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Static scheduling of a program represented by a directed task graph on a
multiprocessor system to minimize the program completion time is a well-known
problem in parallel processing. Since finding an optimal schedule is an NP-
complete problem in general, researchers have resorted to devising efficient
heuristics. A plethora of heuristics have been proposed based on a wide spectrum of
techniques, including branch-and-bound, integer-programming, searching, graph-
theory, randomization, genetic algorithms, and evolutionary methods. The objective
of this survey is to describe various scheduling algorithms and their functionalities
in a contrasting fashion as well as examine their relative merits in terms of
performance and time-complexity. Since these algorithms are based on diverse
assumptions, they differ in their functionalities, and hence are difficult to describe
in a unified context. We propose a taxonomy that classifies these algorithms into
different categories. We consider 27 scheduling algorithms, with each algorithm
explained through an easy-to-understand description followed by an illustrative
example to demonstrate its operation. We also outline some of the novel and
promising optimization approaches and current research trends in the area.
Finally, we give an overview of the software tools that provide scheduling/mapping
functionalities
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1. INTRODUCTION

Parallel processing is a promising ap-
proach to meet the computational re-
quirements of a large number of current
and emerging applications [Hwang
1993; Kumar et al. 1994; Quinn 1994].
However, it poses a number of problems
that are not encountered in sequential
processing such as designing a parallel
algorithm for the application, partition-
ing of the application into tasks, coordi-
nating communication and synchroniza-
tion, and scheduling of the tasks onto
the machine. A large body of research
efforts addressing these problems has
been reported in the literature [Amdahl
1967; Chu et al. 1984; Gajski and Peir

1985; Hwang 1993; Lewis and El-Re-
wini 1993; Lo et al. 1991; Lord et al.
1983; Manoharan and Topham 1995;
Pease et al. 1991; Quinn 1994; Shirazi
et al. 1993; Wu and Gajski 1990; Yang
and Gerasoulis 1992]. Scheduling and
allocation is a highly important issue
since an inappropriate scheduling of
tasks can fail to exploit the true poten-
tial of the system and can offset the
gain from parallelization. In this paper
we focus on the scheduling aspect.

The objective of scheduling is to mini-
mize the completion time of a parallel
application by properly allocating the
tasks to the processors. In a broad
sense, the scheduling problem exists in
two forms: static and dynamic. In static
scheduling, which is usually done at
compile time, the characteristics of a
parallel program (such as task process-
ing times, communication, data depen-
dencies, and synchronization require-
ments) are known before program
execution [Chu et al. 1984; Gajski and
Peir 1985]. A parallel program, there-
fore, can be represented by a node- and
edge-weighted directed acyclic graph
(DAG), in which the node weights repre-
sent task processing times and the edge
weights represent data dependencies as
well as the communication times be-
tween tasks. In dynamic scheduling
only, a few assumptions about the par-
allel program can be made before execu-
tion, and thus, scheduling decisions
have to be made on-the-fly [Ahmad and
Ghafoor 1991; Palis et al. 1995]. The
goal of a dynamic scheduling algorithm
as such includes not only the minimiza-
tion of the program completion time but
also the minimization of the scheduling
overhead which constitutes a significant
portion of the cost paid for running the
scheduler. We address only the static
scheduling problem. Hereafter, we refer
to the static scheduling problem as sim-
ply scheduling.

The scheduling problem is NP-com-
plete for most of its variants except for a
few simplified cases (these cases will be
elaborated in later sections) [Chreti-
enne 1989; Coffman 1976; Coffman and
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Graham 1972; El-Rewini et al. 1995;
Garey and Johnson 1979; Gonzales, Jr.
1977; Graham et al. 1979; Hu 1961;
Kasahara and Narita 1984; Papadimi-
triou and Ullman 1987; Papadimitriou
and Yannakakis 1979; 1990; Rayward–
Smith 1987b; Sethi 1976; Ullman 1975].
Therefore, many heuristics with polyno-
mial-time complexity have been sug-
gested [Ahmad et al. 1996; Casavant
and Kuhl 1988; Coffman 1976; El-Re-
wini et al. 1995; El-Rewini et al. 1994;
Gerasoulis and Yang 1992; Khan et al.
1994; McCreary et al. 1994; Pande et al.
1994; Prastein 1987; Shirazi et al. 1990;
Simons and Warmuth 1989]. However,
these heuristics are highly diverse in
terms of their assumptions about the
structure of the parallel program and
the target parallel architecture, and
thus are difficult to explain in a unified
context.

Common simplifying assumptions in-
clude uniform task execution times,
zero inter-task communication times,
contention-free communication, full con-
nectivity of parallel processors, and
availability of unlimited number of pro-
cessors. These assumptions may not
hold in practical situations for a number
of reasons. For instance, it is not always
realistic to assume that the task execu-
tion times of an application are uniform
because the amount of computations en-
capsulated in tasks are usually varied.
Furthermore, parallel and distributed
architectures have evolved into various
types such as distributed-memory mul-
ticomputers (DMMs) [Hwang 1993];
shared-memory multiprocessors (SMMs)
[Hwang 1993]; clusters of symmetric
multiprocessors (SMPs) [Hwang 1993];
and networks of workstations (NOWs)
[Hwang 1993]. Therefore, their more de-
tailed architectural characteristics must
be taken into account. For example, in-
tertask communication in the form of
message-passing or shared-memory ac-
cess inevitably incurs a non-negligible
amount of latency. Moreover, a conten-
tion-free communication and full con-
nectivity of processors cannot be as-
sumed for a DMM, a SMP or a NOW.

Thus, scheduling algorithms relying on
such assumptions are apt to have re-
stricted applicability in real environ-
ments.

Multiprocessor scheduling has been
an active research area and, therefore,
many different assumptions and termi-
nology are independently suggested.
Unfortunately, some of the terms and
assumptions are neither clearly stated
nor consistently used by most of the
researchers. As a result, it is difficult to
appreciate the merits of various sched-
uling algorithms and quantitatively
evaluate their performance. To avoid
this problem, we first introduce the di-
rected acyclic graph (DAG) model of a
parallel program, and then proceed to
describe the multiprocessor model. This
is followed by a discussion about the
NP-completeness of variants of the DAG
scheduling problem. Some basic tech-
niques used in scheduling are intro-
duced. Then we describe a taxonomy of
DAG scheduling algorithms and use it
to classify several reported algorithms.

The problem of scheduling a set of
tasks to a set of processors can be di-
vided into two categories: job scheduling
and scheduling and mapping (see Fig-
ure 1(a)). In the former category, inde-
pendent jobs are to be scheduled among
the processors of a distributed comput-
ing system to optimize overall system
performance [Bozoki and Richard 1970;
Chen and Lai 1988a; Cheng et al. 1986].
In contrast, the scheduling and map-
ping problem requires the allocation of
multiple interacting tasks of a single
parallel program in order to minimize
the completion time on the parallel com-
puter system [Adam et al. 1974; Ahmad
et al. 1996; Bashir et al. 1983; Casavant
and Kuhl 1988; Coffman 1976; Veltman
et al. 1990]. While job scheduling re-
quires dynamic run-time scheduling
that is not a priori decidable, the sched-
uling and mapping problem can be ad-
dressed in both static [El-Rewini et al.
1995; 1994; Gerasoulis and Yang 1992;
Hochbaum and Shmoys 1987; 1988;
Khan et al. 1994; McCreary et al. 1994;
Shirazi et al. 1990] as well as dynamic
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contexts [Ahmad and Ghafoor 1991;
Norman and Thanisch 1993]. When the
characteristics of the parallel program,
including its task execution times, task
dependencies, task communications and
synchronization are known a priori,
scheduling can be accomplished off-line
during compile-time. On the contrary,
dynamic scheduling in the absence of a
priori information is done on-the-fly ac-
cording to the state of the system.

Two distinct models of the parallel
program have been considered exten-
sively in the context of static schedul-
ing: the task interaction graph (TIG)
model and the task precedence graph
(TPG) model (see Figure 1(b) and Figure
1(c)).

The task interaction graph model, in
which vertices represent parallel pro-
cesses and edges denote the interpro-
cess interaction [Bokhari 1981], is usu-
ally used in static scheduling of loosely
coupled communicating processes (since
all tasks are considered as simulta-
neously and independently executable,
there is no temporal execution depen-
dency) to a distributed system. For ex-
ample, a TIG is commonly used to model
the finite element method (FEM)
[Bokhari 1979]. The objective of sched-
uling is to minimize parallel program
completion time by properly mapping
the tasks to the processors. This re-
quires balancing the computation load
uniformly among the processors while

Figure 1. (a) A simplified taxonomy of the approaches to the scheduling problem; (b) a task interaction
graph; (c) a task precedence graph.
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simultaneously keeping communication
costs as low as possible. The research in
this area was pioneered by Bokhari
[1979] and Stone [1977]: Stone [1977]
applied network-flow algorithms to
solve the assignment problem, whereas
Bokhari [1981] described the mapping
problem as being equivalent to graph
isomorphism, quadratic assignment,
and sparse matrix bandwidth reduction
problems.

The task precedence graph model (or
simply the DAG) in which the nodes
represent the tasks and the directed
edges represent the execution depen-
dencies as well as the amount of com-
munication, is commonly used in static
scheduling of a parallel program with
tightly coupled tasks on multiproces-
sors. For example, in the task prece-
dence graph shown in Figure 1(c), task
n4 cannot commence execution before
tasks n1 and n2 finish execution and
gathers all the communication data
from n2 and n3. The scheduling objec-
tive is to minimize the program comple-
tion time (or maximize the speed-up,
defined as the time required for sequen-
tial execution divided by the time re-
quired for parallel execution). For most
parallel applications, a task precedence
graph can model the program more ac-
curately because it captures the tempo-
ral dependencies among tasks. This is
the model we use in this paper.

As mentioned above, earlier static
scheduling research made simplifying
assumptions about the architecture of
the parallel program and the parallel
machine, such as uniform node weights,
zero edge weights, and the availability
of an unlimited number of processors.
However, even with some of these as-
sumptions, the scheduling problem has
been proven to be NP-complete except
for a few restricted cases [Garey and
Johnson 1979]. Indeed, the problem is
NP-complete even in two simple cases:
(1) scheduling tasks with uniform
weights to an arbitrary number of pro-
cessors [Ullman 1975] and (2) schedul-
ing tasks with weights equal to one or

two units to two processors [Ullman
1975]. There are only three special
cases for which there exists optimal
polynomial-time algorithms. These
cases are (1) scheduling tree-structured
task graphs with uniform computation
costs on an arbitrary number of proces-
sors [Hu 1961]; (2) scheduling arbitrary
task graphs with uniform computation
costs on two processors [Coffman and
Graham 1972]; and (3) scheduling an
interval-ordered task graph [Fishburn
1985] with uniform node weights to an
arbitrary number of processors [Papad-
imitriou and Yannakakis 1979]. How-
ever, even in these cases, communica-
tion among tasks of the parallel
program is assumed to take zero time
[Coffman 1976]. Given these observa-
tions, the general scheduling problem
cannot be solved in polynomial-time un-
less P 5 NP.

Due to the intractability of the gen-
eral scheduling problem, two distinct
approaches have been taken: sacrificing
efficiency for the sake of optimality and
sacrificing optimality for the sake of
efficiency. To obtain optimal solutions
under relaxed constraints, state-space
search and dynamic programming tech-
niques have been suggested. However,
these techniques are not useful because
most of them are designed to work un-
der restricted environments and most
importantly they incur an exponential
time in the worst case. In view of the
ineffectiveness of optimal techniques,
many heuristics have been suggested to
tackle the problem under more prag-
matic situations. While these heuristics
are shown to be effective in experimen-
tal studies, they usually cannot gener-
ate optimal solutions, and there is no
guarantee about their performance in
general. Most of the heuristics are
based on a list scheduling approach
[Coffman 1976], which is explained be-
low.

2. THE DAG SCHEDULING PROBLEM

The objective of DAG scheduling is to
minimize the overall program finish-
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time by proper allocation of the tasks to
the processors and arrangement of exe-
cution sequencing of the tasks. Schedul-
ing is done in such a manner that the
precedence constraints among the pro-
gram tasks are preserved. The overall
finish-time of a parallel program is com-
monly called the schedule length or
makespan. Some variations to this goal
have been suggested. For example,
some researchers proposed algorithms
to minimize the mean flow-time or
mean finish-time, which is the average
of the finish-times of all the program
tasks [Bruno et al. 1974; Leung and
Young 1989]. The significance of the
mean finish-time criterion is that mini-
mizing it in the final schedule leads to
the reduction of the mean number of
unfinished tasks at each point in the
schedule. Some other algorithms try to
reduce the setup costs of the parallel
processors [Sumichrast 1987]. We focus
on algorithms that minimize the sched-
ule length.

2.1 The DAG Model

A parallel program can be represented
by a directed acyclic graph (DAG) G 5
~V, E!, where V is a set of v nodes and
E is a set of e directed edges. A node in
the DAG represents a task which in
turn is a set of instructions which must
be executed sequentially without pre-
emption in the same processor. The
weight of a node ni is called the compu-
tation cost and is denoted by w~ni!. The
edges in the DAG, each of which is
denoted by ~ni, nj!, correspond to the
communication messages and prece-
dence constraints among the nodes. The
weight of an edge is called the commu-
nication cost of the edge and is denoted
by c~ni, nj!. The source node of an edge
is called the parent node while the sink
node is called the child node. A node
with no parent is called an entry node
and a node with no child is called an
exit node. The communication-to-com-
putation-ratio (CCR) of a parallel pro-

gram is defined as its average edge
weight divided by its average node
weight. Hereafter, we use the terms
node and task interchangeably. We
summarize in Table I the notation used
throughout the paper.

The precedence constraints of a DAG
dictate that a node cannot start execu-
tion before it gathers all of the messages
from its parent nodes. The communica-
tion cost between two tasks assigned to
the same processor is assumed to be
zero. If node ni is scheduled to some
processor, then ST~ni! and FT~ni! de-
note the start-time and finish-time of
ni, respectively. After all the nodes have
been scheduled, the schedule length is
defined as maxi$FT~ni!% across all pro-
cessors. The goal of scheduling is to
minimize maxi$FT~ni!%.

The node and edge weights are usu-
ally obtained by estimation at compile-
time [Ahmad et al. 1997; Chu et al.
1984; Ha and Lee 1991; Cosnard and
Loi 1995; Wu and Gajski 1990]. Genera-
tion of the generic DAG model and some
of the variations are described below.

2.2 Generation of a DAG

A parallel program can be modeled by a
DAG. Although program loops cannot be
explicitly represented by the DAG
model, the parallelism in data-flow com-
putations in loops can be exploited to
subdivide the loops into a number of
tasks by the loop-unraveling technique
[Beck et al. 1990; Lee and Feng 1991].
The idea is that all iterations of the loop
are started or fired together, and opera-
tions in various iterations can execute
when their input data are ready for
access. In addition, for a large class of
data-flow computation problems and
many numerical algorithms (such as
matrix multiplication), there are very
few, if any, conditional branches or in-
determinism in the program. Thus, the
DAG model can be used to accurately
represent these applications so that the
scheduling techniques can be applied.
Furthermore, in many numerical appli-
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cations, such as Gaussian elimination
or fast Fourier transform (FFT), the
loop bounds are known during compile-

time. As such, one or more iterations of
a loop can be deterministically encapsu-
lated in a task and, consequently, be
represented by a node in a DAG.

The node- and edge-weights are usu-
ally obtained by estimation using profil-
ing information of operations such as
numerical operations, memory access
operations, and message-passing primi-
tives [Jiang et al. 1990]. The granular-
ity of tasks usually is specified by the
programmers [Ahmad et al. 1997]. Nev-
ertheless, the final granularity of the
scheduled parallel program is to be re-
fined by using a scheduling algorithm,
which clusters the communication-in-
tensive tasks to a single processor [Ah-
mad et al. 1997; Yang and Gerasoulis
1992].

2.3 Variations in the DAG Model

There are a number of variations in the
generic DAG model described above.
The more important variations are: pre-
emptive scheduling vs. nonpreemptive
scheduling, parallel tasks vs. non-paral-
lel tasks, and DAG with conditional
branches vs. DAG without conditional
branches.

Preemptive Scheduling vs. Nonpre-
emptive Scheduling: In preemptive
scheduling, the execution of a task may
be interrupted so that the unfinished
portion of the task can be re-allocated to
a different processor [Chen and Lai
1988b; Gonzales and Sahni 1978; Hor-
vath et al. 1977; Rayward-Smith
1987a]. On the contrary, algorithms as-
suming nonpreemptive scheduling must
allow a task to execute until completion
on a single processor. From a theoreti-
cal perspective, a preemptive schedul-
ing approach allows more flexibility for
the scheduler so that a higher utiliza-
tion of processors may result. Indeed, a
preemptive scheduling problem is com-
monly reckoned as “easier” than its non-
preemptive counterpart in that there
are cases in which polynomial time so-
lutions exist for the former while the
latter is proved to be NP-complete [Coff-
man and Graham 1972; Gonzalez, Jr.

Table I. Notation

Symbol Definition

ni
The node number of a node in
the parallel program task graph

w~ni! The computation cost of node ni

~ni, nj! An edge from node ni to nj

c~ni, nj! The communication cost of the
directed edge from node ni to nj

v Number of nodes in the task
graph

e Number of nodes in the task
graph

p Number of edges in the task
graph

CP The number of processors or
processing elements (PEs) in
the target system

CP A critical path of the task graph
CPN Critical Path Node
IBN In-Branch Node
OBN Out-Branch Node
sl Static level of a node
b-level Bottom level of a node
t-level Top level of a node
ASAP As soon as possible start time

of a node
ALAP As late as possible start time of

a node
Ts~ni! The actual start time of a node ni

DAT~ni, P! The possible data available
time of ni on target processor P

ST~ni, P! The start time of node ni on
target processor P

FT~ni, P! The finish time of node ni on
target processor P

VIP~ni! The parent node of ni that
sends the data arrive last

Pivot2PE The target processor from
which nodes are migrated

Proc~ni! The processor accommodating
node ni

Lij The communication link
between PE i and PE j

CCR Communication-to-computation
Ratio

SL Schedule Length
UNC Unbounded Number of Clusters

scheduling algorithms
BNP Bounded Number of Processors

scheduling algorithms
TDB Task Duplication Based

scheduling algorithms
APN Arbitrary Processors Network

scheduling algorithms
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1977]. However, in practice, interrupt-
ing a task and transferring it to another
processor can lead to significant pro-
cessing overhead and communication
delays. In addition, a preemptive sched-
uler itself is usually more complicated
since it has to consider when to split a
task and where to insert the necessary
communication induced by the splitting.
We concentrate on the nonpreemptive
approaches.

