
54 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

T
There is nothing like a disagreement concerning an
arcane technical matter to bring out the best (and worst)
in software architects and developers. As every reader
knows from experience, it can be hard to get to the bot-
tom of what exactly is being debated. One reason for this
lack of clarity is often that different people care about
different aspects of the problem. In the absence of agree-
ment concerning the problem, it can be difficult to reach
an agreement about the solutions.

In this article we discuss a technical matter that has
spurred vigorous debate in recent years: How to define
interactions among Web services to support operations
on state (that is, data values associated with a service that
persist across interactions, so that the result of one opera-
tion can depend on prior ones).4 An airline reservation
system and a scheduler of computational jobs are two
examples of systems with this requirement. Both must
provide their clients with access to information about
ongoing activities: reservations and jobs, respectively.
Clients typically want to name and/or identify state (refer
to a specific reservation or job), access that state (get the
status of a flight reservation or the execution progress of
a job), modify part of that state (change the departure
time of a flight or set the CPU requirements of a job), and
destroy it (cancel a reservation or kill a job).

How Do I Model State? Let Me Count the Ways

Ian Foster, Argonne National Laboratory
Savas Parastatidis, Microsoft Research

Paul Watson, Newcastle University
Mark McKeown, University of Manchester

A study of the technology and sociology
of Web services specifications

ACM QUEUE February/March 2009 55 more queue: queue.acm.org

How Do I Model State? Let Me Count the Ways

56 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

The debate over this issue does not concern the need
for such operations but rather the specifics of how exactly
to model and implement service state and the associated
interactions on that state. State may be modeled explic-
itly by the distributed computing technology used (for
example, as an “object” with create, read, update, and
destroy operations) or implicitly by referring to applica-
tion domain-specific concepts within the interactions (for
example, “create reservation” and “update reservation”
messages that include a domain-specific identifier such
as an ASIN—Amazon standard identification number—in

the body). Along a different dimension, we may use HTTP
or SOAP as an implementation technology.

Our goal here is to shed light on possible approaches
to modeling state. To this end, we present four different
approaches and show how each can be used to enable
access to a simple job management system. Then we sum-
marize the key arguments that have been made for and
against each approach. In addition to providing insights
into the advantages and disadvantages of the different
approaches, the discussion may also be interesting as a
case study in technical debate. As we will see, the four
approaches are remarkably similar in what they do, but
differ in precisely how they do it.

SOME PRELIMINARY OBSERVATIONS
First, a few observations about what we mean by modeling
state. The systems with which we want to interact may
have simple or complex internal state. Various aspects
of this state may be exposed so that external clients
can engage in “management” operations. For example,
an airline reservation system might give customers the
ability to programmatically create, monitor, and manage
reservations. The same system might also allow operators
to programmatically access information about current
system load and the mapping of computational resources
to different system functions. We are not suggesting these
mechanisms provide direct access to the underlying state
in its entirety. Rather, we are assuming the principles of
encapsulation and data integrity/ownership are main-
tained. It is up to a system’s designer to define the projec-
tions to those aspects of the system’s internal state that
they are willing to expose to the outside world.5

Such projections can be complex. In the case of a job
management system, for example, the underlying state
associated with even an apparently simple job may con-
sist of multiple distinct processes on different back-end
computers, entries in various internal tables and catalogs,
and activities within subsystems such as schedulers and
monitors. When designing the allowed interactions with
such a system, we must model the “state of a job” (the
projection of the complex underlying state that is to be
made available to clients) in a manner that is not only

Alphabet and Specification Soup
Any discussion of Web services inevitably involves a

plethora of acronyms and specification names. We list
some of them here. To save space, we do not provide
citations for individual specifications. These can easily
be located online.

EPR (endpoint reference). As defined in the
WS-Addressing specification, a combination of Web
services elements that define the address for a resource
in a SOAP header.

SOAP. A protocol for exchanging XML-based mes-
sages over networks, normally using HTTP.

WSDL (Web Services Description Language).
An XML-based language that provides a model for
describing Web services.

WS-Eventing. A specification that defines a proto-
col for Web services to subscribe to another Web ser-
vice or accept a subscription from another Web service.

