
regarding the quality of inputs/tests and their ability to expose bugs!
Test inputs should be derived with wits, beyond the sole purpose of maximizing
line/instruction/branch coverage.

We will briefly look at a few standard approaches
Graph-based coverage
Input space partitioning
Mutation testing
Property-based testing

 2

Graph-based
coverage

Graph-based coverage
Basic approach

Model the SUT as a graph.
The execution of a test case corresponds to a path in the graph.
Coverage criteria specify requirements as sets of paths that must be
covered by test paths.

Graphs as models for:
individual procedures — control flow graphs (discussed next)
interacting units — call graphs
 finite-state machine abstractions of software

Structural vs. data-flow based coverage
Structural: takes into account only structure of the graph (example
application next)
Data-flow based: also account for data usage in association to nodes/edges
(we won’t cover this)

 4

1

2 3

4 5

Node and edge coverage (NC, EC)

Node coverage (NC)
Test requirements: cover every node (all graph paths up of length 0)

TR(NC) = set of nodes in the graph

Edge coverage (EC): cover every edge.
Test requirements: cover every edge (all paths up to length 1)

TR(EC) = set of edges in the graph

EC subsumes NC. Why?
 5

1

2 3

4 5

TR(NC) = { [1], [2], [3], [4], [5] }

TR(EC) = { [1,2], [1,3], [1,4], [2,4], [4,2], [4,5] }

T1 = { [1,3], [1,2,4,5] } satisfies NC, but not EC

T2 = { [1,3], [1,2,4,5],[1,4,2,4,5] }
satisfies both NC and EC

Control flow graph (CFG)

A control flow graph (CFG) can be used to represent the
control flow of a piece of (imperative) source code.

Nodes represent basic blocks - sequences of instructions that
always execute together in sequence.
Edges represent control flow between basic blocks.
The entry node corresponds to a method’s entry point.
Final nodes correspond to exit points, e.g. in Java: return or
throw instructions.
Decision nodes represent choices in control flow - e.g. in Java:
due to if, switch-case blocks or condition tests for loops.

 6

Example

➡ Basic blocks (nodes)
➡ 1: if (v ==

null)

➡ 2: throw ...;

➡ 3: n=0; i=0;

➡ 4: i < v.length;

➡ 5: v[i] == c;

➡ 6: n++;

➡ 7: i++; 7

 public static int occurrences(char[] v, char c) {
 if (v == null) {
 throw new IllegalArgumentException();
 }
 int n = 0;
 for (int i=0; i < v.length; i++) {
 if (v[i] == c) {
 n++;
 }
 }
 return n;
 }

➡ Control flow (edges)

➡ 1 ! 2, 1 ! 3
➡ 3 ! 4
➡ 4 ! 5, 4 ! 8
➡ 5 ! 6, 5 ! 7
➡ 6 ! 7
➡ 7 ! 4

➡ Entry node

➡ 1

➡ Decision nodes

➡ 1, 4, 5

➡ Exit nodes

➡ 2, 8

CFG for occurrences()
1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
 return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

➡ Basic blocks (nodes)

➡ 1: if (v ==
null)

➡ 2: throw ...;

➡ 3: n=0; i=0;

➡ 4: i < v.length;

➡ 5: v[i] == c;

 8

➡ Control flow (edges)

➡ 1 ! 2, 1 ! 3
➡ 3 ! 4
➡ 4 ! 5, 4 ! 8
➡ 5 ! 6, 5 ! 7
➡ 6 ! 7
➡ 7 ! 4

 9

t test case values
(v,c)

exp.
values test path covered

nodes
covered
edges

t1 (null, ‘a’) IAE [1,2] 1 2 [1,2]

t2 ({‘a’}, ‘a’) 1 [1,3,4,5,6,7,4,8] 1 3 4
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][4,8]

t3 ({‘x’,’a’}, ‘a’) 1 [1,3,4,5,7,4,5,6,7,8] 1 3 4
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][5,7][4,8]

1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
 return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

Node coverage

TR(NC) = { [1], [2],[3],[4], [5],[6],[7],[8] }

NC satisfied by { t1, t2 } or {t1, t3}

Edge coverage

TR(EC) = TR(NC) ∪ {
 [1,2],[1,3],[3,4],[4,5],[4,8], [5,6],[5,7][6,7],[7,4]
}

EC satisfied by { t1, t3 } but not by {t1,t2}.