Parallel Tasks vs. Nonparallel Tasks:
A parallel task is a task that requires
more than one processor at the same
time for its execution [Wang and Cheng
1991]. Blazewicz et al. [1986; 1984] in-
vestigated the problem of scheduling a
set of independent parallel tasks to
identical processors under preemptive
and nonpreemptive scheduling assump-
tions. Du and Leung [1989] also ex-
plored the same problem but with one
more flexibility: a task can be scheduled
to no more than a certain predefined
maximum number of processors. How-
ever, in Blazewicz et al. ’s approach, a
task must be scheduled to a fixed pre-
defined number of processors. Wang
and Cheng [1991] further extended the
model to allow precedence constraints
among tasks. They devised a list sched-
uling approach to construct a schedule
based on the earliest completion time
(ECT) heuristic. We concentrate on
scheduling DAGs with nonparallel
tasks.

DAG with Conditional Branches vs.
DAG without Conditional Branches:
Towsley [1986] addressed the problem
of scheduling a DAG with probabilistic
branches and loops to heterogeneous
distributed systems. Each edge in the
DAG is associated with a nonzero prob-
ability that the child will be executed
immediately after the parent. He intro-
duced two algorithms based on the
shortest path method for determining
the optimal assignments of tasks to pro-
cessors. El-Rewini and Ali [1995] also
investigated the problem of scheduling
DAGs with conditional branches. Simi-
lar to Towsley’s approach, they also
used a two-step method to construct a

final schedule. However, unlike Tows-
ley’s model, they modeled a parallel pro-
gram by using two DAGs: a branch
graph and a precedence graph. This
model differentiates the conditional
branching and the precedence relations
among the parallel program tasks. The
objective of the first step of the algo-
rithm is to reduce the amount of inde-
terminism in the DAG by capturing the
similarity of different instances of the
precedence graph. After this preprocess-
ing step, a reduced branch graph and a
reduced precedence graph are gener-
ated. In the second step, all the differ-
ent instances of the precedence graph
are generated according to the reduced
branch graph, and the corresponding
schedules are determined. Finally,
these schedules are merged to produce a
unified final schedule [El-Rewini and
Ali 1995]. Since modeling branching
and looping in DAGs is an inherently
difficult problem, little work has been
reported in this area. We concentrate on
DAGs without conditional branching in
this research.

2.4 The Multiprocessor Model

In DAG scheduling, the target system is
assumed to be a network of processing
elements (PEs), each of which is com-
posed of a processor and a local memory
unit so that the PEs do not share mem-
ory and communication relies solely on
message-passing. The processors may
be heterogeneous or homogeneous. Het-
erogeneity of processors means the pro-
cessors have different speeds or process-
ing capabilities. However, we assume
every module of a parallel program can
be executed on any processor even
though the completion times on differ-
ent processors may be different. The
PEs are connected by an interconnec-
tion network with a certain topology.
The topology may be fully connected or
of a particular structure such as a hy-
percube or mesh.
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3. NP-COMPLETENESS OF THE DAG
SCHEDULING PROBLEM

The DAG scheduling problem is in gen-
eral an NP-complete problem [Garey
and Johnson 1979], and algorithms for
optimally scheduling a DAG in polyno-
mial-time are known only for three sim-
ple cases [Coffman 1976]. The first case
is to schedule a uniform node-weight
free-tree to an arbitrary number of pro-
cessors. Hu [1961] proposed a linear-
time algorithm to solve the problem.
The second case is to schedule an arbi-
trarily structured DAG with uniform
node-weights to two processors. Coff-
man and Graham [1972] devised a qua-
dratic-time algorithm to solve this prob-
lem. Both Hu’s algorithm and Coffman
et al.’s algorithm are based on node-
labeling methods that produce optimal
scheduling lists leading to optimal
schedules. Sethi [1976] then improved
the time-complexity of Coffman et al.’s
algorithm to almost linear-time by sug-
gesting a more efficient node-labeling
process. The third case is to schedule an
interval-ordered DAG with uniform
node-weights to an arbitrary number of
processors. Papadimitriou and Yanna-
kakis [1979] designed a linear-time al-
gorithm to tackle the problem. A DAG is
called interval-ordered if every two pre-
cedence-related nodes can be mapped to
two nonoverlapping intervals on the
real number line [Fishburn 1985].

In all of the above three cases, com-
munication between tasks is ignored.
Ali and El-Rewini [1993] showed that
interval-ordered DAG with uniform
edge weights, which are equal to the
node weights, can also be optimally
scheduled in polynomial time. These op-
timality results are summarized in Ta-
ble II.

Ullman [1975] showed that schedul-
ing a DAG with unit computation to p
processors is NP-complete. He also
showed that scheduling a DAG with one
or two unit computation costs to two
processors is NP-complete [Coffman
1975; Ullman 1975]. Papadimitriou and
Yannakakis [1979] showed that sched-
uling an interval-ordered DAG with ar-
bitrary computation costs to two proces-
sors is NP-complete. Garey et al. [1983]
showed that scheduling an opposing for-
est with unit computation to p proces-
sors is NP-complete. Finally, Papadimi-
triou and Yannakakis [1990] showed
that scheduling a DAG with unit com-
putation to p processors possibly with
task-duplication is also NP-complete.

4. A TAXONOMY OF DAG SCHEDULING
ALGORITHMS

To outline the variations of scheduling
algorithms and to describe the scope of
our survey, we introduce in Figure 2 a
taxonomy of static parallel scheduling

Table II. Summary of Optimal Scheduling Under Various Simplified Situations

Researcher(s) Complexity p w~ni! Structure c~ni, nj!

Hu [1961] O~v! — Uniform Free-tree NIL
Coffman and Graham

[1972]
O~v2! 2 Uniform — NIL

Sethi [1976] O~va~v! 1 e! 2 Uniform — NIL
Papadimitrious and

Yannakakis [1979]
O~ve! — Uniform Interval-ordered NIL

Ali and El-Rewini
[1993]

O~ev! — Uniform
(5c)

Interval-ordered Uniform
(5c)

Papadimitrious and
Yannakakis [1979]

NP-complete — — Interval-ordered NIL

Garey and Johnson
[1979]

Open Fixed, .2 Uniform — NIL

Ullman [1975] NP-complete — Uniform — NIL
Ullman [1975] NP-complete Fixed, .1 51 or 2 — NIL
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[Ahmad et al. 1996; Ahmad et al. 1997].
Note that unlike the taxonomy sug-
gested by Casavant and Kuhl [1988],
which describes the general scheduling
problem (including partitioning and
load balancing issues) in parallel and
distributed systems, the focus of our
taxonomy is on the static scheduling
problem, and therefore is only partial.

The highest level of the taxonomy di-
vides the scheduling problem into two
categories, depending upon whether the
task graph is of an arbitrary structure
or a special structure such as trees.
Earlier algorithms have made simplify-
ing assumptions about the task graph
representing the program and the
model of the parallel processor system
[Coffman 1976; Gonzalez Jr. 1977].
Most of these algorithms assume the
graph to be of a special structure such
as a tree, forks-join, etc. In general,
however, parallel programs come in a
variety of structures, and as such, many
recent algorithms are designed to tackle
arbitrary graphs. These algorithms can
be further divided into two categories.
Some algorithms assume the computa-
tional costs of all the tasks to be uni-
form. Others assume the computational
costs of tasks to be arbitrary.

Some of the scheduling algorithms
that consider the intertask communica-
tion assume the availability of an un-
limited number of processors, while
some other algorithms assume a limited
number of processors. The former class
of algorithms are called the UNC (un-
bounded number of clusters) scheduling
algorithms [Kim and Browne 1988;
Kwok and Ahmad 1996; Sarkar 1989;
Wong and Morris 1989; Yang and Gera-
soulis 1994] and the latter the BNP
(bounded number of processors) schedul-
ing algorithms [Adam et al. 1974; Anger
et al. 1990; Kim and Yi 1994; Kwok and
Ahmad 1997; McCreary and Gill 1989;
Palis et al. 1996; Sih and Lee 1993b]. In
both classes of algorithms, the proces-
sors are assumed to be fully connected,
and no attention is paid to link conten-
tion or routing strategies used for com-
munication. The technique employed by

the UNC algorithms is also called clus-
tering [Kim and Browne 1988; Liou and
Palis 1996; Palis et al. 1996; Sarkar
1989; Yang and Gerasoulis 1994]. At the
beginning of the scheduling process,
each node is considered a cluster. In the
subsequent steps, two clusters are
merged if the merging reduces the com-
pletion time. This merging procedure
continues until no cluster can be
merged. The rationale behind the UNC
algorithms is that they can take advan-
tage of using more processors to further
reduce the schedule length. However,
the clusters generated by the UNC need
a postprocessing step for mapping the
clusters onto the processors because the
number of processors available may be
less than the number of clusters. As a
result, the final solution quality also
highly depends on the cluster-mapping
step. On the other hand, the BNP algo-
rithms do not need such a postprocess-
ing step. It is an open question as to
whether UNC or BNP is better.

We use the terms cluster and proces-
sor interchangeably since, in the UNC
scheduling algorithms, merging a single
node cluster to another cluster is analo-
gous to scheduling a node to a proces-
sor.

There have been a few algorithms de-
signed with the most general model in
that the system is assumed to consist of
an arbitrary network topology, of which
the links are not contention-free. These
algorithms are called the APN (arbi-
trary processor network) scheduling al-
gorithms. In addition to scheduling
tasks, the APN algorithms also sched-
ule messages on the network communi-
cation links. Scheduling of messages
may be dependent on the routing strat-
egy used by the underlying network. To
optimize schedule lengths under such
unrestricted environments makes the
design of an APN scheduling algorithm
intricate and challenging.

The TDB (Task-Duplication Based)
scheduling algorithms also assume the
availability of an unbounded number of
processors but schedule tasks with du-
plication to further reduce the schedule
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lengths. The rationale behind the TDB
scheduling algorithms is to reduce the
communication overhead by redun-
dantly allocating some tasks to multiple
processors. In duplication-based sched-
uling, different strategies can be em-
ployed to select ancestor nodes for du-

plication. Some of the algorithms
duplicate only the direct predecessors
while others try to duplicate all possible
ancestors. For a recent quantitative
comparison of TDB scheduling algo-
rithms, the reader is referred to Ahmad
and Kwok [1999].

Figure 2. A partial taxonomy of the multiprocessor scheduling problem.
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5. BASIC TECHNIQUES IN DAG
SCHEDULING

Most scheduling algorithms are based
on the so-called list scheduling tech-
nique [Adam et al. 1974; Ahmad et al.
1996; Casavant and Kuhl 1988; Coff-
man 1976; El-Rewini et al. 1995; El-
Rewini 1994; Gerasoulis and Yang
1992; Khan et al. 1994; Kwok and Ah-
mad 1997; McCreary et al. 1994; Shirazi
et al. 1990; Yang and Miller 1988]. The
basic idea of list scheduling is to make a
scheduling list (a sequence of nodes for
scheduling) by assigning them some pri-
orities, and then repeatedly execute the
following two steps until all the nodes
in the graph are scheduled:

(1) Remove the first node from the
scheduling list;

(2) Allocate the node to a processor
which allows the earliest start-time.

There are various ways to determine
the priorities of nodes, such as HLF
(Highest Level First) [Coffman 1976];
LP (Longest Path) [Coffman 1976]; LPT
(Longest Processing Time) [Friesen
1987; Gonzalez, Jr. 1977]; and CP (Crit-
ical Path) [Graham et al. 1979].

Recently a number of scheduling algo-
rithms based on a dynamic list schedul-
ing approach have been suggested
[Kwok and Ahmad 1996; Sih and Lee
1993a; Yang and Gerasoulis 1994]. In a
traditional scheduling algorithm, the
scheduling list is statically constructed
before node allocation begins, and most
importantly, the sequencing in the list
is not modified. In contrast, after each
allocation, these recent algorithms re-
compute the priorities of all unsched-
uled nodes, which are then used to rear-
range the sequencing of the nodes in the
list. Thus, these algorithms essentially
employ the following three-step ap-
proaches:

(1) Determine new priorities of all un-
scheduled nodes;

(2) Select the node with the highest pri-
ority for scheduling;

(3) Allocate the node to the processor
which allows the earliest start-time.

Scheduling algorithms that employ
this three-step approach can potentially
generate better schedules. However, a
dynamic approach can increase the
time-complexity of the scheduling algo-
rithm.

Two frequently used attributes for as-
signing priority are the t-level (top level)
and b-level (bottom level) [Adam et al.
1974; Ahmad et al. 1996; Gerasooulis
and Yang 1992]. The t-level of a node ni
is the length of a longest path (there can
be more than one longest path) from an
entry node to ni (excluding ni). Here,
the length of a path is the sum of all the
node and edge weights along the path.
As such, the t-level ni highly correlates
with ni’s earliest start-time, denoted by
Ts~ni!, which is determined after ni is
scheduled to a processor. This is be-
cause after ni is scheduled, its Ts~ni! is
simply the length of the longest path
reaching it. The b-level of a node ni is
the length of a longest path from ni to
an exit node. The b-level of a node is
bounded from above by the length of a
critical path. A critical path (CP) of a
DAG, which is an important structure
in the DAG, is a longest path in the
DAG. Clearly, a DAG can have more
than one CP. Consider the task graph
shown in Figure 3(a). In this task
graph, nodes ni, n7, and n8 are the
nodes of the only CP and are called
CPNs (Critical-Path Nodes). The edges
on the CP are shown with thick arrows.
The values of the priorities discussed
above are shown in Figure 3(b).

Below is a procedure for computing
the t-levels:
Computing a t-level

(1) Construct a list of nodes in topological
order. Call it TopList.
(2) for each node ni in TopList do
(3) max 5 0
(4) for each parent nx of ni do
(5) if t-level~nx! 1 w~nx! 1 c~nx, ni! .

max then
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(6) max5t-level~nx! 1 w~nx! 1 c~nx, ni!
(7) endif
(8) endfor
(9) t-level~ni! 5 max
(10)endfor

The time-complexity of the above pro-
cedure is O~e 1 v!. A similar proce-
dure, which also has time-complexity
O~e 1 v!, for computing the b-levels is
shown below:

Computing a b-level

(1) Construct a list of nodes in reversed
topological order. Call it RevTopList.
(2) for each node ni in RevTopList do
(3) max 5 0
(4) for each child ny of ni do
(5) if c~ni, ny! 1 b-level~ny! . max then
(6) max 5 c~ni, ny! 1 b-level~ny!
(7) endif
(8) endfor
(9) b-level~ni! 5 w~ni! 1 max
(10) endfor

In the scheduling process, the t-level
of a node varies while the b-level is
usually a constant, until the node has
been scheduled. The t-level varies be-

cause the weight of an edge may be
zeroed when the two incident nodes are
scheduled to the same processor. Thus,
the path reaching a node, whose length
determines the t-level of the node, may
cease to be the longest one. On the other
hand, there are some variations in the
computation of the b-level of a node.
Most algorithms examine a node for
scheduling only after all the parents of
the node have been scheduled. In this
case, the b-level of a node is a constant
until after it is scheduled to a processor.
Some scheduling algorithms allow the
scheduling of a child before its parents,
however, in which case the b-level of a
node is also a dynamic attribute. It
should be noted that some scheduling
algorithms do not take into account the
edge weights in computing the b-level.
In such a case, the b-level does not
change throughout the scheduling pro-
cess. To distinguish this definition of
b-level from the one we described above,
we call it the static b-level or simply
static level (sl).

Different algorithms use the t-level
and b-level in different ways. Some algo-

Figure 3. (a) A task graph; (b) the static levels (sls), t-levels, b-levels and ALAPs of the nodes.
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rithms assign a higher priority to a
node with a smaller t-level while some
algorithms assign a higher priority to a
node with a larger b-level. Still some
algorithms assign a higher priority to a
node with a larger (b-level — t-level). In
general, scheduling in a descending or-
der of b-level tends to schedule critical
path nodes first, while scheduling in an
ascending order of t-level tends to
schedule nodes in a topological order.
The composite attribute (b-level—t-
level) is a compromise between the pre-
vious two cases. If an algorithm uses a
static attribute, such as b-level or static
b-level, to order nodes for scheduling, it
is called a static algorithm; otherwise, it
is called a dynamic algorithm.

Note that the procedure for comput-
ing the t-levels can also be used to com-
pute the start-times of nodes on proces-
sors during the scheduling process.
Indeed, some researchers call the t-level
of a node the ASAP (As-Soon-As-Possi-
ble) start-time because the t-level is the
earliest possible start-time.

Some of the DAG scheduling algo-
rithms employ an attribute called ALAP
(As-Late-As-Possible) start-time [Kwok
and Ahmad 1996; Wu and Gajski 1990].
The ALAP start-time of a node is a
measure of how far the node’s start-
time can be delayed without increasing
the schedule length. An O~e 1 v! time
procedure for computing the ALAP time
is shown below:

Computing ALAP

(1) Construct a list of nodes in reversed
topological order. Call it RevTopList.
(2) for each node ni in RevTopList do
(3) min2ft 5 CP2Length
(4) for each child ny of ny do
(5) if alap~ny! 2 c~ni, ny! , min2ft
then
(6) min2ft 5 alap~ny! 2 c~ni, ny!
(7) endif
(8) endfor
(9) alap~ni! 5 min2ft 2 w~ni!
(10) endfor

After the scheduling list is con-
structed by using the node priorities,

the nodes are then scheduled to suitable
processors. Usually a processor is con-
sidered suitable if it allows the earliest
start-time for the node. However, in
some sophisticated scheduling heuris-
tics, a suitable processor may not be the
one that allows the earliest start-time.
These variations are described in detail
in Section 6.

6. DESCRIPTION OF THE ALGORITHMS

In this section, we briefly survey algo-
rithms for DAG scheduling reported in
the literature. We first describe some of
the earlier scheduling algorithms that
assume a restricted DAG model, and
then proceed to describe a number of
such algorithms before proceeding to al-
gorithms that remove all such simplify-
ing assumptions. The performance of
these algorithms on some primitive
graph structures is also discussed. Ana-
lytical performance bounds reported in
the literature are also briefly surveyed
where appropriate. We first discuss the
UNC class of algorithms, followed by
BNP algorithms and TDB algorithms.
Next we describe a few of the relatively
unexplored APN class of DAG schedul-
ing algorithms. Finally, we discuss the
issues of scheduling in heterogeneous
environments and the mapping prob-
lem.

