
The gLite Data Management
System

Giuseppe LA ROCCA
INFN Catania
giuseppe.larocca@ct.infn.it

Outline

•  Storage & Protocols
– Types of Storage

•  The Storage Resource Manager (SRM)
•  Grid file referencing schemes
•  LFC File Catalogue

– Architecture
– LFC commands

•  File & Replica Management Client Tools
•  File Transfer Service (FTS)
•  References
•  Hands on

The overall goal of this presentation

I need to collect
data from the
GRID Storage

Elements to run
my application.
How can I do ?

Storage Elements & protocols

•  The Storage Element is the service which allows a user or an
application to store data for future retrieval.

•  All data in a SE must be considered read-only and therefore
can not be changed unless physically removed and replaced.

–  The GSIFTP protocol offers the functionalities of FTP, but
with support for GSI. It is responsible for secure, fast and
efficient file transfers to/from Storage Elements.

–  RFIO was developed to access tape archiving systems, such
as CASTOR (CERN Advanced STORage manager) and it
comes in a secure and an insecure version.

–  The gsidcap protocol is the GSI enabled version of the
dCache native access protocol, dcap.

Types of Storage Elements /1

•  In WLCG/EGEE, different types of Storage Elements are
available:

•  CASTOR. It consists in a disk buffer frontend to a tape
mass storage system. A virtual file system (namespace)
shields the user from the complexities of the disk and
tape underlying setup. File migration between disk and
tape is managed by a process called “stager”. The
native storage protocol, the insecure RFIO, allows
access of files in the SE. Since the protocol is not GSI-
enabled, only RFIO access from a location in the same
LAN of the SE is allowed. With the proper modifications,
the CASTOR disk buffer can be used also as disk-only
storage system.

Types of Storage Elements /2

•  StoRM. It has been designed to support space
reservation and direct access (native POSIX I/O call),
as well as other standard libraries (like RFIO).

•  StoRM takes advantage from high performance parallel
file systems like GPFS (from IBM).
–  In addition, standard POSIX file systems are supported

(XFS from SGI and ext3).

•  StoRM takes advantage of ACL support provided by the
underlying file systems to implement the security
models

•  dCache. It consists of a server and one or more pool
nodes. The server represents the single point of access
to the SE and presents files in the pool disks under a
single virtual file system tree. Nodes can be dynamically
added to the pool. The native gsidcap protocol allows
POSIX-like data access. dCache is widely employed as
disk buffer frontend to many mass storage systems, like
HPSS and Enstore, as well as a disk-only storage
system.

•  LCG Disk pool manager. It’s a lightweight disk pool
manager, suitable for relatively small sites (max 10 TB
of total space). Disks can be added dynamically to the
pool at any time. Like in dCache and CASTOR, a virtual
file system hides the complexity of the disk pool
architecture. The secure RFIO protocol allows file
access from the WAN.

Types of Storage Elements /3

S
R

M

The Storage Resource Manager

The Storage Resource Manager

The Storage Resource Manager (SRM) has been
designed to be the single interface for the
management of disk and tape storage resources.

Any type of Storage Element in WLCG/EGEE offers
an SRM interface except for the Classic SE, which
is being phased out.

SRM hides the complexity of the resources setup
behind it and allows the user to request files, keep
them on a disk buffer for a specified lifetime,
reserve space for new entries, and so on.
–  In gLite, interactions with the SRM is hidden

by high level services (DM tools and APIs)

The gLite Storage Element

Grid file referencing schemes

SURL GUID LFN TURL

•  Logical File Name (LFN)

–  lfn:/grid/gilda/input-file
•  Grid Unique IDentifier (GUID)

–  guid:4d57edef-fa5c-4512-a345-1c838916b357
•  Storage URL (for a specific replica, on a specific Storage

Element)

–  srm://aliserv6.ct.infn.it/gilda/generated/2007-11-13/
fileb366f371-b2c0-485d-b12c-c114edaf4db4

–  sfn://se01.athena.hellasgrid.gr/data/dteam/doe/file1
•  Transport URL (for a specific replica, on an SE, with a specific

protocol)

–  gsiftp://aliserv6.ct.infn.it/gilda/generated/2007-11-13/
fileb366f371-b2c0-485d-b12c-c114edaf4db4

LFN

SURL

Symlink

Symlink

Symlink

Symlink

GUID

TURL

SURL

Replica Catalog

LCG File Catalog

SRM Interface

various protocols: gsiftp, gsidcap, rfio

LFC File Catalogue

•  Users and applications need to locate
files (or replicas) on the Grid. The LCG
File Catalogue is the service which
maintains mappings between LFN(s),
GUID and SURL(s).