WSDM (Web Services Distributed Management)
An OASIS-developed Web services architecture and set
of specifications for managing distributed resources.

WS-ResourceTransfer. A proposed integration of
WS-RF and WS-Transfer.

WS-RF (Web Services Resource Framework). An
OASIS-developed architecture and set of specifications
for describing and accessing state in a Web service.

WS-Transfer. A specification that defines a pro-
tocol for the transfer of an XML representation of a
WS-addressable resource, as well as for creating and
deleting such resources.

ACM QUEUE February/March 2009 57 more queue: queue.acm.org

easy for clients to understand and use but that also makes
it possible to maintain this projection effectively.

We use the shorthand “modeling state” rather than
the unwieldy “modeling a projection of underlying sys-
tem state.” It is important to bear in mind, however, the
reality of what could be going on behind the boundaries
of a system with which an interaction takes place.

We also make a few remarks concerning the difference
between architectural styles and implementation tech-
nologies. The evolution of the Web from an infrastructure
that enables access to resources to a platform for distrib-
uted applications has resulted in much discussion on the
relevant architectural approaches and technologies. Terms
such as REST (representational state transfer,3 an archi-
tectural style) and HTTP (a protocol specification) are
often used interchangeably to indicate an architectural
approach in which a small set of verbs/operations (PUT,
GET, DELETE) with uniform semantics are used to build
applications. Similarly, the popularity of Web services (a
set of protocol specifications)1 has resulted in the use of
that term as a synonym for service orientation (an archi-
tectural style).

We draw a distinction between the architectural styles
and their implementation technologies. Instances of the
former represent a collection of principles and constraints
that provide guidance when designing and implement-
ing distributed applications. In contrast, the latter are the
mechanisms or tools used to apply the principles of an
architectural style when building applications. There is
not a one-to-one mapping between an architectural style
and an implementation technology, even though one set
of tools may be easier to use when applying a particular
set of principles. For example, pure HTTP is particularly
well suited for implementing distributed applications
according to REST principles, while Web services technol-
ogies such as SOAP are better suited for interface-driven
applications. There is no reason, however, why one could
not build a REST-oriented application using Web services
technologies or a distributed object-based application
using HTTP—although we doubt anyone would want to
go through such an exercise.

FOUR APPROACHES TO MODELING STATE
Table 1 summarizes the key properties of the four
approaches presented here. The following provides a brief
description of each approach.

WS-RF APPROACH

WS-RF (Web Services Resource Framework) defines
conventions on how state is modeled and managed

using Web services technologies. WS-RF implements an
architectural style similar to that of distributed objects or
resources. Projected state is explicitly modeled as an XML
document (the state representation) and is addressable
via a WS-Addressing EPR (endpoint reference), a con-
ventional representation of the information that a client
needs to access a network service.

As in traditional object-based systems, any number
of operations can be defined that access, or result in the
change of, the projected state. The WS-RF specifications,
however, define a set of common operations for the fol-
lowing: accessing that projected state (the XML docu-
ment) in its entirety or in part; requesting notification of
changes on it (using WS-Notification); updating it in its
entirety or in part; and deleting it. The structure of the
XML document (that is, the schema), together with all
the operations that can be applied to the projected state,
known as the resource, are included in the WSDL (Web
Services Description Language) document associated with
the state’s EPR, thus allowing clients to discover, using
standard operations, what state a particular service makes
available.

The WS-RF and WS-Notification specifications were
developed within OASIS (Organization for the Advance-
ment of Structured Information Standards). They are
implemented within various open source and proprietary
systems. Other specifications, notably WS-Notification
and WSDM (Web Services Distributed Management),
build on WS-RF.

 WS-TRAnSFeR APPROACH

WS-Transfer, like WS-RF, models the projected state
explicitly through an XML document accessible via an
EPR. However, the only operations defined on that state
are, as per the CRUD (create, retrieve, update, and delete)
architectural style: create a new resource state representa-
tion by supplying a new XML document; get an entire
resource state representation; put a new resource state rep-
resentation to replace an existing one; and delete an exist-
ing state representation. Distributed, resource-oriented
applications are then built by using these operations to
exchange state representations.