6.1 Scheduling DAGs with Restricted
Structures

Early scheduling algorithms were typi-
cally designed with simplifying assump-
tions about the DAG and processor net-
work model [Adam et al. 1974; Bruno et
al. 1974; Fujii et al. 1969; Gabow 1982].
For instance, the nodes in the DAG
were assumed to be of unit computation
and communication was not considered;
that is, w~ni! 5 1, @i, and c~ni, nj! 5 0.
Furthermore, some algorithms were de-
signed for specially structured DAGs
such as a free-tree [Coffman 1976; Hu
1961].
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6.1.1 Hu’s Algorithm for Tree-Struc-
tured DAGs. Hu [1961] proposed a
polynomial-time algorithm to construct
optimal schedules for in-tree structured
DAGs with unit computations and with-
out communication. The number of pro-
cessors is assumed to be limited and is
equal to p. The crucial step in the algo-
rithm is a node labelling process. Each
node ni is labelled a1 where a1 5 xi 1 1
and xi is the length of the path from ni
to the exit node in the DAG. Here, the
notion of length is the number of edges
in the path. The labelling process begins
with the exit node, which is labelled 1.

Using the above labelling procedure,
an optimal schedule can be obtained for
p processors by processing a tree-struc-
tured task graph in the following steps:

(1) Schedule the first p (or fewer) nodes
with the highest numbered label,
i.e., the entry nodes, to the proces-
sors. If the number of entry nodes is
greater than p, choose p nodes
whose a i is greater than the others.
In case of a tie, choose a node arbi-
trarily.

(2) Remove the p scheduled nodes from
the graph. Treat the nodes with no
predecessor as the new entry nodes.

(3) Repeat steps (1) and (2) until all
nodes are scheduled.

The labelling process of the algorithm
partitions the task graph into a number
of levels. In the scheduling process,
each level of tasks is assigned to the
available processors. Schedules gener-
ated using the above steps are optimal
under the stated constraints. The read-
ers are referred to Hu [1961] for the
proof of optimality. This is illustrated in
the simple task graph and its optimal
schedule shown in Figure 4. The com-
plexity of the algorithm is linear in
terms of the number of nodes because
each node in the task graph is visited a
constant number of times.

Kaufman [1974] devised an algorithm
for preemptive scheduling that also
works on an in-tree DAG with arbitrary
computation costs. The algorithm is
based on principles similar to those in
Hu’s algorithm. The main idea of the
algorithm is to break down the non-
unit-weighted tasks into unit-weighted
tasks. Optimal schedules can be ob-
tained since the resulting DAG is still
an in-tree.

6.1.2 Coffman and Graham’s Algo-
rithm for Two-Processor Scheduling.
Optimal static scheduling have also been
addressed by Coffman and Graham

Figure 4. (a) A simple tree-structured task graph with unit-cost tasks and without communication
among tasks; (b) the optimal schedule of the task graph using three processors.
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[1972]. They developed an algorithm for
generating optimal schedules for arbi-
trary structured task graphs with unit-
weighted tasks and zero-weighted edges
to a two-processor system. The algo-
rithm works on similar principles as in
Hu’s algorithm. The algorithm first as-
signs labels to each node in the task
graph. The assignment process proceeds
“up the graph” in a way that considers
as candidates for the assignment of the
next label all the nodes whose succes-
sors have already been assigned a label.
After all the nodes are assigned a label,
a list is formed by ordering the tasks in
decreasing label numbers, beginning
with the last label assigned. The opti-
mal schedule is then obtained by sched-
uling ready tasks in this list to idle
processors. This is elaborated in the fol-
lowing steps.

(1) Assign label 1 to one of the exit
node.

(2) Assume that labels 1, 2, . . . , j 2 1
have been assigned. Let S be the set
of unassigned nodes with no unla-
beled successors. Select an element
of S to be assigned label j as follows.
For each node x in S, let y1, y2, . . . , yk

be the immediate successors of x.
Then, define l~x! to be the decreas-
ing sequence of integers formed by

ordering the set of y ’s labels. Sup-
pose that l~x! # l~x9! lexicographi-
cally for all x9 in S. Assign the label
j to x.

(3) After all tasks have been labeled,
use the list of tasks in descending
order of labels for scheduling. Be-
ginning from the first task in the
list, schedule each task to one of the
two given processors that allows the
earlier execution of the task.

Schedules generated using the above
algorithm are optimal under the given
constraints. For the proof of optimality,
the reader is referred to Coffman and
Graham [1972]. An example is illus-
trated in Figure 5. Through counter-
examples, Coffman and Graham also
demonstrated that their algorithm can
generate sub-optimal solutions when
the number of processors is increased to
three or more, or when the number of
processors is two and tasks are allowed
to have arbitrary computation costs.
This is true even when computation
costs are allowed to be one or two units.
The complexity of the algorithm is
O~v2! because the labelling process and
the scheduling process each takes O~v2!
time.

Sethi [1976] reported an algorithm to

Figure 5. (a) A simple task graph with unit-cost tasks and no-cost communication edges; (b) the
optimal schedule of the task graph in a two-processor system..
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determine the labels in O~v 1 e! time
and also gave an algorithm to construct
a schedule from the labeling in
O~va~v! 1 e! time, where a~v! is an
almost constant function of v. The main
idea of the improved labeling process is
based on the observation that the labels
of a set of nodes with the same height
only depend on their children. Thus,
instead of constructing the lexico-
graphic ordering information from
scratch, the labeling process can infer
such information through visiting the
edges connecting the nodes and their
children. As a result, the time-complex-
ity of the labeling process is O~v 1 e!
instead of O~v2!. The construction of the
final schedule is done with the aid of a
set data structure, for which v access
operations can be performed in
O~va~v!!, where a~v! is the inverse
Ackermann’s function.

6.1.3 SchedulingInterval-OrderedDAGs.
Papadimitriou and Yannakakis [1979]
investigated the problem of scheduling
unit-computational interval-ordered
tasks to multiprocessors. In an interval-
ordered DAG, two nodes are prece-
dence-related if and only if the nodes
can be mapped to non-overlapping in-
tervals on the real line [Fishburn 1985].
An example of an interval-ordered DAG
is shown in Figure 6. Based on the
interval-ordered property, the number

of successors of a node can be used as a
priority to construct a list. An optimal list
schedule can be constructed in O~v 1 e!
time. However, as mentioned earlier,
the problem becomes NP-complete if the
DAG is allowed to have arbitrary com-
putation costs. Ali and El-Rewini [1993]
worked on the problem of scheduling
interval-ordered DAGs with unit com-
putation costs and unit communication
costs. They showed that the problem is
tractable and devised an O~ve! algo-
rithm to generate optimal schedules. In
their algorithm, which is similar to that
of Papadimitriou and Yannakakis
[1979], the number of successors is used
as a node priority for scheduling.

6.2 Scheduling Arbitrary DAGs Without
Communication

In this section, we discuss algorithms
for scheduling arbitrary structured
DAGs in which computation costs are
arbitrary but communication costs are
zero.

6.2.1 Level-based Heuristics. Adam
et al. [1974] performed an extensive
simulation study of the performance of
a number of level-based list scheduling
heuristics. The heuristics examined are:

● HLFET (Highest Level First with Es-
timated Times): The notion of level is
the sum of computation costs of all

Figure 6. (a) A unit-computational interval ordered DAG; (b) an optimal schedule of the DAG.
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the nodes along the longest path from
the node to an exit node.

● HLFNET (Highest Levels First with
No Estimated Times): In this heuris-
tic, all nodes are scheduled as if they
were of unit cost.

● Random: The nodes in the DAG are
assigned priorities randomly.

● SCFET (Smallest Co-levels First with
Estimated Times): A co-level of a
node is determined by computing the
sum of the longest path from an entry
node to the node.

● A node has a higher priority if it has
the smaller co-level.

● SCFNET (Smallest Co-levels First
with No Estimated Times): This heu-
ristic is the same as SCFET except
that it schedules the nodes as if they
were of unit costs.

In Adam et al. [1974], an extensive
simulation study was conducted using
randomly generated DAGs. The perfor-
mance of the heuristics were ranked in
the following order: HLFET, HLFNET,
SCFNET, Random, and SCFET. The
study provided strong evidence that the
CP (critical path) based algorithms have
near-optimal performance. In another
study conducted by Kohler [1975], the
performance of the CP-based algorithms
improved as the number of processors
increased.

Kasahara et al. [1984] proposed an
algorithm called CP/MISF (critical path/
most immediate successors first), which
is a variation of the HLFET algorithm.
The major improvement of CP/MISF
over HLFET is that when assigning pri-
orities, ties are broken by selecting the
node with a larger number of immediate
successors.

In a recent study, Shirazi et al. [1990]
proposed two algorithms for scheduling
DAGs to multiprocessors without com-
munication. The first algorithm, called
HNF (Heavy Node First), is based on a
simple local analysis of the DAG nodes
at each level. The second algorithm, WL

(Weighted Length), considers a global
view of a DAG by taking into account
the relationship among the nodes at dif-
ferent levels. Compared to a critical-
path-based algorithm, Shirazi et al.
showed that the HNF algorithm is more
preferable for its low complexity and
good performance.

6.2.2 A Branch-and-Bound Approach.
In addition to CP/MISF, Kasahara et al.
[1984] also reported a scheduling algo-
rithm based on a branch-and-bound ap-
proach. Using Kohler and Steiglitz’s
[1974] general representation for
branch-and-bound algorithms, Kasa-
hara et al. devised a depth-first search
procedure to construct near-optimal
schedules. Prior to the depth-first
search process, priorities are assigned
to those nodes in the DAG which may be
generated during the search process.
The priorities are determined using the
priority list of the CP/MISF method. In
this way the search procedure can be
more efficient both in terms of comput-
ing time and memory requirement.
Since the search technique is aug-
mented by a heuristic priority assign-
ment method, the algorithm is called
DF/IHS (depth-first with implicit heu-
ristic search). The DF/IHS algorithm
was shown to give near optimal perfor-
mance.

6.2.3 Analytical Performance Bounds
for Scheduling without Communication.
Graham [1966] proposed a bound on the
schedule length obtained by general list
scheduling methods. Using a level-
based method for generating a list for
scheduling, the schedule length SL and
the optimal schedule length SLopt are
related by the following:

SL # S2 2
1

pDSLopt.

Rammamoorthy et al. [1972] used the
concept of precedence partitions to gen-
erate bounds on the schedule length and
the number of processors for DAGs with
unit computation costs. An earliest pre-
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cedence partition Ei is a set of nodes
that can be started in parallel at the
same earliest possible time constrained
by the precedence relations. A latest
precedence partition is a set of nodes
which must be executed at the same
latest possible time constrained by the
precedence relations. For any i and j,
Ei ù Ej 5 À and Li ù Lj 5 À. The pre-
cedence partitions group tasks into sub-
sets to indicate the earliest and latest
times during which tasks can be started
and still guarantee minimum execution
time for the graph. This time is given by
the number of partitions and is a mea-
sure of the longest path in the graph.
For a graph of l levels, the minimum
execution time is l units. In order to exe-
cute a graph in the minimum time, the
absolute minimum number of processors
required is given by max

1#i#l
$?Ei ù Li?%.

Rammamoorthy et al. [1972] also de-
veloped algorithms to determine the
minimum number of processors re-
quired to process a graph in the least
possible amount of time, and to deter-
mine the minimum time necessary to
process a task graph given k processors.
Since a dynamic programming approach
is employed, the computational time re-
quired to obtain the optimal solution is
quite considerable.

Fernandez and Bussell [1983] devised
improved bounds on the minimum num-
ber of processors required to achieve the
optimal schedule length and on the min-
imum increase in schedule length if
only a certain number of processors are
available. The most important contribu-
tion is that the DAG is assumed to have
unequal computational costs. Although
for such a general model similar parti-
tions as in Rammamoorthy et al. ’s work
could be defined, Fernandez et al. [Fer-
nandez and Bussell 1983] used the con-
cepts of activity and load density, de-
fined below.

Definition 1. The activity of a node
ni is defined as

f~ti, t! 5 H 1, t [ @ti 2 w~ni!, ti#,
0, otherwise

where t i is the finish ni.

Definition 2. The load density func-
tion is defined by: F~t, t! 5 (

i51

v f~t i, t!.

Then, f~t i, t! indicates the activity of
node ni along time, according to the
precedence constraints in the DAG, and
F~t, t! indicates the total activity of the
graph as a function of time. Of particu-
lar importance are F~te, t!, the earliest
load density function for which all tasks
are completed at their earliest times,
and F~t l, t!, the load density function
for which all tasks are completed at
their latest times. Now let R~u1, u2, t!
be the load density function of the tasks
or parts of tasks remaining within @u1,
u2# after all tasks have been shifted to
form minimum overlap within the inter-
val. Thus, a lower bound on the mini-
mum number of processors to execute
the program (represented by the DAG)
within the minimum time is given by:

pmin 5 max
@u1, u2#F 1

u2 2 u1
E

u1

u2

R~u1, u2, t!dtG.

The maximum value obtained for all
possible intervals indicate that the
whole computation graph cannot be ex-
ecuted with a number of processors
smaller than the maximum. Supposing
that only p9 processors are available,
Fernandez and Bussell [1973] also
showed that the schedule length will be
longer than the optimal schedule length
by no less than the following amount:

max
w~n1!#w~nk!#CPF2w~nk! 1

1

p9
E

0

w~nk!

F~tl, t!dtG.

In a recent study, Jain and Rajara-
man [1994] reported sharper bounds us-
ing the above expressions. The idea is
that the intervals considered for the
integration is not just the earliest and
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latest start-times but are based on a
partitioning of the graphs into a set of
disjoint sections. They also devised an
upper bound on the schedule length,
which is useful in determining the
worst case behavior of a DAG. Not only
are their new bounds easier to compute
but are also tighter, because DAG parti-
tioning strategy enhances the accuracy
of the load activity function.

6.3 UNC Scheduling

In this section, we survey the UNC class
of scheduling algorithms. In particular,
we will describe in more details five
UNC scheduling algorithms: the EZ,
LC, DSC, MD, and DCP algorithms. The
DAG shown in Figure 3 is used to illus-
trate the scheduling process of these
algorithms. In order to examine the ap-
proximate optimality of the algorithms,
we will first describe the scheduling of
two primitive DAG structures: the fork
set and the join set. Some work on the-
oretical performance analysis of UNC
scheduling is also discussed in the last
subsection.

6.3.1 Scheduling of Primitive Graph
Structures. To highlight the different
characteristics of the algorithms de-
scribed below, it is useful to consider
how the algorithms work on some prim-
itive graph structures. Two commonly
used primitive graph structures are fork
and join [Gerasoulis and Yang 1992],
examples of which are shown in Figure
7. These two graph primitives are use-

ful for understanding the optimality of
scheduling algorithms because any task
graph can be decomposed into a collec-
tion of forks and joins. In the following,
we derive the optimal schedule lengths
for these primitive structures. The opti-
mal schedule lengths can then be used
as a basis for comparing the functional-
ity of the scheduling algorithms de-
scribed later in this section.

Without loss of generality, assume
that for the fork structure, we have:

c~nx, n1! 1 w~n1! $ c~nx, n2! 1 w~n2!

$ . . . $ c~nx, nk! 1 w~nk!.

Then the optimal schedule length is
equal to:

maxHw~nx! 1 O
i51

j

w~ni!,

w~nx! 1 c~nx, nj11! 1 w~nj11!J,

where j is given by the following condi-
tions:

O
i51

j

w~ni! # c~nx, nj! 1 w~nj!

and

O
i51

j11

w~ni! . c~nx, nj11! 1 w~nj11!.

Figure 7. (a) A fork set; and (b) a join set.
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In addition, assume that for the join
structure, we have:

w~n1! 1 c~n1, nx! $ w~n2! 1 c~n2, nx!

$ . . . $ w~nk! 1 c~nk, nx!.

Then the optimal schedule length for
the join is equal to:

maxHO
i51

j

w~ni! 1 w~nx!, w~nj11!

1 c~nj11, nx! 1 w~nx!J,

where j is given by the following condi-
tions:

O
i51

j

w~ni! # w~nj! 1 c~nj, nx!

and

O
i51

j11

w~ni! . w~nj11! 1 c~nj11, nx!.

From the above expressions, it is clear
that an algorithm has to be able to
recognize the longest path in the graph
in order to generate optimal schedules.
Thus, algorithms which consider only
b-level or only t-level cannot guarantee
optimal solutions. To make proper
scheduling decisions, an algorithm has
to dynamically examine both b-level and
t-level. In the coming subsections, we
will discuss the performance of the algo-
rithms on these two primitive graph
structures.

6.3.2 The EZ Algorithm. The EZ
(Edge-zeroing) algorithm [Sarkar 1989]
selects clusters for merging based on
edge weights. At each step, the algo-
rithm finds the edge with the largest
weight. The two clusters incident by the
edge will be merged if the merging
(thereby zeroing the largest weight)
does not increase the completion time.

After two clusters are merged, the or-
dering of nodes in the resulting cluster
is based on the static b-levels of the
nodes. The algorithm is briefly de-
scribed below.

(1) Sort the edges of the DAG in a de-
scending order of edge weights.

(2) Initially all edges are unexamined.
Repeat

(3) Pick an unexamined edge which has
the largest edge weight. Mark it as
examined. Zero the highest edge
weight if the completion time does
not increase. In this zeroing process,
two clusters are merged so that
other edges across these two clus-
ters also need to be zeroed and
marked as examined. The ordering
of nodes in the resulting cluster is
based on their static b-levels.
Until all edges are examined.

The time-complexity of the EZ algo-
rithm is O~e~e 1 v!!. For the DAG
shown in Figure 3, the EZ algorithm
generates a schedule shown in Figure
8(a). The steps of scheduling are shown
in Figure 8(b).

Performance on fork and join: Since
the EZ algorithm considers only the
communication costs among nodes to
make scheduling decisions, it does not
guarantee optimal schedules for both
fork and join structures.

