
54  February/March 2009  ACM QUEUE rants: feedback@queue.acm.org

T
There is nothing like a disagreement concerning an 
arcane technical matter to bring out the best (and worst) 
in software architects and developers. As every reader 
knows from experience, it can be hard to get to the bot-
tom of what exactly is being debated. One reason for this 
lack of clarity is often that different people care about 
different aspects of the problem. In the absence of agree-
ment concerning the problem, it can be difficult to reach 
an agreement about the solutions.

In this article we discuss a technical matter that has 
spurred vigorous debate in recent years: How to define 
interactions among Web services to support operations 
on state (that is, data values associated with a service that 
persist across interactions, so that the result of one opera-
tion can depend on prior ones).4 An airline reservation 
system and a scheduler of computational jobs are two 
examples of systems with this requirement. Both must 
provide their clients with access to information about 
ongoing activities: reservations and jobs, respectively. 
Clients typically want to name and/or identify state (refer 
to a specific reservation or job), access that state (get the 
status of a flight reservation or the execution progress of 
a job), modify part of that state (change the departure 
time of a flight or set the CPU requirements of a job), and 
destroy it (cancel a reservation or kill a job).
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The debate over this issue does not concern the need 
for such operations but rather the specifics of how exactly 
to model and implement service state and the associated 
interactions on that state. State may be modeled explic-
itly by the distributed computing technology used (for 
example, as an “object” with create, read, update, and 
destroy operations) or implicitly by referring to applica-
tion domain-specific concepts within the interactions (for 
example, “create reservation” and “update reservation” 
messages that include a domain-specific identifier such 
as an ASIN—Amazon standard identification number—in 

the body). Along a different dimension, we may use HTTP 
or SOAP as an implementation technology.

Our goal here is to shed light on possible approaches 
to modeling state. To this end, we present four different 
approaches and show how each can be used to enable 
access to a simple job management system. Then we sum-
marize the key arguments that have been made for and 
against each approach. In addition to providing insights 
into the advantages and disadvantages of the different 
approaches, the discussion may also be interesting as a 
case study in technical debate. As we will see, the four 
approaches are remarkably similar in what they do, but 
differ in precisely how they do it.

SOME PRELIMINARY OBSERVATIONS
First, a few observations about what we mean by modeling 
state. The systems with which we want to interact may 
have simple or complex internal state. Various aspects 
of this state may be exposed so that external clients 
can engage in “management” operations. For example, 
an airline reservation system might give customers the 
ability to programmatically create, monitor, and manage 
reservations. The same system might also allow operators 
to programmatically access information about current 
system load and the mapping of computational resources 
to different system functions. We are not suggesting these 
mechanisms provide direct access to the underlying state 
in its entirety. Rather, we are assuming the principles of 
encapsulation and data integrity/ownership are main-
tained. It is up to a system’s designer to define the projec-
tions to those aspects of the system’s internal state that 
they are willing to expose to the outside world.5 

Such projections can be complex. In the case of a job 
management system, for example, the underlying state 
associated with even an apparently simple job may con-
sist of multiple distinct processes on different back-end 
computers, entries in various internal tables and catalogs, 
and activities within subsystems such as schedulers and 
monitors. When designing the allowed interactions with 
such a system, we must model the “state of a job” (the 
projection of the complex underlying state that is to be 
made available to clients) in a manner that is not only 

Alphabet and Specification Soup
Any discussion of Web services inevitably involves a 

plethora of acronyms and specification names. We list 
some of them here. To save space, we do not provide 
citations for individual specifications. These can easily 
be located online.

EPR (endpoint reference). As defined in the 
WS-Addressing specification, a combination of Web 
services elements that define the address for a resource 
in a SOAP header.

SOAP. A protocol for exchanging XML-based mes-
sages over networks, normally using HTTP.

WSDL (Web Services Description Language). 
An XML-based language that provides a model for 
describing Web services.

WS-Eventing. A specification that defines a proto-
col for Web services to subscribe to another Web ser-
vice or accept a subscription from another Web service.

WSDM (Web Services Distributed Management) 
An OASIS-developed Web services architecture and set  
of specifications for managing distributed resources. 

