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Why is multithreaded (Java) code hard to test? 

How does cooperative semantics help ?  

 The Cooperari tool  
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Brief demo (if I have time)
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package dijkstra;!
class Semaphore {!
  int value;!
  Semaphore(int initial) { value = initial; }!
  int getValue() { return value; }!
  void down() throws InterruptedException {!
    synchronized (this) {!
      while (value == 0) { wait(); }!
      value = value - 1;!
    }!
  }!
  void up() {!
    synchronized (this) { !
      value = value + 1;!
      if (value == 1) { notify(); }!
    }!
  }!
}!

A simple Java semaphore
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  private static int N = . . .;!
  @Test !
  public final void test() {!
    Semaphore s = new Semaphore(N-1);!
    Runnable[] c = new Runnable[N];!
    for (int i=0; i < N; i++) c[i] = new Client(s);!
    runThreads(c);!
    assertEquals(N-1, s.getCount());!
  }!
!
  static class Client implements Runnable {!
    private Semaphore sem;!
    Client(Semaphore s) { sem = s; }!
    public void run() { !
      try { !
        sem.down(); !
        . . . !
        sem.up(); !
      } catch(InterruptedException e) { . .. }!
    }!
  } 

Semaphore test
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void up() {!
  synchronized (this) {!
    value = value + 1;!
  }!
  synchronized (this) { !
    if (value == 1) notify();!
  }!
}

Bugs are easy to come by …
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void up() {!
  synchronized (this) { !
!  value = value + 1; !
  }!
  if (value == 1)!
!   synchronized(this) { !
! !   notify(); !
     }!
}

void up() {!
  value = value + 1;!
  synchronized (this) { !
   if (value == 1) notify(); !
  }!
}

void up() {!
  value = value + 1;!
  if (value == 1) notify(); !
}

Bad use of monitors/shared data may lead to data races, deadlocks etc!
An error in up() may deadlock a thread that is trying to down() the semaphore



Standard testing fails to expose bugs 

Even simple bug patterns are elusive to detect and 
reproduce precisely. 

Bugs may be exposed only for (sometimes very) 
particular thread schedules. 

S c h e d u l e r o p e r a t e s p re e m p t i v e l y, n o n -
deterministically, and context switches are too 
coarse-grained. 

Code is also hard or impossible to debug. 
Heisenbugs are common.
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Cooperative semantics

Key observation: relevant context switches happen at 
thread interference points 

shared data access (read/write) 

multithreading primitives (locks, monitor notifications, barriers, etc) 

Cooperative semantics 

Let threads yield voluntarily at interference points. 

And let code between two yield points run serially as a 
transaction, without interference from other threads 

The semantics of a program is fully preserved as long as yield points 
are fully identified [Yi et al., ISSTA’12, PPoPP’11] 

Potential for deterministic testing + custom state-space exploration 
(eventually an exhaustive one) 
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Yield points
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 void down() … {!

    synchronized (this) {!

      while (value == 0) { !

        wait(); !

      }!

      value = value - 1;!

   }!

  }

1

2

3

4 5

6

lock acquisition

field read

wait() call

field read + write

lock release



Cooperari in a nutshell
AspectJ-based bytecode instrumentation intercepts yield 
points  

no changes to JVM itself (a standard JVM can be used) 

yield point support: data access, monitor operations, and most 
java.lang.Thread methods 

Yield point interception delegates full control to 

cooperative scheduler that rules out interference from JVM scheduler 

“virtualization layer” for deterministic execution of multithreading 
primitives  

Coverage policies  

for custom exploration of the state-space of thread schedules 

Deadlock & race detection mechanisms 

Integrates with the JUnit framework.
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Cooperari in a nutshell
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Test execution
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 Race: T0 at Semaphore.java:12 over Semaphore.value!
 Race: T1 at Semaphore.java:13 over Semaphore.value!
 Failure trace for test written to!
    'log/examples.semaphore.TestSemaphore_test.trace.txt'!
 test: executed 36 times in 578 ms [failed]!
 1) test(examples.semaphore.TestSemaphore)!
    WaitDeadlockError: { T2/Semaphore.java:7 }