The WS-Transfer specification was developed by an
industry group led by Microsoft and has recently been
submitted to the W3C (World Wide Web Consortium) for
standardization. Other specifications, notably WS-Event-
ing and WS-Management, build on WS-Transfer. As we
will see later, WS-Transfer and WS-RF differ only in minor
technical details; they arguably owe their separate exis-
tence more to industry politics than technical consider-

58 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

ations. Fortunately, there seems to be industry support for
an integration of the WS-Transfer and WS-RF approaches,
based on a WS-Transfer substrate—the WS-ResourceTrans-
fer specifications.

HTTP APPROACH

HTTP is an application protocol implementing a resource-
oriented approach to building distributed systems. It
has been described as an implementation of the REST

architectural style. Like WS-RF and WS-Transfer, HTTP
implements a resource-oriented approach to building
distributed systems. According to REST, a small set of
verbs/operations with uniform semantics should be used
to build hypermedia applications, with the Web being an
example of such an application. The constraints applied

WF-RF WS-Transfer HTTP No conventions

State represen-

tation schema

WSDL

extensions

Address state

representation

EPR (WS-Addressing) EPR (WS-

Addressing)

URI URN

Create

new state

Create

(WS-Transfer)

HTTP POST

Access

entire state

GetResourcePropertyDocument

(WS-ResourceProperties)

Get

(WS-Transfer)

HTTP GET

Get part

of state

GetResourceProperty,

GetMultipleResourceProperties,

 QueryResourceProperties

(WS-ResourceProperties)

Not defined unless part of a state

representation is exposed through

a different URI (no semantics

about the relationship are defined)

Update entire

state

SetResourceProperties

(WS-ResourceProperties)

Put

(WS-Transfer)

HTTP PUT

Update, or add,

part of state

SetResourceProperties, InsertResourceProperties,

UpdateResourceProperties, DeleteResource-

Properties (WS-ResourceProperties)

Request

notification

Subscribe

(WS-Notification)

Subscribe

(WS-Eventing)

Subscribe

(WS-Eventing)

Lease-based life-

time management

SetTerminationTime

(WS-resourcelifetime)

Destroy

state

Destroy

(WS-ResourceLifetime)

Delete

(WS-Transfer)

HTTP DELETE

Fault

modeling

Well-defined error codes

(WS-BaseFaults + other specs)

SOAP faults HTTP fault codes SOAP faults

RPC-

based

Yes Yes No No

Open standards

process

Yes

(OASIS)

Yes

(W3C)

Already

a standard

No need for

new standards

1 TA
BL

E

Key Characteristics of the Four Approaches

ACM QUEUE February/March 2009 59 more queue: queue.acm.org

through the semantics of these operations aim to allow
applications to scale (for example, through caching of
state representations). State representations are identified
through a URI.

HTTP defines simple verbs—such as POST, PUT, GET,
DELETE—and headers to enable the implementation of
applications according to REST principles. XML is just
one of the many media formats that HTTP can handle.

nO-COnvenTiOnS APPROACH

Finally, in the “no conventions for managing state”
approach (shortened to “no conventions” in table 1),6
there are no such concepts as operations, interfaces,
classes, state, clients, or servers. Instead, applications
are built through the exchange of one-way messages
between services. Semantics to the message exchanges
(for example, whether a message can be cached or
whether a transactional context is included) are added
through composable protocols. State representations
are not fundamental building blocks. Instead, resources
should be identified through URIs (or URNs) inside the
messages, leaving it up to the application domain-specific
protocols to deal with state management. Although any
asynchronous messaging technologies could be used in
implementations following this style, we consider here
an implementation based on Web services protocols, but
without the introduction of state-related conventions.

JOB MANAGEMENT ExAMPLE
We use a simple example to provide a more concrete com-
parison of these four approaches. The example is a job
management system that allows clients both to request
the creation of computational tasks (“jobs”) and to moni-
tor and control previously created jobs. It provides the
eight operations listed in table 2, which we choose to rep-
resent as a range of typical state manipulation operations.
In each case, a client makes the request by sending an
appropriate message to the job management system and
then expects a response indicating success or failure.