•  The catalogue publishes its endpoint in
the Information Service so that it can be
discovered by Data Management tools
and other services (the WMS for
example).

•  It consists of a unique catalogue, where
the LFN is the main key. Further LFNs can
be added as symlinks to the main LFN.
–  System metadata are supported,

while for user metadata only a
single string entry is available

Architecture of the LFC Catalogue

•  LFN acts as main key in the database.
 It has:

–  Symbolic links to it (additional LFNs)
–  System metadata
–  Information on replicas
–  One field of user metadata
–  Access Control Lists
–  Integration with VOMS

(VirtualID and VirtualGID)
–  C API language

LFC Commands

•  User can interact with the file catalogue through CLIs
 and C APIs.

–  The environment variable LFC_HOST
 (e.g.: LFC_HOST=gilda-lfc.ct.infn.it)
 must contains the host name of the LFC server
 to be used.

•  The directory structure of the LFC namespace has the
 form: /grid/<VO>/<subpaths>

–  Users of a given VO will have read and write
 permissions only under the corresponding
<VO> subdirectory.

lfc-chmod Change access mode of the LFC file/directory

lfc-chown Change owner and group of the LFC file/directory

lfc-delcomment Delete the comment associated with the file/
directory

lfc-getacl Get file/directory access control lists

lfc-ln Make a symbolic link to a file/directory

lfc-ls List file/directory entries in a directory

lfc-mkdir Create a directory

lfc-rename Rename a file/directory

lfc-rm Remove a file/directory

lfc-setacl Set file/directory access control lists

lfc-setcomment Add/replace a comment

LFC Commands

•  Listing the entries of a LFC directory
–  lfc-ls [-cdiLlRTu] [--class] [--comment] [--deleted] [--display_side] [--

ds] path…
–  where path specifies the LFN pathname (mandatory)
–  Remember that LFC has a directory tree structure
–  /grid/<VO_name>/<you create it>

–  All members of a VO have read-write permissions under
their directory

–  You can set LFC_HOME to use relative paths

lfc-ls /grid/gilda/tutorials/taipei02
export LFC_HOME=/grid/gilda/tutorials

lfc-ls -l taipei02

lfc-ls -l -R /grid

lfc-ls

Defined by the user LFC Namespace

lfc-mkdir

•  Creating directories in the LFC
–  lfc-mkdir [-m mode] [-p] path...

•  Where path specifies the LFC pathname
•  Remember that while registering a new file (using lcg-

cr, for example) the corresponding destination
directory must be created in the catalog beforehand.

•  Examples:
 lfc-mkdir /grid/gilda/<YOUR_DIRECTORY>

Created by the user

lfc-ln

•  Creating a symbolic link
–  lfc-ln -s file linkname
–  lfc-ln -s directory linkname

–  Create a link to the specified file or directory with
linkname

Examples:
–  lfc-ln -s /grid/gilda/test /grid/gilda/aLink

Let’s check the link using lfc-ls with long listing
–  lfc-ls -l aLink
 lrwxrwxrwx 1 19122 1077 0 Jun 14 11:58 aLink -
> /grid/gilda/test

Original File Symbolic Link

Access Control List (ACL)

•  LFC allows to attach to a file or directory an access control list
(ACL), a list of permissions which specify who is allowed to
access or modify it. The permissions are very much like those of
a UNIX file system: read (r), write (w) and execute (x).

•  In LFC, users and groups are internally identified as numerical
virtual uids and virtual gids, which are virtual in the sense that
they exist only in the LFC namespace.
–  A user can be specified as a name, as a virtual uid or as a

DN.
–  A group can be specified as name, as a virtual gid or as a

VOMS FQAN.