WS-ResourceTransfer. A proposed integration of 
WS-RF and WS-Transfer.

WS-RF (Web Services Resource Framework). An 
OASIS-developed architecture and set of specifications  
for describing and accessing state in a Web service.

WS-Transfer. A specification that defines a pro-
tocol for the transfer of an XML representation of a 
WS-addressable resource, as well as for creating and 
deleting such resources.
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easy for clients to understand and use but that also makes 
it possible to maintain this projection effectively.

We use the shorthand “modeling state”  rather than 
the unwieldy “modeling a projection of underlying sys-
tem state.” It is important to bear in mind, however, the 
reality of what could be going on behind the boundaries 
of a system with which an interaction takes place.

We also make a few remarks concerning the difference 
between architectural styles and implementation tech-
nologies. The evolution of the Web from an infrastructure 
that enables access to resources to a platform for distrib-
uted applications has resulted in much discussion on the 
relevant architectural approaches and technologies. Terms 
such as REST (representational state transfer,3 an archi-
tectural style) and HTTP (a protocol specification) are 
often used interchangeably to indicate an architectural 
approach in which a small set of verbs/operations (PUT, 
GET, DELETE) with uniform semantics are used to build 
applications. Similarly, the popularity of Web services (a 
set of protocol specifications)1 has resulted in the use of 
that term as a synonym for service orientation (an archi-
tectural style).

We draw a distinction between the architectural styles 
and their implementation technologies. Instances of the 
former represent a collection of principles and constraints 
that provide guidance when designing and implement-
ing distributed applications. In contrast, the latter are the 
mechanisms or tools used to apply the principles of an 
architectural style when building applications. There is 
not a one-to-one mapping between an architectural style 
and an implementation technology, even though one set 
of tools may be easier to use when applying a particular 
set of principles. For example, pure HTTP is particularly 
well suited for implementing distributed applications 
according to REST principles, while Web services technol-
ogies such as SOAP are better suited for interface-driven 
applications. There is no reason, however, why one could 
not build a REST-oriented application using Web services 
technologies or a distributed object-based application 
using HTTP—although we doubt anyone would want to 
go through such an exercise. 

FOUR APPROACHES TO MODELING STATE
Table 1 summarizes the key properties of the four 
approaches presented here. The following provides a brief 
description of each approach. 

WS-RF APPROACH

WS-RF (Web Services Resource Framework) defines 
conventions on how state is modeled and managed 

using Web services technologies. WS-RF implements an 
architectural style similar to that of distributed objects or 
resources. Projected state is explicitly modeled as an XML 
document (the state representation) and is addressable 
via a WS-Addressing EPR (endpoint reference), a con-
ventional representation of the information that a client 
needs to access a network service. 

As in traditional object-based systems, any number 
of operations can be defined that access, or result in the 
change of, the projected state. The WS-RF specifications, 
however, define a set of common operations for the fol-
lowing: accessing that projected state (the XML docu-
ment) in its entirety or in part; requesting notification of 
changes on it (using WS-Notification); updating it in its 
entirety or in part; and deleting it. The structure of the 
XML document (that is, the schema), together with all 
the operations that can be applied to the projected state, 
known as the resource, are included in the WSDL (Web 
Services Description Language) document associated with 
the state’s EPR, thus allowing clients to discover, using 
standard operations, what state a particular service makes 
available.

The WS-RF and WS-Notification specifications were 
developed within OASIS (Organization for the Advance-
ment of Structured Information Standards). They are 
implemented within various open source and proprietary 
systems. Other specifications, notably WS-Notification 
and WSDM (Web Services Distributed Management), 
build on WS-RF.

 WS-TRAnSFeR APPROACH

WS-Transfer, like WS-RF, models the projected state 
explicitly through an XML document accessible via an 
EPR. However, the only operations defined on that state 
are, as per the CRUD (create, retrieve, update, and delete) 
architectural style: create a new resource state representa-
tion by supplying a new XML document; get an entire 
resource state representation; put a new resource state rep-
resentation to replace an existing one; and delete an exist-
ing state representation. Distributed, resource-oriented 
applications are then built by using these operations to 
exchange state representations. 