Operation 1 creates a new job and returns a handle
that can be used to refer to the job in subsequent
operations. Parameters specify such things as required
resources, an initial lifetime for the job, and the program
to be executed.

Operations 2–7 support some archetypal job monitor-
ing and control functions on a single job.

Operation 8 is an example of an interaction that may
relate to multiple jobs. The set of jobs to which the opera-
tion is to be applied might be specified either in terms of
job characteristics or by supplying a set of job handles.

In the discussion that follows, we show how our four
approaches can be used to build a service that supports
these eight tasks. Each approach not only has in com-
mon that the “job factory service” is a network endpoint
to which job creation and certain other requests should
be directed, but also is distinguished from the other

approaches in terms of:
• Its syntax (that is, how
the job handle should
be represented and how
operations on the job
should be expressed in
messages).
• Its use (or not) of conven-
tions defined in existing
specifications for the pur-
pose of defining its syntax.

The distinction made
here between syntax and
conventions may appear
unimportant, but we
emphasize it so that we
can focus in this section
on syntax and postpone
discussion of the advan-
tages or disadvantages of

Operation Description

1 Create

new job

A client requests the creation of a new job by sending a job creation request to a job

factory service responsible for creating new jobs. Upon success, a job handle is

returned that can be used to refer to the job in subsequent operations.

2 Retrieve

state

Retrieve all state information associated with a specified job (e.g., execution status,

resource allocation, program name).

3 Status Determine the execution status (e.g., active, suspended) of a specified job.

4 Lifetime Extend the lifetime of a specified job.

5 Subscribe Request notification of changes in the state of a specified job.

6 Suspend Suspend a specified job.

7 Terminate Terminate a specified job.

8 Terminate

multiple

Apply the terminate operation to all jobs that satisfy certain criteria, such as those

belonging to a particular client, those with a particular total execution time, those with

a specific current execution status, or those with explicitly identified job handles.

2 TA
BL

E

The Eight Operations Considered in Our Comparison of Approaches

60 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

Message To Returns on success

1 CreateJob(job-specification) job-factory-service WS-Resource-qualified EPR to job state (job handle)

2 GetResourcePropertyDocument() job-handle EPR XML document comprising all job state

3 GetResourceProperty(“status”) job-handle EPR Job status

4 SetTerminationTime(lifetime) job-handle EPR New lifetime

5 Subscribe(condition) job-handle EPR EPR to subscription

6 Suspend job-handle EPR Acknowledgment

7 Destroy job-handle EPR Acknowledgment

8 DestroyMultiple(job-description) job-factory-service Acknowledgment

Message To Returns on success

1 Create(job-spec) job-factory-service EPR to job state

2 Get() job-handle EPR XML document comprising all job state

3 Get() job-handle EPR XML document comprising all job state,

from which status can be extracted.

4 Setlifetime(lifetime) job-handle EPR New lifetime

5 Subscribe(condition) job-handle EPR EPR to subscription

6 Suspend job-handle EPR Acknowledgment

7 Delete() job-handle EPR Acknowledgment

8 DeleteMultiple(job-spec) job-factory-service Acknowledgment

Message To Returns on success

1 HTTP POST

job-specification

job-factory-service (e.g., http://grid.org) URI(s) identifying the job(s) that have been created (e.g.,

http://grid.org/bloggs/Jobs/4523)

2 HTTP GET http://grid.org/bloggs/Jobs/4523 A representation of the state of the job, including Xlinks

and semantic information

3 HTTP GET http://grid.org/bloggs/Jobs/4523/status A representation of the status of the job

4 HTTP PUT exp-time http://grid.org/bloggs/Jobs/4523/lifetime Acknowledgment

5 HTTP POST condition http://grid.org/bloggs/Jobs/4523/subs URI identifying the new subscription

6 HTTP PUT “suspended” http://grid.org/bloggs/Jobs/4523/status Acknowledgment

7 HTTP DELETE http://grid.org/bloggs/Jobs/4523 Acknowledgment

8 — — —

3 TA
BL

E

4 TA
BL

E

5 TA
BL

E

Syntax used in WS-RF Job Management Interface

Syntax used in WS-Transfer Job Management Interface

Syntax used in REST Job Management Interface

ACM QUEUE February/March 2009 61 more queue: queue.acm.org

adopting specific “standards” (conventions) to later in
this article.