6.3.3 The LC Algorithm. The LC
(Linear Clustering) algorithm [Kim and
Browne 1988] merges nodes to form a
single cluster based on the CP. The
algorithm first determines the set of
nodes constituting the CP, then sched-
ules all the CP nodes to a single proces-
sor at once. These nodes and all edges
incident on them are then removed from
the DAG. The algorithm is briefly de-
scribed below.

(1) Initially, mark all edges as unexam-
ined.
Repeat
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(2) Determine the critical path com-
posed of unexamined edges only.

(3) Create a cluster by zeroing all the
edges on the critical path.

(4) Mark all the edges incident on the
critical path and all the edges inci-
dent to the nodes in the cluster as
examined.
Until all edges are examined.

The time-complexity of the LC algo-
rithm is O~v~e 1 v!!. For the DAG
shown in Figure 3, the LC algorithm
generates a schedule shown in Figure
9(a); the scheduling steps are shown in
Figure 9(b).

Performance on fork and join: Since
the LC algorithm does not schedule
nodes on different paths to the same
processor, it cannot guarantee optimal
solutions for both fork and join struc-
tures.

6.3.4 The DSC Algorithm. The DSC
(Dominant Sequence Clustering) algo-
rithm [Yang and Gerasoulis 1993] con-
siders the Dominant Sequence (DS) of a
graph. The DS is the CP of the partially
scheduled DAG. The algorithm is briefly
described below.

(1) Initially, mark all nodes as unexam-
ined. Initialize a ready node list L to
contain all entry nodes. Compute b-
level for each node. Set t-level for
each ready node.
Repeat

(2) If the head of L, ni, is a node on the
DS, zeroing the edge between ni
and one of its parents so that the
t-level of ni is minimized. If no zero-
ing is accepted, the node remains in
a single node cluster.

(3) If the head of L, ni, is not a node on
the DS, zeroing the edge between ni

and one of its parents so that the
t-level of ni is minimized under the
constraint called Dominant Se-
quence Reduction Warranty
(DSRW). If some of its parents are
entry nodes that do not have any
child other than ni, merge part of
them so that the t-level of ni is min-
imized. If no zeroing is accepted, the
node remains in a single node clus-
ter.

Figure 8. (a) The schedule generated by the EZ algorithm (schedule length 5 18); (b) a scheduling
trace of the EZ algorithm.
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(4) Update the t-level and b-level of the
successors of ni and mark ni as ex-
amined.
Until all nodes are examined.

DSRW: Zeroing incoming edges of a
ready node should not affect the future
reduction of t-level ~ny!, where ny is a
not-yet ready node with a higher prior-
ity, if t-level ~ny! is reducible by zeroing
an incoming DS edge of ny.

The time-complexity of the DSC algo-
rithm is O~~e 1 v!logv!. For the DAG
shown in Figure 3, the DSC algorithm
generates a schedule shown in Figure
10(a). The steps of scheduling are given
in the table shown in Figure 10(b). In
the table, the start-times of the node on
the processors at each scheduling step
are given and the node is scheduled to
the processor on which the start-time is
marked by an asterisk.

Performance on fork and join: The
DSC algorithm dynamically tracks the
critical path in the DAG using both
t-level and b-level. In addition, it sched-
ules each node to start as early as pos-
sible. Thus, for both fork and join struc-
tures, the DSC algorithm can guarantee
optimal solutions.

Yang and Gerasoulis [1993] also in-
vestigated the granularity issue of clus-
tering. They considered that a DAG con-
sists of fork(Fx) and join(Jx) structures
such as the two shown in Figure 7.
Suppose we have:

g~Fx! 5
min$w~ni!%

max$c~nx, ni!%
,

g~Jx! 5
min$w~ni!%

max$c~ni, nx!%

Then the granularity of a DAG is de-
fined as g 5 min$gx% where gx 5
min$g~Fx!, g~Jx!%. A DAG is called
coarse grain if g $ 1. Based on this
definition of granularity, Yang and
Gerasoulis proved that the DSC algo-
rithm has the following performance
bound:

SLDSC # S1 1
1

gDSLopt

Thus, for a coarse grain DAG, the DSC
algorithm can generate a schedule
length within a factor of two from the
optimal. Yang and Gerasoulis also

Figure 9. (a) The schedule generated by the LC algorithm (schedule length 5 19); (b) a scheduling
trace of the LC algorithm.
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proved that the DSC algorithm is opti-
mal for any coarse grain in-tree, and
any single-spawn out-tree with uniform
computation costs and uniform commu-
nication costs.

6.3.5 The MD Algorithm. The MD
(Mobility Directed) algorithm [Wu and
Gajski 1990] selects a node ni for sched-
uling based on an attribute called the
relative mobility, defined as:

Cur2CP2Length 2 ~b-level~ni! 1 t-level~ni!!

w~ni!

If a node is on the current CP of the
partially scheduled DAG, the sum of its
b-level and t-level is equal to the current
CP length. Thus, the relative mobility of
a node is zero if it is on the current CP.
The algorithm is described below.

(1) Mark all nodes as unexamined. Ini-
tially, there is no cluster.
Repeat

(2) Compute the relative mobility for
each node.

(3) Let L9 be the group of unexamined
nodes with the minimum relative
mobility. Let ni be a node in L9 that
does not have any predecessors in
L9. Start from the first cluster,
check whether there is any cluster
that can accommodate ni. In the
checking process, all idle time slots
in a cluster are examined until one
is found to be large enough to hold
ni. A large enough idle time slot
may be created by pulling already
scheduled nodes downward because

Figure 10. (a) The schedule generated by the DSC algorithm (schedule length 5 17); (b) a scheduling
trace of the DSC algorithm (N.C. indicates “not considered”).
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the start-times of the already sched-
uled nodes are not fixed yet. If ni
cannot be scheduled to the first clus-
ter, try the second cluster, and so
on. If ni cannot be scheduled to any
existing cluster, leave it as a new
cluster.

(4) When ni is scheduled to cluster m,
all edges connecting ni and other
nodes already scheduled to cluster
m are changed to zero. If ni is
scheduled before node nj on cluster
m, add an edge with weight zero
from ni to nj in the DAG. If ni is
scheduled after node nj on the clus-
ter, add an edge with weight zero
from nj to ni, then check if the add-

ing edges form a loop. If so, schedule
ni to the next available space.

(5) Mark ni as examined.
Until all nodes are examined.

The time-complexity of the MD algo-
rithm is O~v3!. For the DAG shown in
Figure 3, the MD algorithm generates a
schedule shown in Figure 11(a). The
steps of scheduling are given in the
table shown in Figure 11(b). In the ta-
ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Using
the notion of relative mobility, the MD
algorithm is also able to track the criti-

Figure 11. (a) The schedule generated by the MD algorithm (schedule length 5 17); (b) a scheduling
trace of the MD algorithm (N.C. indicates “not considered,” N.R. indicates “no room”).
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cal path of the DAG in the scheduling
process. Thus, the algorithm can gener-
ate optimal schedules for fork and join
as well.

6.3.6 The DCP Algorithm. The DCP
(Dynamic Critical Path) algorithm is
proposed by Kwok and Ahmad [1996]
and is designed based on an attribute
which is slightly different from the rela-
tive mobility used in the MD algorithm.
Essentially, the DCP algorithm exam-
ines a node ni for scheduling if, among
all nodes, ni has the smallest difference
between its ALST (Absolute-Latest-
Start-Time) and AEST (Absolute-Earli-
est-Start-Time). The value of such dif-
ference is equivalent to the value of the
node’s mobility, defined as:

~Cur_CP_Length2~b-level~ni!1t-level~ni!!!.

The DCP algorithm uses a lookahead
strategy to find a better cluster for a
given node. The DCP algorithm is
briefly described below.

Repeat

(1) Compute (Cur_CP_Length 2 (b-level
~ni! 1 t-level~ni!)) for each node ni.

(2) Suppose that nx is the node with the
largest priority. Let nc be the child
node (i.e., the critical child) of nx
that has the largest priority.

(3) Select a cluster P such that the sum
Ts~nx! 1 ~Tx~nc!! is the smallest
among all the clusters holding nx’s
parents or children. In examining a
cluster, first try not to pull down
any node to create or enlarge an idle
time slot. If this is not successful in
finding a slot for nx, scan the cluster
for suitable idle time slot again pos-
sibly by pulling some already sched-
uled nodes downward.

(4) Schedule nx to P.
Until all nodes are scheduled.

The time-complexity of the DCP algo-
rithm is O~v3!. For the DAG shown in

Figure 3, the DCP algorithm generates
a schedule shown in Figure 12(a). The
steps of scheduling are given in the
table shown in Figure 12(b). In the ta-
ble, the composite start-times of the
node (i.e., the start-time of the node
plus that of its critical child) on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Since
the DCP algorithm examines the first
unscheduled node on the current critical
path by using mobility measures, it con-
structs optimal solutions for fork and
join graph structures.

6.3.7 Other UNC Approaches. Kim
and Yi [1994] proposed a two-pass
scheduling algorithm with time-com-
plexity O~vlog v!. The idea of the algo-
rithm comes from the scheduling of in-
trees. Kim and Yi observed that an in-
tree can be efficiently scheduled by
iteratively merging a node to the parent
node that allows the earliest completion
time. To extend this idea to arbitrary
structured DAGs, Kim and Yi devised a
two-pass algorithm. In the first pass, an
independent v-graph is constructed for
each exit node and an iterative schedul-
ing process is carried out on the
v-graphs. This phase is called forward-
scheduling. Since some intermediate
nodes may be assigned to different pro-
cessors in different schedules, a back-
ward-scheduling phase—the second
pass of the algorithm—is needed to re-
solve the conflicts. In their simulation
study, the two-pass algorithm outper-
formed a simulated annealing approach.
Moreover, as the principles of the algo-
rithm originated from scheduling trees,
the algorithm is optimal for both fork
and join structures.

6.3.8 Theoretical Analysis for UNC
Scheduling. In addition to the granu-
larity analysis performed for the DSC
algorithm, Yang and Gerasoulis [1993]
worked on the general analysis for UNC
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scheduling. They introduced a notion
called d-lopt which is defined below.

Definition 2. Let DLi
lopt be the opti-

mum schedule length at step i of a UNC
scheduling algorithm. A UNC schedul-
ing algorithm is called d-lopt if
maxi$SLi 2 SLi

lopt% # d where dis a
given constant.

In their study, they examined two
critical-path-based simple UNC sched-
uling heuristics called RCP and RCP*.
Essentially, both heuristics use b-level
as the scheduling priority but with a
slight difference in that RCP* uses
~b-level 2 w~ni!! as the priority. They
showed that both heuristics are d-lopt,
and thus demonstrated that critical
path-based scheduling algorithms are
near-optimal.

6.4 BNP Scheduling

In this section we survey the BNP class
of scheduling algorithms. In particular
we discuss in detail six BNP scheduling
algorithms: the HLFET, ISH, MCP,
ETF, DLS, and LAST algorithms.
Again, the DAG shown in Figure 3 is
used to illustrate the scheduling process
of these algorithms. The analytical per-
formance bounds of BNP scheduling
will also be discussed in the last subsec-
tion.

6.4.1 The HLFET Algorithm. The
HLFET (Highest Level First with Esti-
mated Times) algorithm [Adam et al.
1974] is one of the simplest list schedul-
ing algorithms and is described below.

(1) Calculate the static b-level (i.e., sl or
static level) of each node.

Figure 12. (a) The schedule generated by the DCP algorithm (schedule length 5 16); (b) a scheduling
trace of the DCP algorithm (N.C. indicates “not considered,” N.R. indicates “no room”).
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(2) Make a ready list in a descending
order of static b-level. Initially, the
ready list contains only the entry
nodes. Ties are broken randomly.
Repeat

(3) Schedule the first node in the ready
list to a processor that allows the
earliest execution, using the non-
insertion approach.

(4) Update the ready list by inserting
the nodes that are now ready.
Until all nodes are scheduled.

The time-complexity of the HLFET
algorithm is O~v2!. For the DAG shown
in Figure 3, the HLFET algorithm gen-
erates a schedule shown in Figure 13(a).
The steps of scheduling are given in the
table shown in Figure 13(b). In the ta-

ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Since
the HLFET algorithm schedules nodes
based on b-level only, it cannot guaran-
tee optimal schedules for fork and join
structures even if given sufficient pro-
cessors.

6.4.2 The ISH Algorithm. The ISH
(Insertion Scheduling Heuristic) algo-
rithm [Kruatrachue and Lewis 1987]
uses the “scheduling holes”—the idle
time slots—in the partial schedules.
The algorithm tries to fill the holes by
scheduling other nodes into them and
uses static b-level as the priority of a

Figure 13. (a) The schedule generated by the HLFET algorithm (schedule length 5 19); (b) a
scheduling trace of the HLFET algorithm (N.C. indicates “not considered”).
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node. The algorithm is briefly described
below.

(1) Calculate the static b-level of each
node.

(2) Make a ready list in a descending
order of static b-level. Initially, the
ready list contains only the entry
nodes. Ties are broken randomly.
Repeat

(3) Schedule the first node in the ready
list to the processor that allows the
earliest execution, using the non-
insertion algorithm.

(4) If scheduling of this node causes an
idle time slot, then find as many
nodes as possible from the ready list
that can be scheduled to the idle
time slot but cannot be scheduled
earlier on other processors.

(5) Update the ready list by inserting
the nodes that are now ready.
Until all nodes are scheduled.

The time-complexity of the ISH algo-
rithm is O~v2!. For the DAG shown in
Figure 3, the ISH algorithm generates a
schedule shown in Figure 14(a). The
steps of scheduling are given in the
table shown in Figure 14(b). In the ta-
ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk. Hole tasks are
the nodes considered for scheduling into
the idle time slots.

Performance on fork and join: Since
the ISH algorithm schedules nodes
based on b-level only, it cannot guaran-
tee optimal schedules for fork and join

Figure 14. (a) The schedule generated by the ISH algorithm (schedule length 5 19); (b) a scheduling
trace of the ISH algorithm (N.C. indicates “not considered”).
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structures even if given sufficient pro-
cessors.

6.4.3 The MCP Algorithm. The MCP
(Modified Critical Path) algorithm [Wu
and Gajski 1990] uses the ALAP of a
node as the scheduling priority. The
MCP algorithm first computes the
ALAPs of all the nodes, then constructs
a list of nodes in an ascending order of
ALAP times. Ties are broken by consid-
ering the ALAP times of the children of
a node. The MCP algorithm then sched-
ules the nodes on the list one by one
such that a node is scheduled to a pro-
cessor that allows the earliest start-
time using the insertion approach. The
MCP algorithm and the ISH algorithm
have different philosophies in utilizing
the idle time slot: MCP looks for an idle
time slot for a given node, while ISH
looks for a hole node to fit in a given
idle time slot. The algorithm is briefly
described below.

(1) Compute the ALAP time of each
node.

(2) For each node, create a list which
consists of the ALAP times of the
node itself and all its children in a
descending order.

(3) Sort these lists in an ascending lex-
icographical order. Create a node
list according to this order.
Repeat

(4) Schedule the first node in the node
list to a processor that allows the
earliest execution, using the inser-
tion approach.

(5) Remove the node from the node list.
Until the node list is empty.

The time-complexity of the MCP algo-
rithm is O~v2log v!. For the DAG shown
in Figure 3, the MCP algorithm gener-
ates a schedule shown in Figure 15(a).
The steps of scheduling are given in the
table shown in Figure 15(b). In the ta-
ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the

processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Since
the MCP algorithm schedules nodes
based on ALAP (effectively based on
b-level) only, it cannot guarantee opti-
mal schedules for fork and join struc-
tures even if given sufficient processors.

6.4.4 The ETF Algorithm. The ETF
(Earliest Time First) algorithm [Hwang
et al. 1989] computes, at each step, the
earliest start-times for all ready nodes
and then selects the one with the small-
est start-time. Here, the earliest start-
time of a node is computed by examin-
ing the start-time of the node on all
processors exhaustively. When two
nodes have the same value in their ear-
liest start-times, the ETF algorithm
breaks the tie by scheduling the one
with the higher static priority. The algo-
rithm is described below.

(1) Compute the static b-level of each
node.

(2) Initially, the pool of ready nodes in-
cludes only the entry nodes.
Repeat

(3) Calculate the earliest start-time on
each processor for each node in the
ready pool. Pick the node-processor
pair that gives the earliest time us-
ing the non-insertion approach. Ties
are broken by selecting the node
with a higher static b-level. Sched-
ule the node to the corresponding
processor.

(4) Add the newly ready nodes to the
ready node pool.
Until all nodes are scheduled.

The time-complexity of the ETF algo-
rithm is O~ pv2!. For the DAG shown in
Figure 3, the ETF algorithm generates
a schedule shown in Figure 16(a). The
scheduling steps are given in the table
shown in Figure 16(b). In the table, the
start-times of the node on the proces-
sors at each scheduling step are given
and the node is scheduled to the proces-
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sor on which the start-time is marked
by an asterisk.

Performance on fork and join: Since
the ETF algorithm schedules nodes
based on b-level only, it cannot guaran-
tee optimal schedules for fork and join
structures even if given sufficient pro-
cessors.

Hwang et al. [1989] also analyzed the
performance bound of the ETF algo-
rithm. They showed that the schedule
length produced by the ETF algorithm
SLEFT satisfies the following relation:

SLEFT # S2 2
1

pDSLopt
nc 1 C,

where SLopt
nc is the optimal schedule

length without considering communica-
tion delays and C is the communication

requirements over some parent-parent
pairs along a path. An algorithm is also
provided to compute C.

6.4.5 The DLS Algorithm. The DLS
(Dynamic Level Scheduling) algorithm
[Sih and Lee 1993a] uses an attribute
called dynamic level (DL), which is the
difference between the static b-level of a
node and its earliest start-time on a
processor. At each scheduling step, the
algorithm computes the DL for every
node in the ready pool on all processors.
The node-processor pair which gives the
largest value of DL is selected for sched-
uling. This mechanism is similar to the
one used by the ETF algorithm. How-
ever, there is one subtle difference be-
tween the ETF algorithm and the DLS
algorithm: the ETF algorithm always
schedules the node with the minimum

Figure 15. (a) The schedule generated by the MCP algorithm (schedule length 5 20); (b) a scheduling
trace of the MCP algorithm (N.C. indicates “not considered”).
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earliest start-time and uses static b-
level merely to break ties. In contrast,
the DLS algorithm tends to schedule
nodes in a descending order of static
b-levels at the beginning of a scheduling
process but tends to schedule nodes in
an ascending order of t-levels (i.e., the
earliest start-times) near the end of the
scheduling process.The algorithm is
briefly described below.