Beyond node/edge coverage
Edge-pair coverage (EPC) - cover all paths up to length 2

EPC subsumes NC and EPC

NC, EC, EPC are instances of the general criterion: cover
all paths up to length k

NC for k=0; EC for k=1; EPC for k=2;

As we increase k we approximate ... Complete-Path-
Coverage (CPC)

CPC: Cover all possible paths.
The number of paths may be infinite or very large e.g., code with
loops (CFGs with cycles) - CPC generally not applicable.
In practice, instead of “increasing k”, we should try to pick a
subset of “relevant” paths in the graph, e.g., criteria like Prime
Path Coverage [Amman & Offutt].

 10

Input space
partitioning

Input space partitioning (ISP)

Base idea: identify relevant classes of input values and
derive test cases from it.
Step 1. Identify the input parameters for the SUT.
Step 2. Model the input domain by defining one or more
characteristics in the input domain. Each characteristic
defines blocks that partition the input space.
Step 3. Apply some criterion over characteristic of the
input domain, defining a set of test requirements.
Step 4. Derive test inputs (test cases).
Also known as equivalence partitioning.

 12

Input domain (D): the set of possible values for the input
parameters.
A characteristic q for D is a partition of D. It defines blocks b1 ,
… , bn such that :

∀ i,j : i≠j bi ∩ bj = ∅ (blocks are disjoint)
D = b1 ∪ ... ∪ bn (blocks cover the entire input domain)

Q : the set of characteristics we consider to derive test
requirements.

ISP - definitions

D b1
b2

b3

 13

ISP - guidelines

Meaningful characteristics: Each characteristic should
represent a meaningful feature for the input domain.
Distinctive blocks: blocks of a characteristic should be
reasonably aligned with distinctive values for it, e.g., consider:

“common use” values
boundary values
“invalid use” values
relevant relations between input parameters

Subdomains: if necessary break down domain into sub-domains
E.g. first partition into “valid” and “invalid” values, then define
characteristics for each of these domains, or sub-partition them further
if convenient.

 14

isPasswordOK example

 15

 /**
 * Test if password is OK.
 * @param password The password
 * @return <code>true</code> is password is OK.
 */
 boolean isPasswordOK(String password);

isPasswordOK example (2)

Null vs non-null characteristic
Breaks domain into “null” sub-domain and “non-null” subdomain

For the “non-null” subdomain we may consider:
L = Length of password
U = # upper-case characters
L = # lower-case characters
D = # digits
P = # punctuation characters
I = # invalid symbols

Other meaningful characteristics ? Other relevant sub-
domain characterizations?

 16

isPasswordOK example (3)

Possible blocks for the length characteristic (L)
L < 10, 10 <= L <= 20, L > 20 (3 blocks)
The blocks must define a partition. Thus, the block values do
not intersect and we cannot rule out any possible value of L.
A more fine-grained choice could consider l=10 and l=20 blocks
to force testing of boundary values for length.

A possible choice of blocks for the X = U, L, D, and I
characteristics

X=0, X > 0 (2 blocks each)

Finally, for P (the punctuation characters)
P = 0, P = 1, P > 1

 17

isPasswordOK example (4)

Input “Ab1234567890” fits in the following blocks:
10 <= l <= 20 (the length is 12)
U > 0

L > 0

D > 0

P = 0

I = 0

What are the blocks for “ABxy12!$?” ?

 18

ISP coverage criteria
t-wise coverage (TWC)

Cover t blocks of different characteristics by at least one test
case.

Each Choice Coverage (ECC) [t=1]
Cover each block of each characteristic at least once.

Pair-wise Coverage (ECC) [t=2]
Cover each block pair of two different characteristic at least
once.

All-Combinations Coverage (ECC) [t = number of
characteristics]

Cover each combinations of blocks of different characteristic at
least once.