WS-RF implementation. Table 3 describes a job man-
agement interface based on the WS-RF and WS-Notifi-
cation specifications. We use boldface type to indicate
operation names that are defined in some specification
associated with the approach in question. Those opera-
tions that are not in boldface are, by definition, not
defined in any existing specification, and thus their syn-
tax and semantics represent somewhat arbitrary choices,
selected for illustrative purposes. We see that WS-RF and
WS-Notification specifications provide five of the eight
required functions.

The job handle returned upon success from operation
1 is represented as an EPR. A client receiving such a job
handle can then use it as a destination for operations 2–7.
Note that requests are directed to the Web services address
contained in the job handle EPR, which may or may not
be the job factory service. This distinction is important
because it allows for a logical and/or physical separation
between the job factory and job management functions.

Operation 8 is sent directly to the job factory service,
which is assumed to have access to information about all
active jobs. The argument could be, for example, a speci-
fication (such as an XPath specification) identifying the
jobs that are to be terminated (for example, all jobs cre-
ated by Bloggs or all jobs that have exceeded their quota,
and/or a list of EPRs denoting the jobs to be terminated).

WS-Transfer implementation. Table 4 describes a job
management interface based on the use of the WS-Trans-
fer and WS-Eventing specifications, which provide five of

the eight required operations. As in the WS-RF interface,
the job handle returned upon success from operation 1
is represented as an EPR, and a client receiving such a
job handle can then use it as a destination for operations
2–7. Note that requests are directed to the Web services
address contained in the job handle structure, which may
or may not be the job factory service.

An alternative treatment of operation 3 is possible,
albeit with some extra work, avoiding the need to
transfer the entire state document. A new operation (for
example, GetEPRtoPart) is defined, requesting that a new
state representation be exposed, through a different EPR,
representing parts of the original state representation.
The Get() operation is then applied to this new EPR. WS-
Transfer applications (and higher-level specifications such
as WS-Management) often use this approach to address
the lack of support for partial state access in WS-Transfer.

Operation 8 is sent directly to the job factory service,
which is assumed to have access to information about all
active jobs, as in the WS-RF case.

HTTP implementation. Table 5 summarizes the syntax
of an HTTP implementation. Note that operation 5 can
alternatively be addressed via some custom encoding or
by using a system such as SMTP, Jabber, SMS, or Atom.
HTTP DELETE cannot take any content, so there is no
way to specify that a set of jobs (operation 8) can be
deleted by using the HTTP DELETE message, except in the
case when we delete all jobs in some predefined group
(for example, “HTTP DELETE http://grid.org/Bloggs/Jobs”
to delete all jobs created by Bloggs).

Note that whereas HTTP defines all the verbs used, the

* May also silently accept the message and report on fault only. If proof of delivery is necessary, WS-ReliableMessaging can be used.

6TABLE Syntax Used in Job Handle Approach

Message To Returns on success

1 “New job” carrying the job specification job-management-service Identifier for the newly created job

2 “State” carrying job identifier(s) any job service aware of the job identifier(s) XML document with job state(s)

3 “Status” carrying job identifier(s) any job service aware of the job identifier(s) XML document with job status(s)

4 “New lifetime” carrying job identifier(s) and new lifetime(s) any job service aware of the job identifier(s) Acknowledgment*

5 “Subscription” carrying job identifier(s) and subscription

information (for each)

any job service aware of the job identifier(s) Acknowledgment*

6 “Suspension” carrying job identifier(s) any job service aware of the job identifier(s) Acknowledgment*

7 “Destroy request” carrying job identifiers(s) any job service aware of the job identifier(s) Acknowledgment*

8 “Destroy request” carrying job identifier(s)

and query expression

any job service aware of the job identifier(s) Acknowledgment*

62 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

structure of the URIs and the format and semantics of
the documents exchanged in order to implement the job
service’s operations are application specific. Thus, while
the URIs appear to convey some semantic information
based on their structure (for example, a /status at the end
of a particular job URI may be interpreted by a human
as the identifier of the status resource), this is an applica-
tion-specific convention.