(1) Calculate the b-level of each node.

(2) Initially, the ready node pool in-
cludes only the entry nodes.
Repeat

(3) Calculate the earliest start-time for
every ready node on each processor.
Hence, compute the DL of every
node-processor pair by subtracting

the earliest start-time from the
node’s static b-level.

(4) Select the node-processor pair that
gives the largest DL. Schedule the
node to the corresponding processor.

(5) Add the newly ready nodes to the
ready pool
Until all nodes are scheduled.

The time-complexity of the DLS algo-
rithm is O~ pv3!. For the DAG shown in
Figure 3, the ETF algorithm generates
a schedule shown in Figure 17(a). The
steps of scheduling are given in the
table shown in Figure 17(b). In the ta-
ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the

Figure 16. (a) The schedule generated by the ETF algorithm (schedule length 5 19); (b) a scheduling
trace of the ETF algorithm (N.C. indicates “not considered”).
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processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Even
though the DLS algorithm schedules
nodes based on dynamic levels, it can-
not guarantee optimal schedules for
fork and join structures even if given
sufficient processors.

6.4.6 The LAST Algorithm. LAST
(Localized Allocation of Static Tasks)
algorithm [Baxter and Patel 1989] is
not a list scheduling algorithm, and
uses for node priority an attribute
called D2NODE, which depends only
on the incident edges of a node.
D2NODE is defined below:

D2NODE~ni! 5

Oc~nk,ni!D2EDGE~nk,ni!1Oc~ni,nj!D2EDGE~ni,nj!Oc~nk,ni!1Oc~ni,nj!

In the the above definition, D2EDGE
is equal to 1 if one of the nodes on the
edge is assigned to some processor. The
main goal of the LAST algorithm is to
minimize the overall communication.
The algorithm is briefly described be-
low.

(1) For each entry node, set its D2NODE
to be 1. Set all other D_NODEs to 0.
Repeat

(2) Let candidate be the node with the
highest D2NODE value.

(3) Schedule candidate to the processor
which allows the minimum start-
time.

(4) Update the D2EDGE and D2NODE
values of all adjacent nodes of can-
didate.

Figure 17. (a) The schedule generated by the DLS algorithm (schedule length 5 19); (b) a scheduling
trace of the DLS algorithm (N.C. indicates “not considered”).
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The time-complexity of the LAST al-
gorithm is O~v~e 1 v!!. For the DAG
shown in Figure 3, the LAST algorithm
generates a schedule shown in Figure
18(a). The steps of scheduling are given
in the table shown in Figure 18(b). In
the table, the start-times of the node on
the processors at each scheduling step
are given and the node is scheduled to
the processor on which the start-time is
marked by an asterisk.

Performance on fork and join: Since
the LAST algorithm schedules nodes
based on edge costs only, it cannot guar-
antee optimal schedules for fork and

join structures even if given sufficient
processors.

6.4.7 Other BNP Approaches. Mc-
Creary and Gill [1989] proposed a BNP
scheduling technique based on the clus-
tering method. In the algorithm, the
DAG is first parsed into a set of CLANs.
Informally, two nodes ni and nj are
members of the same CLAN if and only
if parents of nj outside the CLAN are
also parents of ni, and children of ni
outside the CLAN are also children of
nj. Essentially, a CLAN is a subset of

Figure 18. (a) The schedule generated by the LAST algorithm (schedule length 5 19); (b) a scheduling
trace of the LAST algorithm (N.C. indicates “not considered”).
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nodes where every element outside the
set is related in the same way to each
member in the set. The CLANs so de-
rived are hierachically related by a
parse tree. That is, a CLAN can be a
subset of another CLAN of larger size.
Trivial CLANs include the single nodes
and the whole DAG. Depending upon
the number of processors available, the
CLAN parse tree is traversed to deter-
mine the optimal CLAN size for assign-
ment so as to reduce the schedule
length.

Sih and Lee [1993b] reported a BNP
scheduling scheme which is also based
on clustering. The algorithm is called
declustering because upon forming a hi-
erarchy of clusters the optimal cluster
size is determined possibly by cracking
some large clusters in order to gain
more parallelism while minimizing
schedule length. Thus, using similar
principles as in McCreary and Gill’s ap-
proach, Sih and Lee’s scheme also
traverses the cluster hierarchy from top
to bottom in order to match the level of
cluster granularity to the characteristic
of the target architecture. The crucial
difference between their methods is in
the cluster formation stage. While Mc-
Creary and Gill’s method is based on
CLANs construction, Sih and Lee’s ap-
proach is to isolate a collection of edges
that are likely candidates for separating
the nodes at both ends onto different
processors. These cut-edges are tempo-
rarily removed from the DAG and the
algorithm designates each remaining
connected component as an elementary
cluster.

Lee et al. [1991] reported a BNP
scheduling algorithm targeted for data-
flow multiprocessors based on a vertical
layering method for the DAG. In their
scheme, the DAG is first partitioned
into a set of vertical layers of nodes. The
initial set of vertical layers is built
around the critical path of the DAG and
is then optimized by considering various
cases of accounting for possible inter-
processor communication, which may in
turn induce new critical paths. Finally,
the vertical layers of nodes are mapped

to the given processors in order to min-
imize the schedule length.

Zhu and McCreary [1992] reported a
set of BNP scheduling algorithms for
trees. They first devised an algorithm
for finding optimal schedules for trees,
in particular, binary trees. Nonetheless
the algorithm is of exponential complex-
ity since optimal scheduling of trees is
an NP-complete problem. They then
proposed a number of heuristic ap-
proaches that can generate reasonably
good solutions within a much shorter
amount of time. The heuristics are all
greedy in nature in that they attempt to
minimize the completion times of paths
in the tree and exploit only a small
number of possible paths in the search
of a good schedule.

Varvarigou et al. [1996] proposed a
BNP scheduling scheme for in-forests
and out-forests. However, their algo-
rithm assumes that the trees are with
unit computation costs and unit commu-
nication costs. Another distinctive fea-
ture of their algorithm is that the time-
complexity is pseudopolynomial, O~v2p!,
which is polynomial if p is fixed and
small. The idea of their algorithm is to
first transform the trees into delay-free
trees, which are then scheduled using
an optimal merging algorithm. This
transformation step is crucial and is
done as follows. For each node, a succes-
sor node is selected to be scheduled
immediately after the node. Then, since
the communication costs are unit, the
communication costs between the node
and all other successors can be dropped.
Only an extra communication free edge
is needed to add between the chosen
successor and the other successors. The
successor node is so selected that the
resulting DAG does not violate the pre-
cedence constraints of the original DAG.

Pande et al. [1994] proposed a BNP
scheduling scheme using a thresholding
technique. The algorithm first computes
the earliest start-times and latest start-
times of the nodes. A threshold for a
node is then the difference between its
earliest and the latest start-times. A
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global threshold is varied between the
minimum threshold among the nodes to
the maximum. For a node with thresh-
old less than the global value, a new
processor is allocated for the node, if
there is any available. For a node with
threshold above the global value, the
node is then scheduled to the same pro-
cessor as its parent which allows the
earliest start-time. The rationale of the
scheme is that as the threshold of a
node represents the tolerable delay of
execution without increasing overall
schedule length, a node with smaller
threshold deserves a new processor so
that it can start as early as possible.
Depending upon the number of given
processors, there is a trade-off between
parallelism and schedule length, and
the global threshold is adjusted accord-
ingly.

6.4.8 Analytical Performance Bounds
of BNP Scheduling. For the BNP class
of scheduling algorithms, Al-Mouhamed
[1990] extended Fernandez and Bus-
sell’s work [1973] (described in Section
6.2.3) and devised a bound on the mini-
mum number of processors for optimal
schedule length and a bound on the
minimum increase in schedule length if
only a certain smaller number of proces-
sor is available. Essentially, Al-Mou-
hamed extended the techniques of Fer-
nandez et al. for arbitrary DAGs with
communication. Furthermore, the ex-
pressions for the bounds are similar to
the ones reported by Fernandez and
Bussell, except that Al-Mouhamed con-
jectured that the bounds need not be
computed across all possible integer in-
tervals within the earliest completion
time of the DAG. However, Jain and
Rajaraman [1995] in a subsequent
study found that the computation of
these bounds needs to consider all the
integer intervals within the earliest
completion time of the DAG. They also
reported a technique to partition the
DAGs into nodes with non-overlapping
intervals so that a tighter bound is ob-
tained. In addition, the new bounds can
take lesser time to compute. Jain and

Rajaraman also found that using such a
partitioning facilitates all possible inte-
ger intervals to be considered in order
to compute a tighter bound.

6.5 TDB Scheduling

In this section ,we survey the TDB class
of DAG scheduling algorithms. We de-
scribe in detail six TDB scheduling algo-
rithms: the PY, LWB, DSH, BTDH,
LCTD, and CPFD algorithms. The DAG
shown in Figure 3 is used to illustrate
the scheduling process of these algo-
rithms.

In the following, we do not discuss the
performance of the TDB algorithms on
fork and join sets separately because
with duplication the TDB scheduling
schemes can inherently produce optimal
solutions for these two primitive struc-
tures. For a fork set, a TDB algorithm
duplicates the root on every processor so
that each child starts at the earliest
possible time. For a join set, although
no duplication is needed to start the
sink node at the earliest time, all the
TDB algorithms surveyed in this section
employ a similar recursive scheduling
process to minimize the start-times of
nodes so that an optimal schedule re-
sults.

6.5.1 The PY Algorithm. The PY al-
gorithm (named after Papadimitriou
and Yannakakis[1990]) is an approxi-
mation algorithm which uses an at-
tribute, called e-value, to approximate
the absolute achievable lower bound of
the start-time of a node. This attribute
is computed recursively beginning from
the entry nodes to the exit nodes. A
procedure for computing the e-values is
given below.

(1) Construct a list of nodes in topological
order. Call it TopList.
(2) for each node ni in TopList do
(3) if ni has no parent then e~ni! 5 0
(4) else
(5) for each parent nx of ni do f~nx! 5

e~nx! 1 c~nx, ni! endfor
(6) Construct a list of parents in decreas-
ing f. Call it ParentList.
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(7) Let min_e 5 the f value of the first
parent in ParentList
(8) Make ni as a single node cluser. Call it
Cluster~ni!.
(9) for each parent nx in ParentList do
(10) Include Cluster~nx! in Cluster~ni!.
(11) Compute the new min_e (i.e., start-
time) of ni in Cluster~ni!.
(12) if new min_e . original min_e then
exit this for-loop endif
(13) endfor
(14) e~ni! 5 min2e
(15) endif
(16) endfor

After computing the e-values, the al-
gorithm inserts each node into a cluster,
in which a group of ancestors are to be
duplicated such that the ancestors have
data arrival times larger than the e-
value of the node. Papadimitriou and
Yannakakis also showed that the sched-
ule length generated is within a factor
of two from the optimal. The PY algo-
rithm is briefly described below.

(1) Compute e-values for all nodes.
(2) for each node ni do
(3) Assign ni to a new processor PEi.
(4) for all ancestors of ni, duplicate an
ancestor nx if:

e~nx! 1 w~nx! 1 c~nx, ni! . e~ni!

(5) Order the nodes in PEi so that a node
starts as soon as all its data is available.
(6) endfor

The time-complexity of the PY algo-
rithm is O~v2~e 1 vlogv!!. For the DAG
shown in Figure 3, the PY algorithm
generates a schedule shown in Figure
19(a). The e-values are also shown in
Figure 19(b).

6.5.2 The LWB Algorithm. We call
the algorithm the LWB (Lower Bound)
algorithm [Colin and Chretienne 1991]
based on its main principle: it first de-
termines the lower bound start-time for
each node, and then identifies a set of
critical edges in the DAG. A critical
edge is the one in which a parent’s
message-available time for the child is
greater than the lower bound start-time
of the child. Colin and Chretienne
[1991] showed that the LWB algorithm
can generate optimal schedules for
DAGs in which node weights are strictly
larger than any edge weight. The LWB
algorithm is briefly described below.

(1) For each node ni, compute its lower
bound start-time, denoted by
lwb~ni!, as follows:

Figure 19. (a) The schedule generated by the PY algorithm (schedule length 5 21); (b) the 3-values of
the nodes computed by the PY algorithm.
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(a) For any entry node ni, lwb~ni!
is zero.

(b) For any node ni other than an
entry node, consider the set of
its parents. Let nx be the parent
such that lwb~nx! 1 w~nx! 1
c~nx, ni! is the largest among all
parents. Then, the lower bound
of ni, lwb~ni!, is given by, with
ny Þ nx,

MAX$lwb$nx% 1 w~nx!, MAX$lwb~ny!

1 w~ny! 1 c~ny, ni!%%

(2) Consider the set of edges in the task
graph. An edge ~ny, ni! is labelled
as “critical” if lwb~nx! 1 w~nx! 1
c~nx, ni! . lwb~ni!.

(3) Assign each path of critical edges to
a distinct processor such that each
node is scheduled to start at its
lower bound start-time.

The time-complexity of the LWB algo-
rithm is O~v2!. For the DAG shown in
Figure 3, the LWB algorithm generates
a schedule shown in Figure 20(a). The
lower bound values are also shown in
Figure 20(b).

6.5.3 The DSH Algorithm. The DSH
(Duplication Scheduling Heuristic) algo-
rithm [Kruatrachue and Lewis 1988]
considers each node in a descending or-
der of their priorities. In examining the
suitability of a processor for a node, the
DSH algorithm first determines the
start-time of the node on the processor
without duplication of any ancestor.
Then, it considers the duplication in the
idle time period from the finish-time of
the last scheduled node on the processor
and the start-time of the node currently
under consideration. The algorithm
then tries to duplicate the ancestors of
the node into the duplication time slot
until either the slot is used up or the
start-time of the node does not improve.
The algorithm is briefly described be-
low.

(1) Compute the static b-level for each
node.
Repeat

(2) Let ni be an unscheduled node with
the largest static b-level.

(3) For each processor P, do
(a) Let the ready time of P, denoted

by RT, be the finish-time of the
last node on P. Compute the

Figure 20. (a) The schedule generated by the LWB algorithm (schedule length 5 16); (b) the lwb (lower
bound) values of the nodes computed by the LWB algorithm.
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start-time of ni on P and denote
it by ST. Then the duplication
time slot on P has length ~ST
2 RT !. Let candidate be ni.

(b) Consider the set of candidate’s
parents. Let nx be the parent of
ni which is not scheduled on P
and whose message for candi-
date has the latest arrival time.
Try to duplicate nx into the du-
plication time slot.

(c) If the duplication is unsuccess-
ful, then record ST for this pro-
cessor and try another proces-
sor; otherwise, let ST be
candidate’s new start-time and
candidate be nx. Go to step (b).

(4) Let P9 be the processor that gives
the earliest start-time of ni. Sched-

ule ni to P9 and perform all the
necessary duplication on P9
Until all nodes are scheduled.

The time-complexity of the DSH algo-
rithm is O~v4!. For the DAG shown in
Figure 3, the DSH algorithm generates
a schedule shown in Figure 21(a). The
steps of scheduling are given in the
table shown in Figure 21(b). In the ta-
ble, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk.

6.5.4 The BTDH Algorithm. The
BTDH (Bottom-Up Top-Down Duplica-
tion Heuristic) algorithm [Chung and
Ranka 1992] is an extension of the DSH
algorithm described above. The major
improvement of the BTDH algorithm

Figure 21. (a) The schedule generated by the DSH algorithm (schedule length 5 15); (b) a scheduling
trace of the DSH algorithm.
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over the DSH algorithm is that the algo-
rithm keeps on duplicating ancestors of
a node even if the duplication time slot
is totally used up (i.e., the start-time of
the node temporarily increases) with
the hope that the start-time will eventu-
ally be minimized. That is, the BTDH
algorithm is the same as the DSH algo-
rithm except for step (3)(c) of the latter
in that the duplication of an ancestor is
considered successful even if the dupli-
cation time slot is used up. The process
stops only when the final start-time of
the node is greater than before the du-
plication. The time-complexity of the
BTDH algorithm is also O~v4!. For the
DAG shown in Figure 3, the BTDH algo-
rithm generates the same schedule as
the DSH algorithm which is shown in
Figure 21(a). The scheduling process is
also the same except at step (5) when
node n6 is considered for scheduling on
PE 2, the start-time computed by the
BTDH algorithm is also 5 instead of 6
as computed by the DSH algorithm.
This is because the BTDH algorithm
does not stop the duplication process
even though the start-time increases.

6.5.5 The LCTD Algorithm. The
LCTD (Linear Clustering with Task Du-
plication) algorithm [Chen et al. 1993]
is based on linear clustering of the
DAG. After performing the clustering
step, the LCTD algorithm identifies the
edges among clusters that determines
the completion time. Then, it tries to
duplicate the parents corresponding to
these edges to reduce the start-times of
some nodes in the clusters. The algo-
rithm is described below.

(1) Apply the LC algorithm to the DAG
to generate a set of linear clusters.

(2) Schedule each linear cluster to a
distinct processor and let the nodes
start as early as possible on the
processors.

(3) For each linear cluster C1 do:
(a) Let the first node in C1 be nx.
(b) Consider the set of nx’s parents.

Select the parent that allows the
largest reduction of nx’s start-
time. Duplicate this parent and
all the necessary ancestors to C1.

(c) Let nx be the next node in CPi.
Go to step (b).

(4) Consider each pair of processors. If
their schedules have enough com-
mon nodes so that they can be
merged without increasing the
schedule length, then merge the two
schedules and discard one processor.

The time-complexity of the LCTD al-
gorithm is O~v3log v!. For the DAG
shown in Figure 3, the LCTD algorithm
generates a schedule shown in Figure
22(a). The steps of scheduling are given
in the table shown in Figure 22(b). In
the table, the original start-times of the
node on the processors after the linear
clustering step are given. In addition,
the improved start-times after duplica-
tion are also given.

6.5.6 The CPFD Algorithm. The
CPFD (Critical Path Fast Duplication)
algorithm [Ahmad and Kwok 1998a] is
based on partitioning the DAG into
three categories: critical path nodes
(CPN), in-branch nodes (IBN), and out-
branch nodes (OBN). An IBN is a node
from which there is a path reaching a
CPN. An OBN is a node which is nei-
ther a CPN nor an IBN. Using this
partitioning of the graph, the nodes can
be ordered in decreasing priority as a
list called the CPN-Dominant Sequence.
In the following, we first describe the
construction of this sequence.