The WS-Transfer specification was developed by an 
industry group led by Microsoft and has recently been 
submitted to the W3C (World Wide Web Consortium) for 
standardization. Other specifications, notably WS-Event-
ing and WS-Management, build on WS-Transfer. As we 
will see later, WS-Transfer and WS-RF differ only in minor 
technical details; they arguably owe their separate exis-
tence more to industry politics than technical consider-
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ations. Fortunately, there seems to be industry support for 
an integration of the WS-Transfer and WS-RF approaches, 
based on a WS-Transfer substrate—the WS-ResourceTrans-
fer specifications.

HTTP APPROACH

HTTP is an application protocol implementing a resource-
oriented approach to building distributed systems. It 
has been described as an implementation of the REST 

architectural style. Like WS-RF and WS-Transfer, HTTP 
implements a resource-oriented approach to building 
distributed systems. According to REST, a small set of 
verbs/operations with uniform semantics should be used 
to build hypermedia applications, with the Web being an 
example of such an application. The constraints applied 

WF-RF WS-Transfer HTTP No conventions

State represen-

tation schema

WSDL  

extensions

Address state  

representation

EPR (WS-Addressing) EPR  (WS- 

Addressing)

URI URN

Create  

new state

Create   

(WS-Transfer)

HTTP POST

Access  

entire state

GetResourcePropertyDocument  

(WS-ResourceProperties)

Get   

(WS-Transfer)

HTTP GET

Get part  

of state

GetResourceProperty,   

GetMultipleResourceProperties, 

 QueryResourceProperties  

(WS-ResourceProperties)

Not defined unless part  of a state 

representation is exposed through 

a  different URI (no semantics 

about the relationship are defined)

Update entire 

state

SetResourceProperties  

(WS-ResourceProperties)

Put   

(WS-Transfer)

HTTP PUT

Update, or add,  

part of state

SetResourceProperties, InsertResourceProperties,  

UpdateResourceProperties, DeleteResource- 
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Request  

notification

Subscribe  
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Subscribe  

(WS-Eventing)

Subscribe  

(WS-Eventing)

Lease-based life-
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SetTerminationTime  

(WS-resourcelifetime)

Destroy  

state

Destroy   

(WS-ResourceLifetime)

Delete   
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HTTP DELETE 

Fault  
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Well-defined error codes  
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through the semantics of these operations aim to allow 
applications to scale (for example, through caching of 
state representations). State representations are identified 
through a URI. 

HTTP defines simple verbs—such as POST, PUT, GET, 
DELETE—and headers to enable the implementation of 
applications according to REST principles. XML is just 
one of the many media formats that HTTP can handle.

nO-COnvenTiOnS APPROACH

Finally, in the “no conventions for managing state” 
approach  (shortened to “no conventions” in table 1),6 
there are no such concepts as operations, interfaces, 
classes, state, clients, or servers. Instead, applications 
are built through the exchange of one-way messages 
between services. Semantics to the message exchanges 
(for example, whether a message can be cached or 
whether a transactional context is included) are added 
through composable protocols. State representations 
are not fundamental building blocks. Instead, resources 
should be identified through URIs (or URNs) inside the 
messages, leaving it up to the application domain-specific 
protocols to deal with state management. Although any 
asynchronous messaging technologies could be used in 
implementations following this style, we consider here 
an implementation based on Web services protocols, but 
without the introduction of state-related conventions.

JOB MANAGEMENT ExAMPLE
We use a simple example to provide a more concrete com-
parison of these four approaches. The example is a job 
management system that allows clients both to request 
the creation of computational tasks (“jobs”) and to moni-
tor and control previously created jobs. It provides the 
eight operations listed in table 2, which we choose to rep-
resent as a range of typical state manipulation operations. 
In each case, a client makes the request by sending an 
appropriate message to the job management system and 
then expects a response indicating success or failure.

Operation 1 creates a new job and returns a handle 
that can be used to refer to the job in subsequent 
operations. Parameters specify such things as required 
resources, an initial lifetime for the job, and the program 
to be executed.