•  A directory in LFC has also a default ACL (which is the ACL
associated to any file or directory being created under that
directory). After creation, the ACLs can be freely changed.
–  When creating a sub-directory, its default ACL is inherited

from the parent directory

Print the ACL of a directory

$ lfc-getacl /grid/gilda/tutorials/test-acl

 # file: /grid/gilda/tutorials/test-acl
 # owner: /C=IT/O=INFN/OU=Personal Certificate/L=Catania/
CN=Giuseppe La Rocca/Email=giuseppe.larocca@ct.infn.it

 # group: gilda
 user::rwx
 group::rwx #effective:rwx
 other::r-x
 default:user::rwx
 default:group::rwx
 default:other::r-x

In this example, the owner and all users in the gilda group
have full privileges to the directory, while other users cannot
write into it.

Modify the ACL

lfc-setacl [-d] [-m] [-s] acl_entries path

The -m option means that we are modifying the existing
ACL. Other options of lfc-setacl are -d to remove ACL
entries, and -s to replace the complete set of ACL
entries.

acl_entries is a coma separated list of entries. Each entry
has colon separated fields: ACL type, id (uid or gid),
permission. Only directories can have default ACL
entries!

The entries look like: user::perm
user:uid:perm
group:perm
group:gid:perm
mask:perm
other:perm

defaul::user:perm
defaul::user:uid:perm
defaul::group:perm
defaul::group:gid:perm
default::mask:perm
deafult::other:perm

Modify the ACL of a directory

Lets's change default ACL, with read/write
permission for user and group, and no privileges
for others.

–  The syntax we apply here is modify (-m)
default (d:) for user (u:), and the same of
course for group and others.

 $ lfc-setacl -m d::u:6,d::g:6,d::o:0 \
 $LFC_HOME/test-acl/

Adding metadata information

The lfc-setcomment and lfc-delcomment commands allow the
user to associate a comment with a catalogue entry and delete
such comment. This is the only user-defined metadata that
can be associated with catalogue entries.

 The comments for the files may be listed using the --comment
option of the lfc-ls command. This is shown in the following
example:

$ lfc-setcomment /grid/gilda/file1 “My metadata“

$ lfc-ls --comment /grid/gilda/file1
 /grid/gilda/file1 My metadata

LCG Data Management Client Tools

•  The LCG Data Management tools allow users to copy files between
UI, WN and a SE, to register entries in the file catalogue and
replicate files between SEs.

lcg-cp Copies a Grid file to a local destination

lcg-cr Copies a file to a SE and registers it in the catalogue

lcg-del Deletes one file (either one replica or all the replicas)

lcg-rep Copies a file from one SE to another SE and registers it
in the catalogue

lcg-gt Gets the TURL for a given SURL and transfer protocol

lcg-aa Adds an alias in the catalogue for a given GUID

lcg-ra Removes an alias in the catalogue for a given GUID

lcg-rf Registers in the catalogue a file residing on a SE

lcg-uf Unregisters in the catalogue a file residing on a SE

lcg-la Lists the aliases for a given LFN, GUID or SURL

lcg-lg Gets the GUID for a given LFN or SURL

lcg-lr Lists the replicas for a given LFN, GUID or SURL

•  The --vo <vo name> option, to specify the virtual
organisation of the user, is present in all commands,
except for lcg-gt. Its usage is mandatory unless the
variable LCG_GFAL_VO is set (e.g.: export
LCG_GFAL_VO=gilda)

Timeouts
 The commands lcg-cr, lcg-del, lcg-gt, lcg-rf, lcg-sd and
lcg-rep all have timeouts implemented.
 By using the option -t, the user can specify a number of
seconds for the timeout.
 The default is 0 seconds, that is no timeout.
 If we got a times out during the performing of an
operation, all actions performed till that moment are
rolled back, so no broken files are left on a SE and no
existing files are not registered in the catalogues.

Environment variables /1

Environment variables /2

•  For all lcg-* commands to work, the environment
variable LCG_GFAL_INFOSYS must be set to point to a
top BDII in the format <hostname>:<port>, so that
the commands can retrieve the necessary information

 export LCG_GFAL_INFOSYS=gilda-bdii.ct.infn.it:2170

•  The VO_<VO>_DEFAULT_SE variable specifies the
default SE for the VO.