In a DAG, the CP nodes (CPNs) are
the most important nodes since their
finish-times effectively determine the fi-
nal schedule length. Thus, the CPNs in
a task graph should be considered as
early as possible for scheduling in the
scheduling process. However, we cannot
consider all the CPNs without first con-
sidering other nodes because the start-
times of the CPNs are determined by
their parent nodes. Therefore, before we
can consider a CPN for scheduling, we
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must first consider all its parent nodes.
In order to determine a scheduling or-
der in which all the CPNs can be sched-
uled as early as possible, we classify the
nodes of the DAG into three categories
given in the following definition.

Definition 4. In a connected graph,
an In-Branch Node (IBN) is a node,
which is not a CPN, and from which
there is a path reaching a Critical Path
Node (CPN). An Out-Branch Node
(OBN) is a node, which is neither a CPN
nor an IBN.

After the CPNs, the most important
nodes are IBNs because their timely
scheduling can help reduce the start-
times of the CPNs. The OBNs are rela-
tively less important because they usu-
ally do not affect the schedule length.
Based on this reasoning, we make a

sequence of nodes called the CPN-Dom-
inant sequence which can be con-
structed by the following procedure:

Constructing the CPN-Dominant Sequence

(1) Make the entry CPN to be the first
node in the sequence. Set Position to
2. Let nx be the next CPN.

Repeat
(2) If nx has all its parent nodes in the

sequence then
(3) Put nx at Position in the sequence

and increment Position.
(4) else
(5) Suppose ny is the parent node of nx

which is not in the sequence and
has the largest b-level. Ties are broken
by choosing the parent with a smaller
t-level. If ny has all its parent nodes
in the sequence, put ny at Position
in the sequence and increment Posi-
tion. Otherwise, recursively include

Figure 22. (a) The schedule generated by the LCTD algorithm (schedule length 5 17); (b) a scheduling
trace of the LCTD algorithm.
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all the ancestor nodes of ny in the
sequence so that the nodes with a
larger communication are consi-
dered first.

(6) Repeat the above step until all the
parent nodes of nx are in the sequence.
Put nx in the sequence at Position.

(7) endif
(8) Make nx to be the next CPN.
Until all CPNs are in the sequence.
(9) Append all the OBNs to the sequence

in a decreasing order of b-level.

The CPN-Dominant sequence pre-
serves the precedence constraints
among nodes as the IBNs reaching a
CPN are always inserted before the
CPN in the CPN-Dominant sequence. In
addition, the OBNs are appended to the
sequence in a topological order so that a
parent OBN is always in front of a child
OBN.

The CPN-Dominant sequence of the
DAG shown in Figure 3 is constructed
as follows. Since n1 is the entry CPN, it
is placed in the first position in the
CPN-Dominant sequence. The second
node is n2 because it has only one par-
ent node. After n2 is appended to the
CPN-Dominant sequence, all parent
nodes of n7 have been considered and
can, therefore, also be added to the se-
quence. Now the last CPN, n9 is consid-
ered. It cannot be appended to the se-
quence because some of its parent nodes
(i.e., the IBNs) have not been examined
yet. Since both n6 and n8 have the same
b-level but n8 has a smaller t-level, n8 is
considered first. However, both parent
nodes of n8 have not been examined,
thus, its two parent nodes, n3 and n4
are appended to the CPN-Dominant se-
quence first. Next, n8 is appended fol-
lowed by n6. The only OBN, n5, is the
last node in the CPN-Dominant se-
quence. The final CPN-Dominant se-
quence is as follows: n1, n2, n7, n4, n3,
n8, n6, n9, n5 (see Figure 3(b); the CPNs
are marked by an asterisk). Note that
using sl (static level) as a priority mea-

sure will generate a different ordering
of nodes: n1, n4, n2, n3, n5, n6, n7, n8, n9.

Based on the CPN-Dominant se-
quence, the CPFD algorithm is briefly
described below.

(1) Determine a critical path. Partition
the task graph into CPNs, IBNs,
and OBNs. Let candidate be the en-
try CPN.
Repeat

(2) Let P2SET be the set of processors
containing the ones accommodating
the parents of candidate plus an
empty processor.

(3) For each processor P in P2SET, do:
(a) Determine candidate’s start-

time on P and denote it by ST.
(b) Consider the set of candidate’s

parents. Let m be the parent
which is not scheduled on P and
whose message for candidate
has the latest arrival time.

(c) Try to duplicate m on the earli-
est idle time slot on P. If the
duplication is successful and the
new start-time of candidate is
less than ST, then let ST be the
new start-time of candidate.
Change candidate to m and go to
step (a). If the duplication is un-
successful, then return control
to examine another parent of the
previous candidate.

(4) Schedule candidate to the processor
P9 that gives the earliest start-time
and perform all the necessary dupli-
cation.

(5) Let candidate be the next CPN.

(6) Repeat the process from step (2) to
step (5) for each OBN with P_SET
containing all the processors in use
together with an empty processor.
The OBNs are considered one by one
topologically.
Until all CPNs are scheduled.

The time-complexity of the CPFD al-
gorithm is O~v4!. For the DAG shown in
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Figure 3, the CPFD algorithm generates
a schedule shown in Figure 23(a). The
steps of scheduling are given in the
table shown in Figure 23(b). In this
table, the start-times of the node on the
processors at each scheduling step are
given and the node is scheduled to the
processor on which the start-time is
marked by an asterisk.

6.5.7 Other TDB Approaches. Anger
et al. [1990] reported a TDB scheduling
scheme called JLP/D (Joint Latest Pre-
decessor with Duplication). The algo-
rithm is optimal if the communication
costs are strictly less than any computa-
tion costs, and there are sufficient pro-
cessors available. The basic idea of the
algorithm is to schedule every node
with its latest parent to the same pro-
cessor. Since a node can be the latest

parent of several successors, duplication
is necessary.

Markenscoff and Li [1993] reported a
TDB scheduling approach based on an
optimal technique for scheduling in-
trees. In their scheme, a DAG is first
transformed into a set of in-trees. A
node in the DAG may appear in more
than one in-tree after the transforma-
tion. Each tree is then optimally sched-
uled independently and hence, duplica-
tion comes into play.

In a recent study, Darbha and
Agrawal [1995] proposed a TDB sched-
uling algorithm using similar principles
as the LCTD algorithm. In the algo-
rithm, a DAG is first parsed into a set of
linear clusters. Then each cluster is ex-
amined to determine the critical nodes
for duplication. Critical nodes are the

Figure 23. (a) The schedule generated by the CPFD algorithm (schedule length 5 15); (b) a scheduling
trace of the CPFD algorithm.

448 • Y.-K. Kwok and I. Ahmad

ACM Computing Surveys, Vol. 31, No. 4, December 1999



nodes that determine the data arrival
time of the nodes in the cluster but are
themselves outside the cluster. Similar
to the LCTD algorithm, the number of
processors required is also optimized by
merging schedules with the same set of
“prefix” schedules.

Palis et al. [1996] also investigated
the problem of scheduling task graphs
to processors using duplication. They
proposed an approximation TDB algo-
rithm which produces schedule lengths
at most twice from the optimal. They
also showed that the quality of the
schedule improves as the granularity of
the task graph becomes larger. For ex-
ample, if the granularity is at least 1/2,
the schedule length is at most 5/3 times
optimal. The time-complexity of the al-
gorithm is O~v~vlog v 1 e!!, which is v
times faster than the PY algorithm pro-
posed by Papadimitriou and Yanna-
kakis [1990]. In Palis et al. [1996], sim-
ilar algorithms were also developed that
produce: (1) optimal schedules for
coarse grain graphs; (2) 2-optimal
schedules for trees with no task duplica-
tion; and (3) optimal schedules for
coarse grain trees with no task duplica-
tion.

6.6 APN Scheduling

In this section, we survey the APN class
of DAG scheduling algorithms. In par-
ticular we describe in detail four APN
algorithms: the MH (Mapping Heuris-
tic) algorithm [Rewini and Lewis 1990],
the DLS (Dynamic Level Scheduling)
algorithm [Sih and Lee 1993a], the BU
(Bottom Up) algorithm [Mehdiratta and
Ghose 1994], and the BSA (Bubble
Scheduling and Allocation) algorithm
[Kwok and Ahmad 1995]. Before we dis-
cuss these algorithms, it is necessary to
examine one of the most important is-
sues in APN scheduling–the message
routing issue.

6.6.1 The Message Routing Issue. In
APN scheduling, a processor network is
not necessarily fully-connected and con-
tention for communication channels

needs to be addressed. This in turn im-
plies that message routing and schedul-
ing must also be considered. Recent
high-performance architectures (nCUBE-2
[Hwang 1993], iWarp [Hwang 1993], and
Intel Paragon [Quinn 1994]) employ
wormhole routing in which the header
flit of a message establishes the path,
intermediate flits follow the path, and
the tail flit releases the path. Once the
header gets blocked due to link conten-
tion, the entire message waits in the
network, occupying all the links it is
traversing. Hence, it increasingly be-
comes important to take link contention
into account as compared to distance
when scheduling computations onto
wormhole-routed systems. Routing
strategies can be classified as either
deterministic or adaptive. Deterministic
schemes, such as the e-cube routing for
hypercube topology, construct fixed
routes for messages and cannot avoid
contention if two messages are using
the same link even when other links are
free. Yet deterministic schemes are easy
to implement and routing decisions can
be made efficiently. On the other hand,
adaptive schemes construct optimized
routes for different messages depending
upon the current channel allocation in
order to avoid link contention. However,
adaptive schemes are usually more com-
plex as they require much state infor-
mation to make routing decisions.

Wang [1990] suggested two adaptive
routing schemes suitable for use in APN
scheduling algorithms. The first scheme
is a greedy algorithm which seeks a
locally optimal route for each message
to be sent between tasks. Instead of
searching for a path with the least wait-
ing time, the message is sent through a
link which yields the least waiting time
among the links that the processor can
choose from for sending a message.
Thus, the route is only locally optimal.
Using this algorithm, Wang observed
that there are two types of possible
blockings: (i) a later message blocks an
earlier message (called LBE blocking),
and (ii) an earlier message blocks a
later message (called EBL blocking).
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LBE blocking is always more costly
than EBL blocking. In the case that
several messages are competing for a
link and blocking becomes unavoidable,
LBE blockings should be avoided as
much as possible. Given this observa-
tion, Wang proposed the second algo-
rithm, called the least blocking algo-
rithm, which works by trying to avoid
LBE blocking. The basic idea of the
algorithm is to use Dijkstra’s shortest
path algorithm to arrange optimized
routes for messages so as to avoid LBE
blockings.

Having determined routes for mes-
sages, the scheduling of different mes-
sages on the links is also an important
aspect. Dixit-Radiya and Panda [1993]
proposed a scheme for ordering mes-
sages in a link so as to further minimize
the extent of link contention. Their
scheme is based on the Temporal Com-
munication Graph (TCG) which, in ad-
dition to task precedence, captures the
temporal relationship of the communi-
cation messages. Using the TCG model,
the objective of which is to minimize the
contention on the link, the earliest
start-times and latest start-times of
messages can be computed. These val-
ues are then used to heuristically sched-
ule the messages in the links.

6.6.2 The MH Algorithm. The MH
(Mapping Heuristic) algorithm [El-Re-
wini and Lewis 1990] first assigns prior-
ities by computing the sl of all nodes. A
ready node list is then initialized to
contain all entry nodes ordered in de-
creasing priorities. Each node is sched-
uled to a processor that gives the small-
est start-time. In calculating the start-
time of node, a routing table is
maintained for each processor. The ta-
ble contains information as to which
path to route messages from the parent
nodes to the node under consideration.
After a node is scheduled, all of its
ready successor nodes are appended to
the ready node list. The MH algorithm
is briefly described below.

(1) Compute the sl of each node ni in
the task graph.

(2) Initialize a ready node list by insert-
ing all entry nodes in the task
graph. The list is ordered according
to node priorities, with the highest
priority node first.
Repeat

(3) ni 4 the first node in the list.

(4) Schedule ni to the processor which
gives the smallest start-time. In de-
termining the start-time on a pro-
cessor, all messages from the parent
nodes are scheduled and routed by
consulting the routing tables associ-
ated with each processor.

(5) Append all ready successor nodes of
ni, according to their priorities, to
the ready node list.
Until the ready node list is empty.

The time-complexity of the MH algo-
rithm is shown to be O~v~ p3v 1 e!!,
where p is the number of processors in
the target system.

For the DAG shown in Figure 3(a),
the schedule generated by the MH algo-
rithm for a 4-processor ring is shown in
Figure 24. Here, Lij denotes a communi-
cation link between PE i and PE j. The
MH algorithm schedules the nodes in
the following order: n1, n4, n3, n5, n2,
n8, n7, n6, n9. Note that the MH algo-
rithm does not strictly schedule nodes
according to a descending order of
sls(static levels) in that it uses the sl
order to break ties. As can be seen from
the schedule shown in Figure 24, the
MH algorithm schedules n4 first before
n2 and n7, which are more important
nodes. This is due to the fact that both
algorithms rank nodes according to a
descending order of their sls. The nodes
n2 and n7 are more important because
n7 is a CPN and n2 critically affects the
start-time of n7. As n4 has a larger
static level, both algorithms examine n4
first and schedule it to an early time
slot on the same processor as n1. As a
result, n2 cannot start at the earliest
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possible time–the time just after n1 fin-
ishes.

6.6.3 The DLS Algorithm. The DLS
(Dynamic Level Scheduling) algorithm
[Sih and Lee 1993a] described in Sec-
tion 6.4.5 can also be used as an APN
scheduling algorithm. However, the
DLS algorithm requires a message rout-
ing method to be supplied by the user. It
then computes the earliest start-time of
a node on a processor by tentatively
scheduling and routing all messages
from the parent nodes using the given
routing table.

For APN scheduling, the time-com-
plexity of the DLS algorithm is shown to
be O~v3pf~ p!!, where f~ p! is the time-
complexity of the message routing algo-
rithm. For the DAG shown in Figure
3(a), the schedule generated by the DLS
algorithm for a 4-processor ring is the
same as that generated by the MH algo-
rithm shown in Figure 24. The DLS
algorithm also schedules the nodes in
the following order: n1, n4, n3, n5, n2,
n8, n7, n6, n9.

6.6.4 The BU Algorithm. The BU
(Bottom-Up) algorithm [Mehdiratta and
Ghose 1994] first determines the critical
path (CP) of the DAG and then assigns
all the nodes on the CP to the same
processor. Afterwards, the algorithm as-
signs the remaining nodes in a reversed
topological order of the DAG to the pro-
cessors. The node assignment is guided
by a load-balancing processor selection
heuristic which attempts to balance the
load across all processors. The BU algo-
rithm examines the nodes at each topo-
logical level in a descending order of
their b-levels. After all the nodes are
assigned to the processors, the BU algo-
rithm tries to schedule the communica-
tion messages among them using a
channel allocation heuristic which tries
to keep the hop count of every message
roughly a constant constrained by the
processor network topology. Different
network topologies require different
channel allocation heuristics. The BU
algorithm is briefly described below.

(1) Find a critical path. Assign the
nodes on the critical path to the

Figure 24. The schedule generated by the MH and DLS algorithm (schedule length 5 20, total comm.
costs incurred 5 16).
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same processor. Mark these nodes
as assigned and update the load of
the processor.

(2) Compute the b-level of each node. If
the two nodes of an edge are as-
signed to the same processor, the
communication cost of the edge is
taken to be zero.

(3) Compute the p-level (precedence
level) of each node, which is defined
as the maximum number of edges
along a path from an entry node to
the node.

(4) In a decreasing order of p-level, for
each value of p-level, do:
(a) In a decreasing order of b-level,

for each node at the current p-
level, assign the node to a pro-
cessor such that the processing
load is balanced across all the
given processors.

(b) Re-compute the b-levels of all
nodes.

(5) Schedule the communication mes-
sages among the nodes such that
the hop count of each message is
maintained constant.

The time-complexity of the BU algo-
rithm is shown to be O~v2log v!.

For the DAG shown in Figure 3(a),
the schedule generated by the BU algo-
rithm1 for a 4-processor ring is shown in
Figure 25. As can be seen, the schedule
length is considerably longer than that
of the MH and DLS algorithms. This is
because the BU algorithm employs a
processor selection heuristic which
works by attempting to balance the load
across all the processors.

6.6.5 The BSA Algorithm. The BSA
(Bubble Scheduling and Allocation) al-
gorithm [Kwok and Ahmad 1995] is pro-
posed by us and is based on an incre-
mental technique, which works by
improving the schedule through migra-
tion of tasks from one processor to a
neighboring processor. The algorithm
first allocates all the tasks to a single
processor which has the highest connec-
tivity in the processor network and is

1In this example, we have used the PSH2 proces-
sor selection heuristic with p 5 1.5. Such a com-
bination is shown [Mehdiratta and Ghose 1994] to
give the best performance.

Figure 25. The schedule generated by the BU algorithm (schedule length 5 24, total comm. costs
incurred 5 27).
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called the pivot processor. In the first
phase of the algorithm, the tasks are
arranged in the processor according to
the CPN-Dominant sequence discussed
earlier in Section 6.5.6. In the second
phase of the algorithm, the tasks mi-
grate from the pivot processor to the
neighboring processors if the start-
times improve. This task migration pro-
cess proceeds in a breadth-first order of
the processor network in that after the
migration process is complete for the
first pivot processor, one of the neigh-
boring processors becomes the next
pivot processor and the process repeats.

In the following outline of the BSA
algorithm, the Build_processor_list( )
procedure constructs a list of processors
in a breadth-first order from the first
pivot processor. The Serial_injection( )
procedure constructs the CPN-Domi-
nant sequence of the nodes and injects
this sequence to the first pivot processor.
The BSA Algorithm

(1) Load processor topology and input
task graph
(2) Pivot_PE4 the processor with the
highest degree
(3) Build_processor_list(Pivot_PE)
(4) Serial_injection(Pivot_PE)
(5) while Processor_list_not_empty do
(6) Pivot_PE4 first processor of Proces-
sor_list
(7) for each ni on Pivot_PE do
(8) if ST~ni, Pivot2PE! . DAT~ni,
Pivot2PE! or Proc~VIP~ni!! 5

Pivot2PE then
(9) Determine DAT and ST of ni on each
adjacent processor PE9

(10) if there exists a PE9 s.t. ST~ni,
PE9! , ST~ni, Pivot2PE! then
(11) Make ni to migrate from Pivot2PE
to PE9
(12) Update start-times of nodes and
messages
(13) else if ST~ni, PE9! 5 ST~ni,
Pivot2PE! and Proc~VIP~ni!! then
(14) Make ni to migrate from Pivot2PE
to PE9 then
(15) Update start-times of nodes and
messages
(16) end if

(17) end if
(18) end for
(19) endwhile

The time-complexity of the BSA algo-
rithm is O~ p2ev!.