No-conventions/Web services implementation. Since
in this approach we assume no defined state management
conventions with widely agreed-upon semantics, each
application domain is expected to define interactions
that meet its own requirements. Table 6 summarizes a
potential implementation of the job management service
in this style, using SOAP messaging.

Because of the nature of the example chosen, all
operations are defined as request-response message
exchanges. The CreateJob message exchange returns
an identifier as the job handle. The returned job identi-
fier may be a globally unique URI (for example, a URN)
that can be accepted by multiple job services. Metadata
about it (for example, the job services that “know” about
it) may be discovered from registries. Examples of this
approach to identifying resources include the LSID (Life
Science Identifier), IVOA (International Virtual Observa-
tory Alliance) identifier, and ASIN. Thus, the job identifier
may become a technology-independent handle that can
also be used with other technologies (for example, a Jini
or CORBA interface to the same service). A client receiv-
ing such a job handle can then pass it to the job manage-
ment service.

DISCUSSION
The four approaches to modeling state do not dif-
fer greatly in terms of what they actually do. All send
essentially the same messages, with the same content,
across the network. For example, a request to destroy a
particular job will in each case be directed to a network
endpoint via an HTTP PUT, and will contain the name of
the operation to be performed, plus some data indicating
the job that should be destroyed. The approaches vary
only in how these different components are included in a
message, an issue that may have implications for how

messages can be processed and routed but that has no
impact on how services are implemented.

At the same time, there clearly are significant differ-
ences among the approaches in their use of conventions,
the underlying protocols, and the tooling available to
support their use. Here we summarize important argu-
ments on these topics. The characterizations of the vari-
ous positions are our own.

The value of convention. Proponents of the WS-RF and
WS-Transfer approaches argue that creating, accessing,
and managing state involve a set of common patterns
that can usefully be captured in a set of specifications,
thus simplifying the design, development, and main-
tenance of applications that use those patterns. For
example, in the case of our job management service,
these proponents might observe the following:
• The creation and subsequent management of a job
can naturally be viewed as an instance of some general
patterns (creation, access, subscription, lifetime manage-
ment, and destruction of state associated with a job).
• The encoding of the job management interface in terms
of those patterns simplifies both the design of the inter-
face (as much of it is already provided in other specifica-
tions) and the explanation of that interface to others.

They may also point out that programmer produc-
tivity is enhanced by client tools and applications that
are “WS-RF and/or WS-Transfer aware.” For example, a
registry or monitoring system can use WS-RF operations
to access service state without any application-specific
knowledge of that state’s structure.2

In contrast, proponents of the no-conventions
approach argue that the design of any particular interface
(for example, one for job management) will typically be
relatively simple, involve issues that are not captured by
these conventional patterns, and not require all features
included in the specifications that encode that pattern.
Thus, one can achieve a simpler design by proceeding
from first principles. For example, in the case of our
job management service, while WS-RF and WS-Transfer
provide us with a Destroy operation “for free,” we still
need to introduce a separate Suspend operation. Further-
more, the semantics of Destroy may be quite application

ACM QUEUE February/March 2009 63 more queue: queue.acm.org

specific. For example, a service implementer may decide
to retain information about destroyed jobs (by changing
their status to “destroyed”) so that information about
them can still be retrieved. In this case, the state would
not be destroyed.

Finally, WS-RF and WS-Transfer focus on interaction
with single states (for example, DestroyMultiple had to be
custom defined) and so may not provide useful conven-
tions in cases where operating on multiple states is the
common case; for example, all Amazon REST and Web
services can consume multiple ASINs.

Ideally, we would like to evaluate the relative merits
of these two positions in
terms of concrete metrics
such as code size. Such
an evaluation, however,
requires agreement on
the requirements that the
interfaces should support.
Unfortunately, proponents
of the different approaches
tend to differ also in their
views of requirements. For
example, a proponent of
common patterns might
see the ability to use WS-
Resource Lifetime opera-
tions for soft-state lifetime
management as desirable,
while others might not see
that feature as important.