Uploading a file to the Grid /1

$ lcg-cr --vo gilda -d aliserv6.ct.infn.it \
file:/home/larocca/file1

 guid:6ac491ea-684c-11d8-8f12-9c97cebf582a

 where the only argument is the local file to be
uploaded and the -d <destination> option
indicates the SE used as the destination for the
file. The command returns the file GUID.

 If no destination is given, the SE specified by the
VO_<VO>_DEFAULT_SE environmental variable is taken.

 The -P option allows the user to specify a relative path
name for the file in the SE. If no -P option is given, the
relative path is automatically generated.

The following are examples of the different ways to
specify a destination:

 -d aliserv6.ct.infn.it
 -d srm://aliserv6.ct.infn.it/data/gilda/my_file
 -d aliserv6.ct.infn.it -P my_dir/my_file

The –l <lfn> option can be used to specify a LFN:

$ lcg-cr --vo gilda -d aliserv6.ct.infn.it \
 -l lfn:/grid/gilda/myalias1 \

 file:/home/larocca/file1

 guid:db7ddbc5-613e-423f-9501-3c0c00a0ae24

Uploading a file to the Grid /2

The -g option allows to specify a GUID (otherwise
automatically created):

$ lcg-cr --vo gilda -d aliserv6.ct.infn.it \
 -g guid:baddb707-0cb5-4d9a-8141-a046659d243b \

file:‘pwd‘/file2

guid:baddb707-0cb5-4d9a-8141-a046659d243b

 Attention!
 This option should not be used except for expert users
and in very particular cases. Because the specification
of an existing GUID is also allowed, a misuse of the
tool may end up in a corrupted GRID file in which
replicas of the same file are in fact different from each
other.

Uploading a file to the Grid /3

Replicating a file

$ lcg-rep -v --vo gilda -d <SECOND_SE> \
guid:db7ddbc5-613e-423f-9501-3c0c00a0ae24

Source URL:
sfn://aliserv6.ct.infn.it/data/gilda/larocca/file1
File size: 30
Destination specified: <SECOND_SE>
Source URL for copy:
gsiftp://aliserv6.ct.infn.it/data/gilda/larocca/file1
Destination URL for copy:
gsiftp://<SECOND_SE>/data/gilda/generated/2004-07-09/

file50c0752c-f61f-4bc3-b48e-af3f22924b57

streams: 1
Transfer took 2040 ms
Destination URL registered in LRC: srm://<SECOND_SE>/

data/gilda/generated/2004-07-09/file50c0752c-
f61f-4bc3-b48e-af3f22924b57

Listing replicas, GUIDs and aliases /1

$ lcg-lr --vo gilda \
 lfn:/grid/gilda/tutorials/larocca/my_alias1

 srm://aliserv6.ct.infn.it/data/gilda/generated/
2004-07-09/file79aee616-6cd7-4b75-8848-f091

 srm://<SECOND_SE>/data/gilda/generated/2004-07-08/
file0dcabb46-2214-4db8-9ee8-2930

Again, a LFN, the GUID or a SURL can be used to specify the
file.

The lcg-lg command returns the GUID associated with a
specified LFN or SURL.

$ lcg-lg --vo gilda lfn:/grid/gilda/test.txt
 guid:cf93526e-807a-43a6-9262-f55a3989623c

Listing replicas, GUIDs and aliases /2

The lcg-la command can be used to list the LFNs
associated with a particular file, which can be
identified by its GUID, any of its LFNs, or the SURL
of one of its replicas:

$ lcg-la --vo gilda \
 guid:cf93526e-807a-43a6-f55a3989623c

 lfn:/grid/gilda/test.txt

Managing aliases

The lcg-aa (add alias) command allows the user to
add a new LFN to an existing GUID:

$ lcg-aa --vo gilda \
 guid:baddb707-0cb5-4d9a-8141-a046659d243b lfn:/
grid/gilda/new_alias

The lcg-ra command (remove alias) allows a user to
remove an LFN from an existing GUID:

$ lcg-ra --vo gilda \
 guid:baddb707-0cb5-4d9a-8141-a046659d243b lfn:/
grid/gilda/my_alias1