The BSA algorithm, as shown in Fig-
ure 26(a), injects the CPN-Dominant se-
quence to the first pivot processor PE 0.
In the first phase, nodes n1, n2, and n7
do not migrate because they are already
scheduled to start at the earliest possi-
ble times. However, as shown in Figure
26(b), node n4 migrates to PE 1 because
its start-time improves. Similarly, as
depicted in Figure 26(c), node n3 also
migrates to a neighboring processor PE
3. Figure 26(d) shows the intermediate
schedule after n8 migrates to PE 1 fol-
lowing its VIP n4. Similarly, n6 also
migrates to PE 3 following its VIP n3, as
shown in Figure 27(a). The last CPN,
n9, migrates to PE 1 to which its VIP
n8is scheduled. Such migration allows
the only OBN n5 to bubble up. The
resulting schedule is shown in Figure
27(b). This is the final schedule as no
more nodes can improve the start-time
through migration.

6.6.6 Other APN Approaches. Kon’ya
and Satoh [1993] reported an APN
scheduling algorithm for the hypercube
architectures. Their algorithm, called
the LST (Latest Starting Time) algo-
rithm, works by using a list scheduling
approach where the priorities of nodes
are first computed and a list is con-
structed based on these priorities. The
priority of a node is defined as its latest
starting time, which is determined be-
fore scheduling starts. Thus, the list is
static and does not capture the dynami-
cally changing importance of nodes,
which is crucial in APN scheduling.

In a later study, Selvakumar and
Murthy [1994] reported an APN sched-
uling scheme which is an extension of
Sih and Lee’s DLS algorithm. The dis-
tinctive new feature in their algorithm
is that it exploits schedule holes in pro-
cessors and communication links in or-
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der to produce better schedules. Essen-
tially, it differs from the DLS algorithm
in two respects: (i) the way in which the

priority of a task with respect to a pro-
cessor in a partial schedule; and (ii) the
way in which a task and all communica-

Figure 26. Intermediate schedules produced by BSA after (a) serial injection (schedule length 5 30,
total comm. cost 5 0); (b) n4 migrates from PE 0 to PE 1 (schedule length 5 26, total comm. cost 5 2);
(c) n3 migrates from PE 0 to PE 3 (schedule length 5 23, total comm. cost 5 4); (d) n8 migrates from PE
0 to PE 1 (schedule length 5 22, total comm. cost 5 9).
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tions from its parents are scheduled.
The priority of a node is modified to be
the difference between the static level
and the earliest finish-time. During the
scheduling of a node, a router is used to
determine the best possible path be-
tween the processors that need commu-
nication. In their simulation study, the
improved scheduling algorithm outper-
formed both the DLS algorithm and the
MH algorithm.

6.7 Scheduling in Heterogeneous
Environments

Heterogeneity has been shown to be an
important attribute in improving the
performance of multiprocessors [Ercego-
vac 1988; Freund and Siegel 1993; Me-
nasce and Almeida 1990; Siegel et al.
1992; Siegel et al. 1996; Wang et al.
1996]. In parallel computations, the se-
rial part is the bottleneck, according to
Amdahl’s law [Amdahl 1967]. In homo-
geneous multiprocessors, if one or more
faster processors are used to replace a
set of cost-equivalent processors, the se-
rial computations and other critical
computations can be scheduled to such
faster processors and performed at a

greater rate so that speedup can be
increased.

As we have seen in earlier parts of
this section, most DAG scheduling ap-
proaches assume the target system is
homogeneous. Introducing heterogene-
ity into the model inevitably makes the
problem more complicated to handle.
This is because the scheduling algo-
rithm has to take into account the dif-
ferent execution rate of different proces-
sors when computing the potential
start-times of tasks on the processors.
Another complication is that the result-
ing schedule for a given heterogeneous
system immediately becomes invalid if
some of the processing elements are re-
placed even though the number of pro-
cessors remain the same. This is be-
cause the scheduling decisions are made
not only on the number of processors
but also on the capability of the proces-
sors.

Static scheduling targeted for hetero-
geneous environments was unexplored
until recently. Menasce et al. [Menasce
and Porto 1993; Menasce et al. 1994;
Menasce et al. 1992; Menasce et al.
1995] investigated the problem of sched-

Figure 27. (a) Intermediate schedule produced by BSA after n6 migrates from PE 0 to PE 3 (schedule
length 5 22, total comm. cost 5 15); (b) final schedule produced by BSA after n9 migrates from PE 0 to
PE 1 and n5 is bubbled up (schedule length 5 16, total comm. cost 5 21).
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uling computations to heterogeneous
multiprocessing environments. The het-
erogeneous environment was modeled
as a system with one fast processor plus
a number of slower processors. In their
study, both dynamic and static schedul-
ing schemes were examined, but never-
theless DAGs without communication
are used to model computations
[Almeida et al. 1992]. Markov chains
were used to analyze the performance of
different scheduling schemes. In their
findings, out of all the static scheduling
schemes, the LTF/MFT (Largest Task
First/Minimizing finish-time) signifi-
cantly outperformed all the others in-
cluding WL (Weighted Level), CPM
(Critical Path Method) and HNF (Heavy
Node First). The LTF/MFT algorithm
works by picking the largest task from
the ready tasks list and schedules it to
the processor which allows the mini-
mum finish-time, while the other three
strategies select candidate processors
based on the execution time of the task.
Thus, based on their observations, an
efficient scheduling algorithm for heter-
ogeneous systems should concentrate on
reducing the finish-times of tasks.
Nonetheless, if communication delays
are also considered, different strategies
may be needed.

6.8 Mapping Clusters to Processors

As discussed earlier, mapping of clus-
ters to physical processors is necessary
for UNC scheduling when the number of
clusters is larger than the number of
physical processors. However, the map-
ping of clusters to processors is a rela-
tively unexplored research topic [Lee
and Aggarwal 1987]. In the following we
discuss a number of approaches re-
ported in the literature.

Upon obtaining a schedule by using
the EZ algorithm, Sarkar [1989] used a
list-scheduling based method to map the
clusters to physical processors. In the
mapping algorithm, each task is consid-
ered in turn according to the static
level. A processor is allocated to the
task if it allows the earliest execution,

then the whole cluster containing the
task is also assigned to that processor
and all the member tasks are marked as
assigned. In this scheme, two clusters
can be merged to a single processor but
a cluster is never cracked. Furthermore,
the allocation of channels to communi-
cation messages was not considered.

Kim and Browne [1988] also proposed
a mapping scheme for the UNC sched-
ules obtained from their LC algorithm.
In their scheme, the linear UNC clus-
ters are first merged so that the number
of clusters is at most the same as the
number of processors. Two clusters are
candidates for merging if one can start
after another finishes, or the member
tasks of one cluster can be merged into
the idle time slots of another cluster.
Then a dominant request tree (DRT) is
constructed from the UNC schedule
which is a cluster graph. The DRT con-
sists of the connectivity information of
the schedule and is, therefore, useful for
the mapping stage in which two commu-
nicating UNC clusters attempt to be
mapped to two neighboring processors,
if possible. However, if for some clusters
this connectivity mapping heuristic
fails, another two heuristics called per-
turbation mapping and foster mapping
are invoked. For both mapping strate-
gies, a processor is chosen which has
the most appropriate number of chan-
nels among currently unallocated pro-
cessors. Finally, to further optimize the
mapping, a restricted pairwise ex-
change step is called for.

Wu and Gajski [1990] suggested a
mapping scheme for assigning the UNC
clusters generated in scheduling to pro-
cessors. They realized that for best
mapping results, a dedicated traffic
scheduling algorithm that balances the
network traffic should be used. How-
ever, traffic scheduling requires flexi-
ble-path routing, which incurs higher
overhead. Thus, they concluded that if
network traffic is not heavy, a simpler
algorithm which minimizes total net-
work traffic can be used. The algorithm
they used is a heuristic algorithm de-
signed by Hanan and Kurtzberg [1972]

456 • Y.-K. Kwok and I. Ahmad

ACM Computing Surveys, Vol. 31, No. 4, December 1999



to minimize the total communication
traffic. The algorithm generates an ini-
tial assignment by a constructive
method and the assignment is then iter-
atively improved to obtain a better map-
ping.

Young and Gerasoulis [1993] em-
ployed a work profiling method for
merging UNC clusters. The merging
process proceeds by first sorting the
clusters in an increasing order of aggre-
gate computational load. Then a load-
balancing algorithm is invoked to map
the clusters to the processors so that
every processor has about the same
load. To take care of the topology of the
underlying processor network, the
graph of merged clusters are then
mapped to the network topology using
Bokhari’s algorithm.

Yang et al. [1993] reported an algo-
rithm for mapping cluster graphs to
processor graphs which is suitable for
use as the post-processing step for BNP
scheduling algorithms. The mapping
scheme is not suitable for UNC schedul-
ing because it assumes the scheduling
algorithm has already produced a num-
ber of clusters which is less than or
equal to the number of processors avail-
able. The objective of the mapping
method is to reduce contention and opti-
mize the schedule length when the clus-
ters are mapped to a topology which is
not fully connected as assumed by the
BNP algorithms. The idea of the map-
ping algorithm is based on determining
a set of critical edges, each of which is
assigned a single communication link.
Substantial improvement over random
mapping was obtained in their simula-
tion study.

In a recent study, Liou and Palis
[1997] investigated the problem of map-
ping clusters to processors. One of the
major objectives of their study was to
compare the effectiveness of one-phase
scheduling (i.e., BNP scheduling) to
that of the two-phase approach (i.e.,
UNC scheduling followed by clusters
mapping). To this end, they proposed a
new UNC algorithm called CASS-II
(Clustering And Scheduling System II),

which was applied to randomly gener-
ated task graphs in an experimental
study using three clusters mapping
schemes, namely, the LB (load-balanc-
ing) algorithm, the CTM (communica-
tion traffic minimizing) algorithm, and
the RAND (random) algorithm. The LB
algorithm uses processor workload as
the criterion of matching clusters to
processors. By contrast, the CTM algo-
rithm tries to minimize the communica-
tion costs between processors. The
RAND algorithm simply makes random
choices at each mapping step. To com-
pare the one-phase method with the
two-phase method, in one set of test
cases the task graphs were scheduled
using CASS-II with the three mapping
algorithms while in the other set using
the mapping algorithms alone. Liou and
Palis found that two-phase scheduling
is better than one-phase scheduling
whereas the utilization of processors in
the former is more efficient than the
latter. Furthermore, they found that the
LB algorithm finds significantly better
schedules than the CTM algorithm.

7. SOME SCHEDULING TOOLS

Software tools providing automated
functionalities for scheduling/mapping
can make the parallel programming
task easier. Despite a vast volume of
research on scheduling that exists,
building useful scheduling tools is only
recently addressed. A scheduling tool
should allow a programmer to specify a
parallel program in certain textual or
graphical form, and then perform auto-
matic partitioning and scheduling of the
program. The tool should also allow the
user to specify the target architecture.
Performance evaluation and debugging
functions are also highly desirable.
Some tools provide interactive environ-
ments for performance evaluation of
various popular parallel machines but
do not generate an executable scheduled
code [Pease et al. 1991]. Under the
above definition, such tools provide
other functionalities but cannot be clas-
sified as scheduling tools.
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In the following, we survey some of
the recently reported prototype schedul-
ing tools.

7.1 Hypertool

Hypertool takes a user-partitioned se-
quential program as input and automat-
ically allocates and schedules the parti-
tions to processors [Wu and Gajski
1990]. Proper synchronization primi-
tives are also automatically inserted.
Hypertool is a code generation tool since
the user program is compiled into a
parallel program for the iPSC/2 hyper-
cube computer using parallel code syn-
thesis and optimization techniques. The
tool also generates performance esti-
mates including execution time, commu-
nication and suspension times for each
processor as well as network delay for
each communication channel. Schedul-
ing is done using the MD algorithm or
the MCP algorithm.

7.2 PYRROS

PYRROS is a compile-time scheduling
and code generation tool [Yang and
Gerasoulis 1992]. Its input is a task
graph and the associated sequential C
code. The output is a static schedule
and a parallel C code for a given archi-
tecture (the iPSC/2). PYRROS consists
of a task graph language with an inter-
face to C, a scheduling system which
uses only the DSC algorithm, a X-Win-
dows based graphic displayer, and a
code generator. The task graph lan-
guage allows the user to define parti-
tioned programs and data. The schedul-
ing system is used for clustering the
task graph, performing load balanced
mapping, and computation/communica-
tion ordering. The graphic displayer is
used for displaying task graphs and
scheduling results in the form of Gantt
charts. The code generator inserts syn-
chronization primitives and performs
parallel code optimization for the target
parallel machine.

7.3 Parallax

Parallax incorporates seven classical
scheduling heuristics designed in the
seventies [Lewis and El-Rewini 1993],
providing an environment for parallel
program developers to find out how the
schedulers affect program performance
on various parallel architectures. Users
must provide the input program as a
task graph and estimate task execution
times. Users must also express the tar-
get machine as an interconnection to-
pology graph. Parallax then generates
schedules in the form of Gantt charts,
speedup curves, and processor and com-
munication efficiency charts using X-
Windows interface. In addition, an ani-
mated display of the simulated running
program to help developers to evaluate
the differences among the scheduling
heuristics is provided. Parallex, how-
ever, is not reported to generate an exe-
cutable code.

7.4 OREGAMI

OREGAMI is designed for use in con-
junction with parallel programming lan-
guages that support a communication
model, such as OCCAM, C*, or C and
FORTRAN with communication exten-
sion [Lo et al. 1991]. As such, it is a set
of tools that includes a LaRCS compiler
to compile textual user task descrip-
tions into specialized task graphs,
which are called TCG (Temporal Com-
munication Graphs) [Lo 1992]. In addi-
tion, OREGAMI includes a mapper tool
for mapping tasks on a variety of target
architectures, and a metrics tools for
analyzing and displaying the perfor-
mance. The suite of tools are imple-
mented in C for SUN workstations with
an X-Windows interface. However, pre-
cedence constraints among tasks are not
considered in OREGAMI. Moreover, no
target code is generated. Thus, like Par-
allax, OREGAMI is rather a design tool
for parallel program development.
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7.5 PARSA

PARSA is a software tool developed for
automatic scheduling and partitioning
of sequential user programs [Shirazi et
al. 1993]. PARSA consists of four com-
ponents: an application specification
tool, an architecture specification tool, a
partitioning and scheduling tool, and a
performance assessment tool. PARSA
does not generate any target code. The
application specification tool accepts a
sequential program written in the SI-
SAL functional language and converts it
into a DAG, which is represented in
textual form by the IF1 (Intermediate
Form 1) acyclic graphical language. The
architecture specification tool allows
the user to interactively specify the tar-
get system in graphical form. The exe-
cution delay for each task is also gener-
ated based on the architecture
specification. The partitioning and
scheduling tool consists of the HNF al-
gorithm, the LC algorithm, and the
LCTD algorithm. The performance as-
sessment tool displays the expected run-
time behavior of the scheduled program.
The expected performance is generated
by the analysis of the scheduled pro-
gram trace file, which contains the in-
formation on where each task is as-
signed for execution and exactly where
each task is expected to start execution,
stop execution, or send a message to a
remote task.

7.6 CASCH

CASCH(Computer- Aided SCHeduling)
tool [Ahmad et al. 1997] is aimed to be a
complete parallel programming environ-
ment including parallelization, parti-
tioning, scheduling, mapping, communi-
cation, synchronization, code
generation, and performance evalua-
tion. Parallelization is performed by a
compiler that automatically converts se-
quential applications into parallel
codes. The parallel code is optimized
through proper scheduling and map-
ping, and is executed on a target ma-
chine. CASCH provides an extensive li-

brary of state-of-the-art scheduling
algorithms from the recent literature.
The library of scheduling algorithms is
organized into different categories
which are suitable for different archi-
tectural environments.

The scheduling and mapping algo-
rithms are used for scheduling the task
graph generated from the user program,
which can be created interactively or
read from disk. The weights on the
nodes and edges of the task graph are
computed using a database that con-
tains the timing of various computation,
communication, and I/O operations for
different machines. These timings are
obtained through benchmarking. An at-
tractive feature of CASCH is its easy-to-
use GUI for analyzing various schedul-
ing and mapping algorithms using task
graphs generated randomly, interac-
tively, or directly from real programs.
The best schedule generated by an algo-
rithm can be used by the code generator
for generating a parallel program for a
particular machine–and the same pro-
cess can be repeated for another ma-
chine.

7.7 Commercial Tools

There are only a few commercially
available tools for scheduling and pro-
gram parallelization. Examples include
ATEXPERT by Cray Research [1991];
PARASPHERE by DEC [Digital Equip-
ment Corp.]; IPD by Intel [1991]; MPPE
by MasPar [1992]; and PRISM by TMC
[1991]. Most of these tools provide soft-
ware development and debugging envi-
ronments. Some of them also provide
performance tuning tools and other pro-
gram development facilities.

8. NEW IDEAS AND RESEARCH TRENDS

With the advancements in processors
and networking hardware technologies,
parallel processing can be accomplished
in a wide spectrum of platforms ranging
from tightly-coupled MPPs to a loosely-
coupled network of autonomous work-
stations. Designing an algorithm for
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such diverse platforms makes the
scheduling problem even more complex
and challenging. In summary, in the
design of scheduling algorithms for effi-
cient parallel processing, we have to
address four fundamental aspects: per-
formance, time-complexity, scalability,
and applicability. These aspects are
elaborated below.

Performance: A scheduling algorithm
must exhibit high performance and be
robust. By high performance we mean
the scheduling algorithm should pro-
duce high quality solutions. A robust
algorithm is one which can be used un-
der a wide range of input parameters
(e.g., arbitrary number of available pro-
cessors and diverse task graph struc-
tures).

Time-complexity: The time-complexity
of an algorithm is an important factor
insofar as the quality of solution is not
compromised. As real workload is typi-
cally of a large size [Ahmad et al. 1997],
a fast algorithm is necessary for finding
good solutions efficiently.