 19

ECC coverage for isPasswordOK

A few tests are enough, for instance:
“Ab1234567890” covers blocks 10 <= l <= 20, U > 0,
L > 0, D > 0, P = 0, I = 0

“!@” covers blocks l < 10, U = 0, L = 0, D = 0, P
= 1, I > 0

“!!”
covers blocks l > 20, U = 0, L = 0, D = 0, P > 1,
I = 0

 20

PWC coverage for isPasswordOK

“Ab1234567890” will cover 15 block pairs (5 + 4 + 3 + 2
+ 1)

(10 <= l <= 20, U > 0), (10 <= l <= 20, L > 0),
(10 <= l <= 20, D > 0) (10 <= l <= 20, P = 0),
(10 <= l <= 20, I = 0)

(U > 0, L > 0), (U > 0, D > 0), (U > 0, P = 0),
(U > 0, I = 0)

(L > 0, D > 0), (L > 0, P = 0), (L > 0, I = 0),

(D > 0, P = 0), (D > 0, I = 0)

(P =0, I = 0)

Covering all block pairs will require more test cases.

 21

ISP - test effort vs coverage

ECC
∑i=1, ..., |Q| | Bi | test requirements, at least maxi=1, ..., |Q| |Bi| tests.
isPasswordOK: >= 3 tests

PWC
∑i,j=1, ..., |Q|, i != j | Bi | . |Bj| requirements, at least M2 tests for M =
maxi=1, ..., |Q| |Bi |
isPasswordOK: ~ 3 x 3 = 9 tests

ACoC
∏i=1, ..., |Q| | Bi | test requirements and as many tests required
isPasswordOK: 3 x 2 x 2 x 2 x 2 x 3 = 144 tests

 22

Mutation testing

Mutation testing

 24

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 0; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 1; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

Introduce “faults”
by mutating the code.

What’s the point?

The premise for mutation testing

Fundamental premise of mutation testing

 “if the software contains a fault, there will usually
be a set of mutants that can only be killed by a
test case that also detects the fault” [provided we
consider a rich set of mutation operators], Ammann and
Offutt

sensitivity to mutations (killing mutants)

≃
sensitivity to faults (exposing failures)

 25

“Testing the tests”
Suppose you have a test set T for program P (maybe
derived applying some coverage criteria C, manually or
automatically).
Program-based mutation testing helps answering the
following key question:

How “good” is T (and C)?
For m ∈ M (the set of all mutants), if T is “good” then a
test in T should kill m.
If no test in T kills a mutant m, then T should be
reformulated (one may also question the choice of C)...
Program-based mutation is many times taken as the
“golden standard” of coverage criteria, given its
potential to subsume other testing criteria.

 26

Killing the mutants …

i =1 is a mutation of i = 0 ; the code obtained by changing i=0 to i=1 is
called a mutant of numZero.
We say a test kills the mutant if the mutant yields different outputs from
the original code.

Considering x={1,0,0} the mutant is not killed; 2 is the return
value of the method for both the original code and the mutant.
Considering x={0,1,0} the mutant is killed; the result is 1
rather than 2. 27

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 1; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x >= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x <= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else

 v = -y;
 return v;
 }

Example 2

Which mutants will be
killed by tests:
(t1) (x,y) = (0,0)
(t2) (x,y) = (0,1)
(t3) (x,y) = (2,1)

Observe that m2 can not
be killed. Why not?

m1

m2

m3

original
code

mutants

 28

x y min m1 m2 m3

t1 0 0 0 0 0 0

t2 0 1 0 1 0 0

t3 2 1 1 2 1 -1

t1 kills none of the mutants.
t2 kills m1.
t3 kills m1 and m3.

Observe that m2 will always yield
the same result as the original
code. Thus it cannot be killed. It is
a func t iona l ly equ iva len t
mutant.