Copying files out the Grid

$ lcg-cp --vo gilda -t 100 -v lfn:/grid/gilda/
tutorials/pippo.txt file:/tmp/pippo.txt

Source URL: lfn:/grid/gilda/pippo.txt
File size: 104857600
Source URL for copy:
gsiftp://aliserv6.ct.infn.it:/storage/gilda/2007-07-06/

input2.dat.10.0
Destination URL: file:///tmp/myfile
streams: 1
set timeout to 100 (seconds)
 85983232 bytes 8396.77 KB/sec avg 9216.11

Transfer took 12040 ms

Deleting replicas /1

A file stored on a SE and registered in LFC can be
deleted using the lcg-del command.

•  If a SURL is provided as argument, then that
particular replica will be deleted.

•  If a LFN or GUID is given instead then the –s <SE>
option must be used to indicate which one of the
replicas must be erased

$ lcg-del --vo gilda -s aliserv6.ct.infn.it \
 guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

•  If the –a option is used, all the replicas of the given file
will be deleted and unregistered from the catalog.

$ lcg-del --vo gilda -a \
 guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

Deleting replicas /2

Registering Grid files

The lcg-rf command allows to register a file physically
present in a SE, creating a GUID-SURL mapping in the
catalogue.

The -g <GUID> option allows to specify a GUID (otherwise
automatically created).

$ lcg-rf --vo gilda \
 -g guid:baddb707-0cb5-4d9a-8141-a046659d243b \ srm://
aliserv6.ct.infn.it/data/gilda/generated/2004-07 08/
file0dcabb46-2214-4db8-9ee8-2930de1

 guid:baddb707-0cb5-4d9a-8141-a046659d243b

Unregistering Grid files

lcg-uf allows to delete a GUID-SURL mapping
(respectively the first and second argument of the
command) from the catalogue:

$ lcg-uf --vo gilda \
 guid:baddb707-0cb5-4d9a-8141-a046659d243b \
 srm://aliserv6.ct.infn.it/data/gilda/generated/
2004-07 08/file0dcabb46-2214-4db8-9ee8-2930de1

If the last replica of a file is unregistered, the
corresponding GUID-LFN mapping is also removed.

 Attention!
 lcg-uf just removes entries from the catalogue.
 It does not remove any physical replica from the SE.

File Transfer Service

•  The File Transfer Service (FTS) is the lowest-level data
movement service defined in gLite.
–  It is responsible for moving sets of files from one site to

another.
–  It is designed for point to point movement of physical files

(no file routing via intermediate storage).
–  The FTS has dedicated interfaces for managing the network

resource and to display statistics of ongoing transfers.
–  The FTS handles internally the SRM negotiation between the

source and destination SEs and the management of the
underlying GridFTP transfers.

FTS Architecture

•  The clients. The FTS client libraries or
command line tools are used by the applications
to communicate with the FTS.

• 
•  The FTS Web Service. The web service

component is implemented as a Tomcat web
application. This is a proper web service that
implements the WSDL as defined by the FTS
interface. Based on the Web Service Description
Language document, anyone can build their own
clients in their own preferred language. The web
service connects to the database through JDBC
using a Tomcat database connection pool.

•  The FTS Database. There is a MySQL and an
Oracle implementation of the FTS schema. This
is the only persistency point in the system and it
scales only as well as the corresponding
backend allows (Oracle scales better than
MySQL, obviously). There can be only a single
instance of this database for a given FTS
instance.

•  The File Transfer Agents. It is an agent that
actually performs the file transfers on the
channels that the FTS manages.

Basic Concepts /1

•  Transfer Job: a set of files to be transferred in a source/
destination pair format;

•  File: a source/destination SURL pair to be transferred;
•  Job State: a function of the individual file states constituting

the Job;
•  File State: the state of an individual file transfer;
•  Channel: a specific network pipe used for file transfers.

–  Production channels are high bandwidth, dedicated
network pipe between Tier-0, Tier-1’s and other major
Tier-2’s centers.

–  Non-production channels are assigned typically to
open networks and do not guarantee a minimum
throughput as production channels do.