Standards. Another
topic of disagreement concerns the importance of stan-
dardized specifications. Unfortunately (but not uncom-
monly in the world of Web services), we are faced with
not one but two sets of Web services specifications, simi-
lar in purpose and design but different in minor aspects
of syntax and semantics. WS-RF has been submitted to,
reviewed, and approved by a standards body (OASIS); WS-
Transfer has been submitted to W3C but is not yet a W3C
recommendation. The proposed consolidation of the two,
WS-ResourceTransfer, adds to the confusion. Thus, we get
a mix of opinions, including the following:
• WS-RF, having undergone intensive community review
by a standards body, is therefore technically superior and/
or morally preferable to the “proprietary” WS-Transfer.
• WS-RF is superior to WS-Transfer for technical rea-
sons—for example, its support for access to subsets of a
resource’s state, which can be important if that state is

large. (In WS-Transfer, the same effect can be achieved,
but only by defining an auxiliary operation that returns
an EPR to a desired subset.)
• WS-Transfer is superior to WS-RF for technical reasons—
for example, its greater simplicity.
• As a general principle, we should employ only specifi-
cations that are stable, widely accepted, and supported
by interoperable tooling. Because neither WS-RF nor
WS-Transfer is supported by all major vendors, neither
passes this test. This view argues for the no-conventions
approach.
• HTTP is widely used on the Web and, as a result, it

should be preferred over
any WS-based solution.

Implementation reuse.
Proponents of conven-
tions such as WS-RF and
WS-Transfer argue that the
adoption of conventional
patterns can facilitate code
reuse. Every WS-RF or WS-
Transfer service performs
such things as state access,
lifetime management,
concurrency control for
incoming requests, and
state activation/deactiva-
tion in the same way. Thus,
the code that implements
those behaviors can be
reused in service imple-
mentations.

Proponents of the no-conventions approach, however,
reply that service implementers can also use the same
code. In other words, there is certainly value to providing
service implementers with standardized implementations
of common tasks, but this need not imply that those pat-
terns are exposed outside the service.

Simplicity vs. structure. Proponents of the HTTP/REST
approach emphasize that it provides for more concise
requests and permits the use of simpler client tooling
than approaches based on Web services. Critics point out
that the use of HTTP/REST means that users cannot lever-
age the significant investment in Web services technolo-
gies and platforms for message-based interactions.

SUMMARY
We have presented four different approaches to modeling
state in Web services interactions. Each approach defines
roughly comparable constructs for referring to, accessing,

The debates
 about these

different
approaches

 emphasize the
difficulties inherent

in separating the
technical, political,

and stylistic
 concerns.

64 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

and managing state components, but differs according to
both its precise syntax and the use made (or not) of con-
ventional domain-independent encodings of operations.

Thus, when defining state management operations,
the WS-RF and WS-Transfer approaches both use EPRs
to refer to state components and to adopt conventions
defined in the WS-RF and related specifications and in
the WS-Transfer and related specifications, respectively. In
contrast, the no-conventions and REST approaches adopt
domain-specific encodings of operations, on top of SOAP
and HTTP, respectively.

Analysis of the debates that have occurred around
these different approaches emphasizes the difficulties
inherent in separating technical, political, and stylistic
concerns. Some differences of opinion relate to well-
defined technical issues and reflect either different
philosophies concerning system design or different target
applications. Others relate to differing target time scales.
For example, no-conventions proponents initially argued
against the use of WS-Addressing because of lack of sup-
port for that specification in certain tools, while WS-RF
and WS-Transfer proponents argued in favor, believing
that WS-Addressing would eventually become universal.
Support for WS-Addressing has since become quasi-uni-
versal, and now few find its use objectionable. Q

ReFeRenCeS

1. Booth, D., Haas, H., McCabe, F., Newcomer, E., Cham-
pion, M., Ferris, C. and Orchard, D. 2003. Web Services
Architecture. W3C.