Operations 2–7 support some archetypal job monitor-
ing and control functions on a single job.

Operation 8 is an example of an interaction that may 
relate to multiple jobs. The set of jobs to which the opera-
tion is to be applied might be specified either in terms of 
job characteristics or by supplying a set of job handles.

In the discussion that follows, we show how our four 
approaches can be used to build a service that supports 
these eight tasks. Each approach not only has in com-
mon that the “job factory service” is a network endpoint 
to which job creation and certain other requests should 
be directed, but also is distinguished from the other 

approaches in terms of:
• Its syntax (that is, how 
the job handle should 
be represented and how 
operations on the job 
should be expressed in 
messages). 
• Its use (or not) of conven-
tions defined in existing 
specifications for the pur-
pose of defining its syntax.

The distinction made 
here between syntax and 
conventions may appear 
unimportant, but we 
emphasize it so that we 
can focus in this section 
on syntax and postpone 
discussion of the advan-
tages or disadvantages of 

# 

# Operation Description

1 Create  

new job

A client requests the creation of a new job by sending a job creation request to a job 

factory service responsible for creating new jobs.  Upon success, a job handle is 

returned that can be used to refer to  the job in subsequent operations.

2 Retrieve  

state

Retrieve all state information associated with a specified job  (e.g., execution status, 

resource allocation, program name).

3 Status Determine the execution status (e.g., active, suspended) of  a specified job.

4 Lifetime Extend the lifetime of a specified job.

5 Subscribe Request notification of changes in the state of a specified job.

6 Suspend Suspend a specified job.

7 Terminate Terminate a specified job.

8 Terminate  

multiple

Apply the terminate operation to all jobs that satisfy certain criteria, such as those 

belonging to a particular client, those with a particular total execution time, those with 

a specific current execution status, or those with explicitly identified job handles.

2 TA
BL

E

The Eight Operations Considered in Our Comparison of Approaches
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# Message To Returns on success

1 CreateJob(job-specification) job-factory-service WS-Resource-qualified EPR  to job state (job handle)

2 GetResourcePropertyDocument() job-handle EPR XML document comprising  all job state

3 GetResourceProperty(“status”) job-handle EPR Job status

4 SetTerminationTime(lifetime) job-handle EPR New lifetime

5 Subscribe(condition) job-handle EPR EPR to subscription

6 Suspend job-handle EPR Acknowledgment

7 Destroy job-handle EPR Acknowledgment

8 DestroyMultiple(job-description) job-factory-service Acknowledgment

# Message To Returns on success

1 Create(job-spec) job-factory-service EPR to job state

2 Get() job-handle EPR XML document comprising all job state

3 Get() job-handle EPR XML document comprising all job state,  

from which status can be extracted. 

4 Setlifetime(lifetime) job-handle EPR New lifetime

5 Subscribe(condition) job-handle EPR EPR to subscription

6 Suspend job-handle EPR Acknowledgment

7 Delete() job-handle EPR Acknowledgment

8 DeleteMultiple(job-spec) job-factory-service Acknowledgment

# Message To Returns on success

1 HTTP POST  

job-specification

job-factory-service (e.g., http://grid.org) URI(s) identifying the job(s) that have been created (e.g., 

http://grid.org/bloggs/Jobs/4523)

2 HTTP GET http://grid.org/bloggs/Jobs/4523 A representation of the state of the job, including Xlinks 

and semantic information

3 HTTP GET http://grid.org/bloggs/Jobs/4523/status A representation of the status of the job

4 HTTP PUT exp-time http://grid.org/bloggs/Jobs/4523/lifetime Acknowledgment

5 HTTP POST condition http://grid.org/bloggs/Jobs/4523/subs URI identifying the new subscription

6 HTTP PUT “suspended” http://grid.org/bloggs/Jobs/4523/status Acknowledgment

7 HTTP DELETE http://grid.org/bloggs/Jobs/4523 Acknowledgment

8 — — —
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Syntax used in WS-RF Job Management Interface

Syntax used in WS-Transfer Job Management Interface

Syntax used in REST Job Management Interface
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adopting specific “standards” (conventions) to later in 
this article.