(semaphore example from the paper)

thread T2 cannot 
complete wait() call 

within down()

«

«

«

data races reported

cooperative  
trace log  



Cooperative trace log
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<step> <thread> <yield point>               # r/w!
15 0 monitorenter(L0) Semaphore.java:12     # {}/{}!
...!
22 1 monitorenter(L0) Semaphore.java:12     # [value=0]!
23 2 wait(L0) Semaphore.java:7              #!
24 1 get(Semaphore.value) Semaphore.java:12 # 1/{}!
25 1 set(Semaphore.value) Semaphore.java:12 # {}/1!
26 1 monitorexit(L0) Semaphore.java:12      # [value=1]!
27 1 get(Semaphore.value) Semaphore.java:12 # 1/{}!
28 0 get(Semaphore.value) Semaphore.java:12 # 0,1/{}!
29 0 set(Semaphore.value) Semaphore.java:12 # 1/0 [race]!
30 0 monitorexit(L0) Semaphore.java:12      # [value=2]!
31 0 get(Semaphore.value) Semaphore.java:13 # 0,1/{}!
32 0 <end> # {}/{};read 2; no call to notify()!
33 1 <end> # read 2; no call to notity()

(semaphore example from the paper)

«

«

«

«
«

«

thread T2 cannot 
complete wait() call 

within down()



Instrumentation pattern
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void around (Object o) : lock() && args(o) {!
  CThread t = CThread.get(thisJoinPoint, o.getClass());!
  if (t != null) {!
    t.cMonitorEnter(o);!
  } else {!
    proceed(o);!
  }!
}

Example: interception / instrumentation of lock acquisition  

the JVM monitorenter instruction. 

we do something similar for lock release, Thread methods, data access 

Note: AspectBench Compiler (abc) incorporates AspectJ pointcut extensions for lock 
and unlock operations (from the RacerAJ tool) 

If a thread is cooperative, i.e., launched via runThreads(), the 
execution will be diverted to the Cooperari runtime 

monitorenter will not execute at all in that case 

 Lock acquisition is diverted to 
the cooperative execution layer.



Thread yield & resumption
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public void cYield() {!
   ... // yielding!
   yield = true;!
   syncYield();!
   while (yield) {!
     LockSupport.park();!
   }!
   syncResume();!
   ... // resumed!
 }

 public void cResume() {!
  ...!
  yield = false;!
  LockSupport.unpark(this);!
 }

thread yields …

… and is later resumed

Invariant: only one cooperative 
thread can be picked up for 
execution by the JVM scheduler 
at any given time.

LockSupport.park() Java API 
call disables execution for the 
thread by the JVM scheduler.

LockSupport.unpark() lets the 
JVM scheduler pick up the thread 
again



Cooperative scheduler
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CoveragePolicy policy;!
List<CThread> ready;!
...!
public void cStep() {!
  ...!
  syncYield();!
  CThread t = policy.decision(ready);!
  t.cResume();!
  syncResume();!
  ...!
}

On a thread yield: 

the cooperative scheduler must pick the thread to run next 

the decision is up to the coverage policy that is set 

scheduler then resumes the chosen thread

thread selection  
& resumption



Coverage policies

Pseudo-random policy  

Memory-less 

Chooses thread at random 

Uses fixed seed for repeatable test sessions 

History-dependent policy (see paper for details) 

Keeps a track of past decisions across multiple test trials 

program state abstraction + partial order reduction technique 
to limit search space 

No backtracking though … 
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Multithreading primitives
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class CMonitor {!
  // Reference count.!
  int refCount;!
  // Owner thread!
  CThread owner;!
    // Wait count!
  int waitCount;!
  // Notification epoch!
  long nEpoch;!
  // Notification queue!
  Queue<Integer> nQueue;!
}

virtual monitor datum

  CMonitor m;!
  void init(Object o) {!
    m = getMonitor(o);!
    m.refCount++;!
  }!
  CState getState() {!
   return!
     m.owner == null ?!
       CREADY : CBLOCKED;!
  }!
  void complete(CThread t) {!
    m.owner = t;!
  }

on yield

ready-state 
report

lock acquisition example

on resumption

Cooperative implementation is required for deterministic operation.