2. Chervenak, A., Schopf, J.M., Pearlman, L., Su, M.-H.,
Bharathi, S., Cinquini, L., D’Arcy, M., Miller, N., Bern-
holdt, D. 2006. Monitoring the Earth System Grid with
MDS4. IEEE Conference on e-Science and Grid Com-
puting. Amsterdam, Netherlands.

3. Fielding, R. 2000. Architectural styles and the design of
network-based software architectures. Information and
Computer Science. University of California Irvine.

4. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Gra-
ham, S., Maguire, T., Snelling, D., Tuecke, S. 2005.
Modeling and managing state in distributed systems:
The role of OGSI and WSRF. Proceedings of the IEEE
93(3): 604–612.

5. Helland, P. 2004. Data on the Inside vs. Data on the Out-
side. Microsoft.

6. Parastatidis, S., Webber, J., Watson, P. and Rischbeck, T.
2005. WS-GAF: A framework for building grid applica-
tions using Web services. Concurrency and Computation:
Practice and Experience 17 (2–4): 391–417.

ACKnOWLeDGMenTS

We are grateful to Karl Czajkowski, Jim Gray, and Sam
Meder for comments on an earlier version of this docu-
ment. Needless to say, the characterizations of the differ-
ent arguments are our own. The work of the first author
was supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.
The work at Newcastle was supported by the UK eScience
Programme, with funding from the EPSRC, DTI, and JISC.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

IAN FOSTER (foster@anl.gov) is the director of the Compu-
tation Institute at Argonne National Laboratory, where he is
an Argonne Distinguished Fellow, and the University of Chi-
cago, where he is the Arthur Holly Compton Distinguished
Service Professor of computer science.
SAVAS PARASTATIDIS (Savas.Parastatidis@newcastle.
ac.uk) is an architect for Microsoft Research. He inves-
tigates the use of technology in e-research and is par-
ticularly interested in cloud computing, knowledge
representation and management, and social networking.
PAUL WATSON (Paul.Watson@newcastle.ac.uk) is a
professor of computer science at Newcastle University,
and director of the North East Regional e-Science Centre
in the U.K.
MARK McKEOWN was a grid architect at the University
of Manchester, U.K., at the time of this work.
© 2009 ACM 1542-7730 /09/0200 $5.00

This article appears in print in the September 2008 issue
of Communications of the ACM.

ACM QUEUE February/March 2009 65 more queue: queue.acm.org

To join ACM and/or subscribe to the Digital Library, contact ACM:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Join URL: www.acm.org/joinacm

Mail: ACM Member Services
General Post Office
PO Box 30777
New York, NY 10087-0777 USAAD29

The Ultimate Online
INFORMATION TECHNOLOGY

Resource!

*Guide access is included with
Professional, Student and SIG member-
ship. ACM Professional Members can
add the full ACM Digital Library for
only $99 (USD). Student Portal Package
membership includes the Digital
Library. Institutional, Corporate, and
Consortia Packages are also available.

Powerful and vast in scope, the ACM Digital Library is
the ultimate online resource offering unlimited access and value!

The ACM Digital Library interface includes:

• The ACM Digital Library offers over 40 publications
including all ACM journals, magazines, and conference proceedings,
plus vast archives, representing over 2 million pages of text. The
ACM DL includes full-text articles from all ACM publications dating
back to the 1950s, as well as third-party content with selected
archives. PLUS NEW: Author Profile Pages with citation and usage
counts and New Guided Navigation search functionality!
www.acm.org/dl

• The Guide to Computing Literature offers an
 enormous bank of over one million bibliographic citations extending
far beyond ACM’s proprietary literature, covering all types of works in
computing such as journals, proceedings, books, technical reports,
and theses! www.acm.org/guide

• The Online Computing Reviews Service
includes reviews by computing experts, providing timely commen-
tary and critiques of the most essential books and articles.

Available only to ACM Members.
Join ACM online at www.acm.org/joinacm

www.acm.org/dl

ACM Digital Library

Advancing Computing as a Science & Profession

4-C Ad_09:DL 4-C queue ad 3/3/09 4:40 PM Page 1