WS-RF implementation. Table 3 describes a job man-
agement interface based on the WS-RF and WS-Notifi-
cation specifications. We use boldface type to indicate 
operation names that are defined in some specification 
associated with the approach in question. Those opera-
tions that are not in boldface are, by definition, not 
defined in any existing specification, and thus their syn-
tax and semantics represent somewhat arbitrary choices, 
selected for illustrative purposes. We see that WS-RF and 
WS-Notification specifications provide five of the eight 
required functions.

The job handle returned upon success from operation 
1 is represented as an EPR. A client receiving such a job 
handle can then use it as a destination for operations 2–7. 
Note that requests are directed to the Web services address 
contained in the job handle EPR, which may or may not 
be the job factory service. This distinction is important 
because it allows for a logical and/or physical separation 
between the job factory and job management functions.

Operation 8 is sent directly to the job factory service, 
which is assumed to have access to information about all 
active jobs. The argument could be, for example, a speci-
fication (such as an XPath specification) identifying the 
jobs that are to be terminated (for example, all jobs cre-
ated by Bloggs or all jobs that have exceeded their quota, 
and/or a list of EPRs denoting the jobs to be terminated).

WS-Transfer implementation. Table 4 describes a job 
management interface based on the use of the WS-Trans-
fer and WS-Eventing specifications, which provide five of 

the eight required operations. As in the WS-RF interface, 
the job handle returned upon success from operation 1 
is represented as an EPR, and a client receiving such a 
job handle can then use it as a destination for operations 
2–7. Note that requests are directed to the Web services 
address contained in the job handle structure, which may 
or may not be the job factory service.

An alternative treatment of operation 3 is possible, 
albeit with some extra work, avoiding the need to 
transfer the entire state document. A new operation (for 
example, GetEPRtoPart) is defined, requesting that a new 
state representation be exposed, through a different EPR, 
representing parts of the original state representation. 
The Get() operation is then applied to this new EPR. WS-
Transfer applications (and higher-level specifications such 
as WS-Management) often use this approach to address 
the lack of support for partial state access in WS-Transfer.

Operation 8 is sent directly to the job factory service, 
which is assumed to have access to information about all 
active jobs, as in the WS-RF case.

HTTP implementation. Table 5 summarizes the syntax 
of an HTTP implementation. Note that operation 5 can 
alternatively be addressed via some custom encoding or 
by using a system such as SMTP, Jabber, SMS, or Atom. 
HTTP DELETE cannot take any content, so there is no 
way to specify that a set of jobs (operation 8) can be 
deleted by using the HTTP DELETE message, except in the 
case when we delete all jobs in some predefined group 
(for example, “HTTP DELETE http://grid.org/Bloggs/Jobs” 
to delete all jobs created by Bloggs).

Note that whereas HTTP defines all the verbs used, the 

*  May also silently accept the message and report on fault only. If proof of delivery is necessary, WS-ReliableMessaging can be used.

6TABLE Syntax Used in Job Handle Approach

# Message To Returns on success

1 “New job” carrying the job specification job-management-service Identifier for the newly created job

2 “State” carrying job identifier(s) any job service aware of the job identifier(s) XML document with  job state(s)

3 “Status” carrying job identifier(s) any job service aware of the job identifier(s) XML document with job status(s)

4 “New lifetime” carrying job identifier(s) and new lifetime(s) any job service aware of the job identifier(s) Acknowledgment*

5 “Subscription” carrying job identifier(s) and subscription 

information (for each)

any job service aware of the job identifier(s) Acknowledgment*

6 “Suspension” carrying job identifier(s) any job service aware of the job identifier(s) Acknowledgment*

7 “Destroy request” carrying job identifiers(s) any job service aware of the job identifier(s) Acknowledgment*

8 “Destroy request” carrying job identifier(s)  

and query expression

any job service aware of the job identifier(s) Acknowledgment*
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structure of the URIs and the format and semantics of 
the documents exchanged in order to implement the job 
service’s operations are application specific. Thus, while 
the URIs appear to convey some semantic information 
based on their structure (for example, a /status at the end 
of a particular job URI may be interpreted by a human 
as the identifier of the status resource), this is an applica-
tion-specific convention. 