Deadlock & race detection

Cooperative execution naturally exposes deadlocks and 
races …  

we merely need to observe the execution step-by-step  

simple detection mechanisms may be employed  

Deadlock detection  

resource graph for lock-acquisition cycles 

+ plain check to see if no thread can progress 

Race detection 

Pending read/write counter for each active data accesses 

At most one pending read/write access per thread 

More details in the paper
18
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Chapter 5. Evaluation 36

Benchmark Hist. dep. coverage Random coverage Unconstrained execution
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Alarm Clock 1000 7 3 1 2 1000 8 13 8 6 1000 ——– 1000 ——–
64.9 1.4 1.1 0.7 1.2 62.3 1.4 2.2 1.9 1.8 51.0 51.4 51.6 52.0 52.7

Apache Common
Lang

1 1 1 1 1 1 1 1 1 1 ——– 1000 ——–
0.2 0.3 0.4 0.6 0.8 0.2 0.2 0.4 0.5 0.8 0.3 0.6 0.9 1.4 2.2

Bank 1 1 1 3 1 1 1 1 2 1 ——– 1000 ——–
0.1 0.2 0.4 1.0 1.0 0.1 0.2 0.3 1.1 1.0 1.4 1.5 1.9 2.6 3.7

Clean 3 4 2 1 1 21 2 1 1 1 25 3 1 1 1
0.4 2.0 1.7 1.4 1.6 2.9 0.9 1.1 1.3 1.6 0.1 0.1 0.1 0.1 0.1

Dining
Philosophers

2 9 48 581 1000 4 13 165 1000 1000 ——– 1000 ——–
0.1 0.2 1.0 18.8 189.4 0.1 0.2 2.4 23.8 46.2 0.3 0.4 0.8 1.3 2.3

Linked List 2 1 1 1 1 2 4 1 1 1 ——– 1000 ——–
0.1 0.2 0.4 1.0 1.2 0.1 0.2 0.1 0.2 0.4 0.1 0.6 0.9 1.4 1.7

Merge Sort 99 117 95 54 4 99 11 51 14 35 ——– 1000 ——–
4.6 6.8 17.7 26.9 3.2 4.2 2.5 4.6 3.5 9.5 0.3 0.4 0.7 1.3 2.3

Piper 1000 2 2 1 1 1000 3 1 1 1 1000 2 1 1 1
7.7 0.3 0.3 0.6 0.8 7.2 0.1 0.2 0.4 0.7 0.7 0.1 0.1 0.1 0.1

Reorder 50 13 4 7 20 2 23 26 17 10 ——– 1000 ——–
0.4 0.2 0.2 0.5 1.5 0.1 0.3 0.7 0.8 0.9 0.3 0.4 0.8 1.4 2.3

Semaphore 1000 37 137 1000 1000 1000 8 249 1000 1000 1000 ——– 1000 ——–
6.5 0.7 2.7 34.4 73.1 6.0 0.2 2.4 32.1 63.0 0.3 0.5 0.8 1.2 1.9

Two Stage 52 57 11 15 28 324 141 157 92 46 ——– 1000 ——–
1.1 1.9 1.1 0.3 3.2 3.6 2.5 3.6 0.3 4.0 0.3 0.4 0.7 1.3 2.4

Wrong Lock 5 1 2 7 1 5 1 2 3 1 ——– 1000 ——–
0.1 0.1 0.2 0.9 0.5 0.1 0.1 0.2 0.5 0.5 0.3 0.4 0.8 1.3 2.2

Table 5.3: Benchmark results

Regarding execution times, the overhead imposed by cooperative execution is notice-
able, particularly in the 1000-trial runs, e.g., approximately 20 times slower than uncon-
strained execution for the 2-thread setting in the semaphore example. This is due to the
execution of instrumented code and the internal Cooperari support for cooperative execu-
tion. The issue is mitigated however by the execution of a smaller number of trials in all
other cases.