 29

 public static
 int min(int x, int y) {
 int v;

 if (x >= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x <= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else

 v = -y;
 return v;
 }

m1

m2

m3

mutants

Mutation operators from PIT

 30

http://pitest.org

http://pitest.org

Mutation operators from PIT (2)

 31

http://pitest.org

http://pitest.org

Mutation operators and effectiveness

Mutants to avoid …
stillborn mutant (i.e., dead at birth): mutant is not syntactically valid
functionally-equivalent mutant: no test can kill it
trivial mutant: almost every test can kill it

For effectiveness, a mutation operator should:
always define a syntactically valid transformation (generate no
stillborn mutants)
generate functionally-equivalent and trivial mutants with low
probability
mimic typical programmer mistakes
not be subsumed by another operator i.e., tests that kill mutants
created by the other operator also kill the ones generated by this
one (or a large fraction of them)

 32

Mutation testing - coverage

Mutation operator o: takes a program P and yields a set of
mutants of p, o(p).
Let O be the set of mutation operators and M be the set of all
mutants generated using O i.e., M = { m | m ∈ o(p), o ∈ O }
Killing mutants

We say a test t kills m ∈ M iff the output of t for m differs
from the output of t for P.

Mutation coverage = percentage of mutants in M killed by
at least one test.

 33

Mutation testing tools - basics

A MT tool has a built-in set of mutation operators. The set
of mutants for the SUT is generated in automated manner
according to the mutation operators.
A test set in context is ran against the mutants. As soon as
a mutant from the set is killed, it is typically not exercised
by further tests.
If the mutation coverage is not satisfactory, the test set is
typically revised and/or increased with further test cases.

Obs: The strategies for both mutant generation and test
selection/execution can be quite elaborate in technical terms.

 34

Property-based
testing

Property-based testing

Approach
Specify properties to check instead of inputs !
Let inputs be generated automatically through randomisation and customised generators.
If a property fails, try to find minimal input that violates the property, a process designated
as shrinking.

Original formulation
“QuickCheck: a lightweight tool for random testing of Haskell programs”, Koen Claessen
and John Hughes, Proc. ICFP, 2000. Adopted thereafter for other languages such as Scala
or Java. 36

Image source: “Better than unit tests”, M. Nygard

https://dl.acm.org/citation.cfm?id=1988046

 37

 @Test
 public void testTEAWithFixedKey() {
 TEA obj = new TEA("0123456789ABCDEF".getBytes());
 qt()
 .forAll(byteArrays(integers().between(1,256),
 bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0)))
 .describedAs(data -> Arrays.toString(data))
 .check(data -> Arrays.equals(data, obj.decrypt(obj.encrypt(data))));
 }

 @Test
 public void testForAnyKey() {
 Gen<Byte> anyByte = bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0);
 Gen<byte[]> keyGen = byteArrays(constant(16), anyValue)
 .describedAs(Arrays::toString);
 Gen<byte[]> dataGen = byteArrays(integers().between(1, 100),
anyValue).describedAs(Arrays::toString);

 qt()
 .forAll(keyGen,dataGen)
 .check((key,data) -> {
 TEA tea = new TEA(key);
 return Arrays.equals(tea.decrypt(tea.encrypt(data)), data);
 });
 }

fixed encryption key, but generator
used for data (random byte array
with length between 1 and 256)

Property: ∀data, decrypt(encrypt(data)) = data

variable key also

Validation of a Tiny Encryption Algorithm (TEA) implementation using
QuickTheories (for Java 8)

http://www.winterwell.com/software/TEA.php
https://github.com/ncredinburgh/QuickTheories

QuickTheories (example 2)

 38

 @Test
 public void testValidPasswordNoPunct() {

 Gen<Byte> lo = bytes((byte)'a', (byte)'z', (byte)'a');
 Gen<Byte> up = bytes((byte)'A', (byte) 'Z', (byte)'A');
 Gen<Byte> digit = bytes((byte) '0', (byte) '9', (byte)'0');

 Gen<Byte> combined = lo.mix(up,50).mix(digit,25);
 Gen<byte[]> arrGen = byteArrays(integers().between(10, 20), combined);
 Gen<String> strGen = arrGen.map(ba -> new String(ba));

 qt()
 .withFixedSeed(0)
 .forAll(strGen)
 .assuming(s -> s.chars().anyMatch(Character::isLowerCase))
 .assuming(s -> s.chars().anyMatch(Character::isUpperCase))
 .assuming(s -> s.chars().anyMatch(Character::isDigit))
 .check(CHECKER::isPasswordOK);

 }