No-conventions/Web services implementation. Since 
in this approach we assume no defined state management 
conventions with widely agreed-upon semantics, each 
application domain is expected to define interactions 
that meet its own requirements. Table 6 summarizes a 
potential implementation of the job management service 
in this style, using SOAP messaging.

Because of the nature of the example chosen, all 
operations are defined as request-response message 
exchanges. The CreateJob message exchange returns 
an identifier as the job handle. The returned job identi-
fier may be a globally unique URI (for example, a URN) 
that can be accepted by multiple job services. Metadata 
about it (for example, the job services that “know” about 
it) may be discovered from registries. Examples of this 
approach to identifying resources include the LSID (Life 
Science Identifier), IVOA (International Virtual Observa-
tory Alliance) identifier, and ASIN. Thus, the job identifier 
may become a technology-independent handle that can 
also be used with other technologies (for example, a Jini 
or CORBA interface to the same service). A client receiv-
ing such a job handle can then pass it to the job manage-
ment service.

DISCUSSION
The four approaches to modeling state do not dif-
fer greatly in terms of what they actually do. All send 
essentially the same messages, with the same content, 
across the network. For example, a request to destroy a 
particular job will in each case be directed to a network 
endpoint via an HTTP PUT, and will contain the name of 
the operation to be performed, plus some data indicating 
the job that should be destroyed. The approaches vary 
only in how these different components are included in a 
message, an issue that may have implications for how 

messages can be processed and routed but that has no 
impact on how services are implemented.

At the same time, there clearly are significant differ-
ences among the approaches in their use of conventions, 
the underlying protocols, and the tooling available to 
support their use. Here we summarize important argu-
ments on these topics. The characterizations of the vari-
ous positions are our own.

The value of convention. Proponents of the WS-RF and 
WS-Transfer approaches argue that creating, accessing, 
and managing state involve a set of common patterns 
that can usefully be captured in a set of specifications, 
thus simplifying the design, development, and main-
tenance of applications that use those patterns. For 
example, in the case of our job management service, 
these proponents might observe the following:
• The creation and subsequent management of a job 
can naturally be viewed as an instance of some general 
patterns (creation, access, subscription, lifetime manage-
ment, and destruction of state associated with a job).
• The encoding of the job management interface in terms 
of those patterns simplifies both the design of the inter-
face (as much of it is already provided in other specifica-
tions) and the explanation of that interface to others.

They may also point out that programmer produc-
tivity is enhanced by client tools and applications that 
are “WS-RF and/or WS-Transfer aware.” For example, a 
registry or monitoring system can use WS-RF operations 
to access service state without any application-specific 
knowledge of that state’s structure.2

In contrast, proponents of the no-conventions 
approach argue that the design of any particular interface 
(for example, one for job management) will typically be 
relatively simple, involve issues that are not captured by 
these conventional patterns, and not require all features 
included in the specifications that encode that pattern. 
Thus, one can achieve a simpler design by proceeding 
from first principles. For example, in the case of our 
job management service, while WS-RF and WS-Transfer 
provide us with a Destroy operation “for free,” we still 
need to introduce a separate Suspend operation. Further-
more, the semantics of Destroy may be quite application 
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specific. For example, a service implementer may decide 
to retain information about destroyed jobs (by changing 
their status to “destroyed”) so that information about 
them can still be retrieved. In this case, the state would 
not be destroyed. 

Finally, WS-RF and WS-Transfer focus on interaction 
with single states (for example, DestroyMultiple had to be 
custom defined) and so may not provide useful conven-
tions in cases where operating on multiple states is the 
common case; for example, all Amazon REST and Web 
services can consume multiple ASINs.  

Ideally, we would like to evaluate the relative merits 
of these two positions in 
terms of concrete metrics 
such as code size. Such 
an evaluation, however, 
requires agreement on 
the requirements that the 
interfaces should support. 
Unfortunately, proponents 
of the different approaches 
tend to differ also in their 
views of requirements. For 
example, a proponent of 
common patterns might 
see the ability to use WS-
Resource Lifetime opera-
tions for soft-state lifetime 
management as desirable, 
while others might not see 
that feature as important.