Basic Concepts /2

•  The transfer jobs are processed asynchronously (batch mode).
Upon submission, a job identifier is returned to the user.

•  This identifier can be used to query the status of the job as it
progresses through the system or cancel the job.

•  Once a job has been submitted to the system it is assigned to a
transfer channel based on the SEs containing the source and
the destination.

Transfer job states

•  Submitted: the job has been submitted to FTS but not yet assigned to a
channel

•  Pending: the job has been assigned to a channel and files are waiting
for being transferred

•  Active: the transfer for some of the job’s files is ongoing
•  Canceling: the job is being canceled
•  Canceled: the job has been

canceled
•  Done: all files in a job were

successfully transferred
•  Failed: some file transfers in a job

have failed
•  Hold: the job has aborted and

requires manual interventions
(moving it to Pending or Failed)

FTS Commands /1

•  Before submitting a job, the user is expected to upload an
appropriate password-protected long-term proxy to the
MyProxy server used by FTS.

The following user-level commands for submitting, querying and
canceling jobs are described here:

glite-transfer-submit Submits a transfer job
glite-transfer-status Displays the status of an ongoing

 transfer job

glite-transfer-list Lists all submitted transfer jobs
 owned by the user

glite-transfer-cancel Cancels a transfer job

FTS Commands /2

•  Some additional administrative commands are described here

glite-transfer-channel-add Create a new channel with
 defined parameters on

FTS

glite-transfer-channel-list Displays details of the given
 channel defined on FTS

glite-transfer-channel-set Allows administrator to set a
 channel ‘Active’ or ‘Inactive’

Submitting a job to FTS

•  Once a user has successfully registered a long-term proxy to a
MyProxy server, he can submit a transfer job. He can do it either by
specifying the source-destination pair in the command line:

 $ myproxy-init -s myproxy-fts.cern.ch -d

 $ glite-transfer-submit -m myproxy-fts.cern.ch \
 -s https://w-fts.grid.sinica.edu.tw:8443/sc3/glite-data-
transfer-fts/services/FileTransfer \

 srm://srm.sara.nl/pnfs/srm.sara.nl/data/source_file \
 srm://srm.cnaf.infn.it/castor/cnaf.infn.it/grid/destination

 Enter MyProxy password:
 Enter MyProxy password again:

 c2e2cdb1-a145-11da-954d-944f2354a08b

Querying the job status

•  The following example shows a query to FTS to infer information
about the state of a transfer job:

 $ glite-transfer-status \
 -s https://w-fts.grid.sinica.edu.tw:8443/sc3/glite-data-
transfer-fts/services/FileTransfer \

 -l c2e2cdb1-a145-11da-954d-944f2354a08b

 Source: srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/
source_file

 Destination: srm://sc.cr.cnaf.infn.it/castor/cnaf.infn.it/
grid/destination

 State: Pending
 Retries: 0
 Reason: (null)
 Duration: 0

Listing and Canceling data transfer

•  Listing..

 $ glite-transfer-list \
 -s https://w-fts.grid.sinica.edu.tw:8443/sc3/glite-data-
transfer-fts/services/FileTransfer

 ...
 c2e2cdb1-a145-11da-954d-944f2354a08b Pending

•  Cancelling..

$ glite-transfer-cancel \
 -s https://w-fts.grid.sinica.edu.tw:8443/sc3/glite-data-
transfer-fts/services/FileTransfer \

 c2e2cdb1-a145-11da-954d-944f2354a08b

References

•  gLite 3 User Guide – Manual Series

https://edms.cern.ch/file/722398/1.2/gLite-3-
UserGuide.pdf

•  gLite Documentation homepage
–  http://glite.web.cern.ch/glite/documentation/

default.asp
•  DM subsystem documentation

–  http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/
doc.htm

•  File Transfer Services

–  http://cern.ch/egee-jra1-dm/FTS/default.htm
•  LFC and DPM documentation

–  https://uimon.cern.ch/twiki/bin/view/LCG/
DataManagementDocumentation

Hands-on

•  Connect to the training infrastructure using the information
reported in the tutorial sheet

•  Run the hands-on available in this web link:
•  http://www.euasiagrid.org/wiki/index.php/

Data_Management

•  Enjoy!