Finally, we can compare the use of the history-dependent and random policies. The
history-dependent policy tries to avoid repeated scheduling decisions, and in doing so it
limits their state-space. The random coverage however seems to have the benefit of ex-
ploring different slices of that state-space earlier in some cases. In terms of test trials,
the history-dependent policy clearly performs better in the Dining Philosophers and Two
Stage benchmarks, but the random coverage policy has comparable performance other-
wise. The other observation is that the history-dependent policy certainly involves more
computational effort, due to its internal book-keeping, and as result, the test execution
times are generally higher for a similar number of test trials with the random policy.

Results for 12 benchmarks 
from the  

ConTest + SIR suites. 

thread count

«

test trials till bug 
found (up to 1000)

«

«

execution time 
for all test trials
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Table 5.3: Benchmark results

Regarding execution times, the overhead imposed by cooperative execution is notice-
able, particularly in the 1000-trial runs, e.g., approximately 20 times slower than uncon-
strained execution for the 2-thread setting in the semaphore example. This is due to the
execution of instrumented code and the internal Cooperari support for cooperative execu-
tion. The issue is mitigated however by the execution of a smaller number of trials in all
other cases.

Finally, we can compare the use of the history-dependent and random policies. The
history-dependent policy tries to avoid repeated scheduling decisions, and in doing so it
limits their state-space. The random coverage however seems to have the benefit of ex-
ploring different slices of that state-space earlier in some cases. In terms of test trials,
the history-dependent policy clearly performs better in the Dining Philosophers and Two
Stage benchmarks, but the random coverage policy has comparable performance other-
wise. The other observation is that the history-dependent policy certainly involves more
computational effort, due to its internal book-keeping, and as result, the test execution
times are generally higher for a similar number of test trials with the random policy.

Unconstrained test 
execution fails to expose 
bugs except in two cases. 

««

«

«

«

«
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Table 5.3: Benchmark results

Regarding execution times, the overhead imposed by cooperative execution is notice-
able, particularly in the 1000-trial runs, e.g., approximately 20 times slower than uncon-
strained execution for the 2-thread setting in the semaphore example. This is due to the
execution of instrumented code and the internal Cooperari support for cooperative execu-
tion. The issue is mitigated however by the execution of a smaller number of trials in all
other cases.

Finally, we can compare the use of the history-dependent and random policies. The
history-dependent policy tries to avoid repeated scheduling decisions, and in doing so it
limits their state-space. The random coverage however seems to have the benefit of ex-
ploring different slices of that state-space earlier in some cases. In terms of test trials,
the history-dependent policy clearly performs better in the Dining Philosophers and Two
Stage benchmarks, but the random coverage policy has comparable performance other-
wise. The other observation is that the history-dependent policy certainly involves more
computational effort, due to its internal book-keeping, and as result, the test execution
times are generally higher for a similar number of test trials with the random policy.

In contrast, cooperative test execution only fails 
to expose bugs for 16/32 thread-settings in two 
examples, where quite precise schedules are 
required to expose the bug. 

««

«

«

« «
«

Cooperative execution overhead may be high, but that is generally mitigated a 
lower number of test trials (and bug exposure!) 

«
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Table 5.3: Benchmark results

Regarding execution times, the overhead imposed by cooperative execution is notice-
able, particularly in the 1000-trial runs, e.g., approximately 20 times slower than uncon-
strained execution for the 2-thread setting in the semaphore example. This is due to the
execution of instrumented code and the internal Cooperari support for cooperative execu-
tion. The issue is mitigated however by the execution of a smaller number of trials in all
other cases.