Standards. Another 
topic of disagreement concerns the importance of stan-
dardized specifications. Unfortunately (but not uncom-
monly in the world of Web services), we are faced with 
not one but two sets of Web services specifications, simi-
lar in purpose and design but different in minor aspects 
of syntax and semantics. WS-RF has been submitted to, 
reviewed, and approved by a standards body (OASIS); WS-
Transfer has been submitted to W3C but is not yet a W3C 
recommendation. The proposed consolidation of the two, 
WS-ResourceTransfer, adds to the confusion. Thus, we get 
a mix of opinions, including the following:
• WS-RF, having undergone intensive community review 
by a standards body, is therefore technically superior and/
or morally preferable to the “proprietary” WS-Transfer.
• WS-RF is superior to WS-Transfer for technical rea-
sons—for example, its support for access to subsets of a 
resource’s state, which can be important if that state is 

large. (In WS-Transfer, the same effect can be achieved, 
but only by defining an auxiliary operation that returns 
an EPR to a desired subset.)
• WS-Transfer is superior to WS-RF for technical reasons—
for example, its greater simplicity.
• As a general principle, we should employ only specifi-
cations that are stable, widely accepted, and supported 
by interoperable tooling. Because neither WS-RF nor 
WS-Transfer is supported by all major vendors, neither 
passes this test. This view argues for the no-conventions 
approach.
• HTTP is widely used on the Web and, as a result, it 

should be preferred over 
any WS-based solution. 

Implementation reuse. 
Proponents of conven-
tions such as WS-RF and 
WS-Transfer argue that the 
adoption of conventional 
patterns can facilitate code 
reuse. Every WS-RF or WS-
Transfer service performs 
such things as state access, 
lifetime management, 
concurrency control for 
incoming requests, and 
state activation/deactiva-
tion in the same way. Thus, 
the code that implements 
those behaviors can be 
reused in service imple-
mentations. 

Proponents of the no-conventions approach, however, 
reply that service implementers can also use the same 
code. In other words, there is certainly value to providing 
service implementers with standardized implementations 
of common tasks, but this need not imply that those pat-
terns are exposed outside the service.

Simplicity vs. structure. Proponents of the HTTP/REST 
approach emphasize that it provides for more concise 
requests and permits the use of simpler client tooling 
than approaches based on Web services. Critics point out 
that the use of HTTP/REST means that users cannot lever-
age the significant investment in Web services technolo-
gies and platforms for message-based interactions.

SUMMARY
We have presented four different approaches to modeling 
state in Web services interactions. Each approach defines 
roughly comparable constructs for referring to, accessing, 

The debates 
 about these 

different 
approaches 

 emphasize the  
difficulties inherent 

in separating the 
technical, political, 

and stylistic 
 concerns.
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and managing state components, but differs according to 
both its precise syntax and the use made (or not) of con-
ventional domain-independent encodings of operations. 

Thus, when defining state management operations, 
the WS-RF and WS-Transfer approaches both use EPRs 
to refer to state components and to adopt conventions 
defined in the WS-RF and related specifications and in 
the WS-Transfer and related specifications, respectively. In 
contrast, the no-conventions and REST approaches adopt 
domain-specific encodings of operations, on top of SOAP 
and HTTP, respectively. 

Analysis of the debates that have occurred around 
these different approaches emphasizes the difficulties 
inherent in separating technical, political, and stylistic 
concerns. Some differences of opinion relate to well-
defined technical issues and reflect either different 
philosophies concerning system design or different target 
applications. Others relate to differing target time scales. 
For example, no-conventions proponents initially argued 
against the use of WS-Addressing because of lack of sup-
port for that specification in certain tools, while WS-RF 
and WS-Transfer proponents argued in favor, believing 
that WS-Addressing would eventually become universal. 
Support for WS-Addressing has since become quasi-uni-
versal, and now few find its use objectionable. Q
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