Finally, we can compare the use of the history-dependent and random policies. The
history-dependent policy tries to avoid repeated scheduling decisions, and in doing so it
limits their state-space. The random coverage however seems to have the benefit of ex-
ploring different slices of that state-space earlier in some cases. In terms of test trials,
the history-dependent policy clearly performs better in the Dining Philosophers and Two
Stage benchmarks, but the random coverage policy has comparable performance other-
wise. The other observation is that the history-dependent policy certainly involves more
computational effort, due to its internal book-keeping, and as result, the test execution
times are generally higher for a similar number of test trials with the random policy.

History-dependent policy tends to perform better when bug is more 
“delicate” and requires more thorough state-space exploration. 

«« «

Random coverage policy has comparable or even better performance in other 
cases. Deep branches of the state-space tend to be be explored sooner. 

«« «
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amortized by the repetition of the tests over time.

Benchmark LOC Time(s) LOC/s
Alarm Clock 210 18.9 11.11

Apache Common Lang 398 26.0 15.31
Bank 77 11.7 6.58
Clean 63 11.4 5.53

Dining Philosophers 29 5.6 5.18
Linked List 150 13.3 11.28
Merge Sort 98 12.1 8.10

Piper 102 14.0 7.29
Reorder 48 11.0 4.36

Semaphore 29 5.6 5.18
Two Stage 70 13.3 5.26

Wrong Lock 63 12.5 5.04

Table 5.2: Bytecode instrumentation time

5.2.3 Test execution

We executed the benchmark tests, using three distinct configurations. Two configu-
rations employ cooperative execution: the first one uses the history-dependent coverage
policy, the second uses the random coverage policy. The remaining configuration em-
ploys unconstrained scheduling of threads The unconstrained execution is enabled using
coverage=NONE in the CTestOptions annotation for a JUnit test class; the runThreads()
Cooperari API method executes unmodified bytecode in this case.

For each of the configurations and benchmarks, we varied the number of threads
from 2 to 32 and took the measures listed in Table 5.3. For each case, the results in-
dicate the number of test trials executed, on top for each entry, and the execution time in
seconds, at bottom. The times and test trials in the unconstrained execution are the av-
erage of 10 executions for each case. The number of trials for the cooperative execution
cases does not vary, but the times are again the average of 10 executions. Entries in italic
for some 2-thread settings (Alarm Clock, Piper, and Semaphore) indicate that the bug at
stake is guaranteed not to occur, hence 1000 test trials are expected. Bold entries indicate
that the bug may occur but is not reproduced after 1000 trials.

The first key observations relate to the comparison of effectiveness between coopera-
tive and unconstrained test execution. Generally, we can conclude that cooperative execu-
tion exposes bugs that unconstrained execution cannot, as the former only failed to expose
bugs after 1000 trials for the dining philosophers’ 32-thread case and the semaphore’s 16
and 32 thread cases; these two benchmarks require a very precise schedule for deadlock,
as discussed in Chapter 3. In contrast, unconstrained execution worked only for the Clean
and Piper examples. Moreover, cooperative testing requires a relatively small number of
trials in many of the benchmarks.

Bytecode instrumentation using abc is slow, 
but it is performed only when required, driven 
by code (bytecode) changes. 



Future work

More work on coverage policies  

e.g., employ stateless model checker for exhaustive state-space exploration 
(like more robust systems such as CHESS, Cloud9, CONCURRIT) 

More in-depth analysis using larger real-world programs 

Cover a larger set of multithreaded Java primitives 

e.g., atomic operations, barriers amongst others in java.util.concurrent 

Yield point inference  

code is over-instrumented in many cases 

Misc. technical improvements 

replace bytecode instrumentation framework (abc no longer actively 
maintained and has a few bugs) 

develop an Eclipse IDE plugin
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Thank you
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 bitbucket.org/edrdo/cooperari

For more info check out

https://bitbucket.org/edrdo/cooperari/