Scalability: A scheduling algorithm
must possess problem-size scalability,
that is, the algorithm has to consis-
tently give good performance even for
large input. On the other hand, a sched-
uling algorithm must also possess pro-
cessing-power scalability, that is, given
more processors for a problem, the algo-
rithm should produce solutions with
comparable quality in a shorter period
of time.

Applicability: A scheduling algorithm
must be applicable in practical environ-
ments. To achieve this goal, it must
take into account realistic assumptions
about the program and multiprocessor
models such as arbitrary computation
and communication weights, link con-
tention, and processor network topol-
ogy.

It is clear that the above mentioned
goals are conflicting and thus pose a
number of challenges to researchers. To
combat these challenges, several new
ideas have been suggested recently.
These new ideas, which include genetic
algorithms, randomization approaches,

and parallelization techniques, are em-
ployed to enhance the solution quality,
or to lower the time-complexity, or both.
In the following, we briefly outline some
of these recent advancements. At the
end of this section, we also indicate
some current research trends in sched-
uling.

8.1 Scheduling Using Genetic Algorithms

Genetic algorithms (GAs) [Davis 1991;
Filho et al. 1994; Forrest and Mitchell
1993; Goldberg 1989; Holland 1975;
Srinivas and Patnaik 1994] have re-
cently found many applications in opti-
mization problems including scheduling
[Ali et al. 1994; Benten and Sait 1994;
Chandrasekharam 1993; Dhodhi et al.
1995; Hou et al. 1994; Schwehm et al.
1994]. GAs use global search techniques
to explore different regions of the search
space simultaneously by keeping track
of a set of potential solutions of diverse
characteristics, called a population. As
such, GAs are widely recognized as ef-
fective techniques in solving numerous
optimization problems, because they
can potentially locate better solutions at
the expense of longer running time. An-
other merit of a genetic search is that
its inherent parallelism can be exploited
so as to further reduce its running time.
Thus, a parallel genetic search tech-
nique in scheduling is a viable approach
in producing high quality solutions us-
ing short running times.

Ali et al. [1994] proposed a genetic
algorithm for scheduling a DAG to a
limited number of fully connected pro-
cessors with a contention-free communi-
cation network. In their scheme, each
solution or schedule is encoded as a
chromosome containing valleles, each of
which is an ordered pair of task index
and its assigned processor index. With
such encoding the design of genetic op-
erators is straightforward. Standard
crossover is used because it always pro-
duces valid schedules as offsprings and
is computationally efficient. Mutation is
simply a swapping of the assigned pro-
cessors between two randomly chosen
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alleles. For generating an initial popu-
lation, Ali et al. use a technique called
“prescheduling” in which Np random
permutations of numbers from 1 to v
are generated. The number in each ran-
dom permutation represents the task
index of the task graph. The tasks are
then assigned to the PEs uniformly: the
first v / p tasks in a permutation are
assigned to PE 0, the next v / p tasks to
PE 1, and so on. In their simulation
study using randomly generated task
graphs with a few tenths of nodes, their
algorithm was shown to outperform the
ETF algorithm proposed by Hwang et
al. [1989].

Hou et al. [1994] also proposed a
scheduling algorithm using a genetic
search in which each chromosome is a
collection of lists, and each list repre-
sents the schedule on a distinct proces-
sor. Thus, each chromosome is not a
linear structure but a two-dimensional
structure instead. One dimension is a
particular processor index and the other
is the ordering of tasks scheduled on the
processor. Using such an encoding
scheme poses a restriction on the sched-
ules being represented: the list of tasks
within each processor in a schedule is
ordered in ascending order of their topo-
logical height, which is defined as the
largest number of edges from an entry
node to the node itself. This restriction
also facilitates the design of the cross-
over operator. In a crossover, two pro-
cessors are selected from each of two
chromosomes. The list of tasks on each
processor is cut into two parts, and then
the two chromosomes exchange the two
lower parts of their task lists corre-
spondingly. It is shown that this cross-
over mechanism always produces valid
offsprings. However, the height restric-
tion in the encoding may cause the
search to be incapable of obtaining the
optimal solution because the optimal so-
lution may not obey the height ordering
restriction at all.

Hou et al. incorporated a heuristic
technique to lower the likelihood of such
a pathological situation. Mutation is

simpler in design. In a mutation, two
randomly chosen tasks with the same
height are swapped in the schedule. As
to the generation of the initial popula-
tion, Np randomly permuted schedules
obeying the height ordering restriction
are generated. In their simulation study
using randomly generated task graphs
with a few tenths of nodes, their algo-
rithm was shown to produce schedules
within 20 percent degradation from op-
timal solutions.

Ahmad and Dhodhi [1995] proposed a
scheduling algorithm using a variant of
genetic algorithm called simulated evo-
lution. They employ a problem-space
neighborhood formulation in that a
chromosome represents a list of task
priorities. Since task priorities are de-
pendent on the input DAG, different
sets of task priorities represent differ-
ent problem instances. First, a list of
priorities is obtained from the input
DAG. Then the initial population of
chromosomes are generated by ran-
domly perturbing this original list.
Standard genetic operators are applied
to these chromosomes to determine the
fittest chromosome, which is the one
giving the shortest schedule length for
the original problem. The genetic
search, therefore, operates on the prob-
lem-space instead of the solution-space,
as is commonly done. The rationale of
this approach is that good solutions of
the problem instances in the problem-
space neighborhood are expected to be
good solutions for the original problem
as well [Storer et al. 1992].

Recently, we have proposed a parallel
genetic algorithm for scheduling [Kwok
and Ahmad 1997], called the Parallel
Genetic Scheduling (PGS) algorithm,
using a novel encoding scheme, an effec-
tive initial population generation strat-
egy, and computationally efficient ge-
netic search operators. The major
motivation of using a genetic search ap-
proach is that the recombinative nature
of a genetic algorithm can potentially
determine an optimal scheduling list
leading to an optimal schedule. As such,
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a scheduling list (i.e., a topological or-
dering of the input DAG) is encoded as a
genetic string. Instead of generating the
initial population totally randomly, we
generate the initial set of strings based
on a number of effective scheduling lists
such as ALAP list, b-level list, t-level
list, etc. We use a novel crossover oper-
ator, which is a variant of the order
crossover operator, in the scheduling
context. The proposed crossover opera-
tor has the potential to effectively com-
bine the good characteristics of two par-
ent strings in order to generate a
scheduling string leading to a schedule
with shorter schedule length. The cross-
over operator is easy to implement and
is computationally efficient.

In our experimental studies [Kwok
and Ahmad 1997], we have found that
the PGS algorithm generates optimal
solutions for more than half of all the
cases in which random task graphs
were used. In addition, the PGS algo-
rithm demonstrates an almost linear
speedup, and is therefore scalable.
While the DCP algorithm [Kwok and
Ahmad 1996] has already been shown to
outperform many leading algorithms,
the PGS algorithm is even better, since
it generates solutions with comparable
quality while using significantly less
time due to its effective parallelization.
The PGS algorithm outperforms the
well-known DSC algorithm in terms of
both the solution quality and running
time. An extra advantage of the PGS
algorithm is scalability, that is by using
more parallel processors, the algorithm
can be used for scheduling larger task
graphs.

8.2 Randomization Techniques

The time-complexity of an algorithm
and its solution quality are in general
conflicting goals in the design of effi-
cient scheduling algorithms. Our previ-
ous study [Kwok and Ahmad 1999b]
indicates that not only does the quality
of existing algorithms differ consider-
ably but their running times can vary
by large margins. Indeed, designing an

algorithm which is fast and can produce
high quality solutions requires some
low-complexity algorithmic techniques.
One promising approach is to employ
randomization. As indicated by Karp
[1991], Motwani and Raghavan [1995],
and other researchers, an optimization
algorithm which makes random choices
can be very fast and simple to imple-
ment. However, there has been very lit-
tle work done in this direction.

Recently, we [Kwok 1997; Kwok and
Ahmad 1999a; Kwok et al. 1996] pro-
posed a BNP scheduling algorithm
based on a random neighborhood search
technique [Johnson et al. 1988; Papad-
imitriou and Steiglitz 1982]. The algo-
rithm is called the Fast Assignment and
Scheduling of Tasks using an Efficient
Search Technique (FASTEST) algo-
rithm, which has a time-complexity of
only O~e!, where e is the number of
edges in the DAG [Kwok and Ahmad
1999a]. The FASTEST algorithm first
constructs an initial schedule quickly in
linear-time and then refines it by using
multiple physical processors, each of
which operates on a disjoint subset of
blocking-nodes as a search neighbor-
hood. The physical processors communi-
cate periodically to exchange the best
solution found thus far. As the number
of search steps required is a small con-
stant, which is independent of the size
of the input DAG, the algorithm effec-
tively takes linear-time to determine
the final schedule.

In our performance study [Kwok
1997; Kwok and Ahmad 1999a], we com-
pared the FASTEST algorithm with a
number of well-known efficient schedul-
ing algorithms. The FASTEST algo-
rithm has been shown to be better than
the other algorithms in terms of both
solution quality and running time.
Since the algorithm takes linear-time, it
is the fastest algorithm to our knowl-
edge. In experiments using random task
graphs for which optimal solutions are
known, the FASTEST algorithm gener-
ates optimal solutions for a significant
portion of all the test cases, and close-
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to-optimal solutions for the remaining
cases. The FASTEST algorithm also ex-
hibits good scalability in that it gives a
consistent performance when applied to
large task graphs. An interesting find-
ing of the FASTEST algorithm is that
parallelization can sometimes improve
its solution quality. This is due to the
partitioning of the blocking-nodes set,
which implies a partitioning of the
search neighborhood. The partitioning
allows the algorithm to explore the
search space simultaneously, thereby
enhancing the likelihood of getting bet-
ter solutions.

8.3 Parallelizing a Scheduling Algorithm

Parallelizing a scheduling algorithm is
a novel as well as natural way to reduce
the time-complexity. This approach is
novel in that no previous work has been
done in the parallelization of a schedul-
ing algorithm. Indeed, as indicated by
Norman and Thanisch [1993], it is
strange that there has been hardly any
attempt to parallelize a scheduling and
mapping process itself. Parallelization
is natural in that parallel processing is
realized only when a parallel processing
platform is available. Furthermore, par-
allelization can be utilized not only to
speed up the scheduling process further
but also to improve the solution quality.
Recently there have been a few parallel
algorithms proposed for DAG schedul-
ing [Ahmad and Kwok 1999; Kwok
1997; Kwok and Ahmad 1997].

In a recent study [Ahmad and Kwok
1998b], we have proposed two parallel
state-space search algorithms for find-
ing optimal or bounded solutions. The
first algorithm which is based on the A*
search technique uses a computation-
ally efficient cost function for quickly
guiding the search. The A* algorithm is
also parallelized, using static and dy-
namic load-balancing schemes to evenly
distribute the search states to the pro-
cessors. A number of effective state-
pruning techniques are also incorpo-
rated to further enhance the efficiency
of the algorithm. The proposed algo-

rithm outperforms a previously reported
branch-and-bound algorithm by using
considerable less computation time. The
second algorithm is an approximate al-
gorithm that guarantees a bounded de-
viation from the optimal solution, but
executes in a considerably shorter turn-
around time. Based on both theoretical
analysis and experimental evaluation
[Ahmad and Kwok 1998b] using ran-
domly generated task graphs, we have
found that the approximate algorithm is
highly scalable and is an attractive
choice, if slightly degraded solutions are
acceptable.

We have also proposed [Ahmad and
Kwok 1999; Kwok 1997] a parallel APN
scheduling algorithm called the Parallel
Bubble Scheduling and Allocation
(PBSA) algorithm. The proposed PBSA
algorithm is based on considerations
such as a limited number of processors,
link contention, heterogeneity of proces-
sors, and processor network topology.
As a result, the algorithm is useful for
distributed systems including clusters
of workstations. The major strength of
the PBSA algorithm lies in its incre-
mental strategy of scheduling nodes and
messages together. It first uses the
CPN-Dominant sequence to serialize
the task graph to one PE, and then
allows the nodes to migrate to other
PEs for improving their start-times. In
this manner, the start-times of the
nodes, and hence, the schedule length,
are optimized incrementally. Further-
more, in the course of migration, the
routing and scheduling of communica-
tion messages between tasks are also
optimized. The PBSA algorithm first
partitions the input DAG into a number
of disjoint subgraphs. The subgraphs
are then scheduled independently in
multiple physical processors, each of
which runs a sequential BSA algorithm.
The final schedule is constructed by
concatenating the subschedules pro-
duced. The proposed algorithm is, there-
fore, the first attempt of its kind in that
it is a parallel algorithm and it also
solves the scheduling problem by con-
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sidering all the important scheduling
parameters.

We have evaluated the PBSA algo-
rithm [Ahmad and Kwok 1999; Kwok
1997] by testing it in experiments using
extensive variations of input parame-
ters including graph types, graph sizes,
CCRs, and target network topologies.
Comparisons with three other APN
scheduling algorithms have also been
made. Based on the experimental re-
sults, we find that the PBSA algorithm
can provide a scalable schedule, and can
be useful for scheduling large task
graphs which are virtually impossible to
schedule using sequential algorithms.
Furthermore, the PBSA algorithm ex-
hibits superlinear speedup in that given
q physical processors, the algorithm can
produce solutions with comparable
quality with a speedup of roughly O~q2!
over the sequential case.

Other researchers have also sug-
gested techniques for some restricted
forms of the scheduling problem. Re-
cently, Pramanick and Kuhl [1995] pro-
posed a paradigm, called Parallel Dy-
namic Interaction (PDI), for developing
parallel search algorithms for many NP-
hard optimization problems. The PDI
method is applied to the job-shop sched-
uling problem in which a set of indepen-
dent jobs are scheduled to homogeneous
machines. De Falco et al. [1997] have
suggested using parallel simulated an-
nealing and parallel tabu search algo-
rithms for the task allocation problem,
in which a Task Interaction Graph
(TIG), representing communicating pro-
cesses in a distributed systems, is to be
mapped to homogeneous processors. As
mentioned earlier, a TIG is different
from a DAG in that the former is an
undirected graph with no precedence
constraints among the tasks. Parallel
branch-and-bound techniques [Ferreira
and Pardalos 1996] have also been used
to tackle some simplified scheduling
problems.

8.4 Future Research Directions

Research in DAG scheduling can be ex-
tended in several directions. One of the
most challenging directions is to extend
DAG scheduling to heterogeneous com-
puting platforms. Heterogeneous com-
puting (HC), using physically distrib-
uted diverse machines connected via a
high-speed network for solving complex
applications, is likely to dominate the
next era of high-performance comput-
ing. One class of HC environment is a
suite of sequential machines known as a
network of workstations (NOWs). An-
other class, known as the distributed
heterogeneous supercomputing system
(DHSS), is a suite of machines compris-
ing a variety of sequential and parallel
computers–providing an even higher
level of parallelism. In general, it is
impossible for a single machine archi-
tecture with its associated compiler, op-
erating system, and programming tools
to satisfy all the computational require-
ments in an application equally well.
However, a heterogeneous computing
environment that consists of a heteroge-
neous suite of machines, high-speed in-
terconnections, interfaces, operating
systems, communication protocols and
programming environments provides a
variety of architectural capabilities,
which can be orchestrated to perform an
application that has diverse execution
requirements. Due to the latest ad-
vances in networking technologies, HC
is likely to flourish in the near future.

The goal of HC using a NOW or a
DHSS is to achieve the minimum com-
pletion time for an application. A chal-
lenging future research problem is to
design efficient algorithms for schedul-
ing and mapping of applications to the
machines in a HC environment. Task-
to-machine mapping in a HC environ-
ment is beyond doubt more complicated
than in a homogeneous environment. In
a HC environment, a computation can
be decomposed into tasks, each of which
may have substantially different pro-
cessing requirements. For example a
signal processing task may strictly re-
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quire a machine possessing DSP pro-
cessing capability. While the PBSA al-
gorithm proposed [Ahmad and Kwok
1999] is a first step toward this direc-
tion, more work is needed. One possible
research direction is to first devise a
new model of heterogeneous parallel ap-
plications as well as new models of HC
environments. Based on these new mod-
els, more optimized algorithms can be
designed.

Another avenue of further research is
to extend the applicability of the exist-
ing randomization and evolutionary
scheduling algorithms [Ali et al. 1994;
Hou et al. 1994; Kwok 1997]. While they
are targeted to be used in BNP schedul-
ing, the algorithms may be extended to
handle APN scheduling as well. How-
ever, some novel efficient algorithmic
techniques for scheduling messages to
links need to be sought, lest the time-
complexity of the randomization algo-
rithms increase. Further improvements
in the genetic and evolutionary algo-
rithms may be possible if we can deter-
mine an optimal set of control parame-
ters, including crossover rate, mutation
rate, population size, number of genera-
tions, and number of parallel processors
used. However, finding an optimal pa-
rameters set for a particular genetic
algorithm is hitherto an open research
problem.

9. SUMMARY AND CONCLUDING
REMARKS

In this paper, we have presented an
extensive survey of algorithms for the
static scheduling problem. Processors
and communication links are in general
the most important resources in parallel
and distributed systems, and their effi-
cient management through proper
scheduling is essential for obtaining
high performance. We first introduced
the DAG model and the multiprocessor
model, followed by the problem state-
ment of scheduling. In the DAG model,
a node denotes an atomic program task,
and an edge denotes the communication
and data dependency between two pro-

gram tasks. Each node is labeled a
weight denoting the amount of compu-
tational time required by the task. Each
edge is also labeled a weight denoting
the amount of communication time re-
quired. The target multiprocessor sys-
tems is modeled as a network of pro-
cessing elements (PEs), each of which
comprises a processor and a local mem-
ory unit, so that communication is
achieved solely by message-passing. The
objective of scheduling is to minimize
the schedule length by properly allocat-
ing the nodes to the PEs and sequencing
their start-times so that the precedence
constraints are preserved.

We have also presented a scrutiny of
the NP-completeness results of various
simplified variants of the problem,
thereby illustrating that static schedul-
ing is a hard optimization problem. As
the problem is intractable even for mod-
erately general cases, heuristic ap-
proaches are commonly sought.

To better understand the design of
the heuristic scheduling schemes, we
have also described and explained a set
of basic techniques used in most algo-
rithms. With these techniques the task
graph structure is carefully exploited to
determine the relative importance of
the nodes in the graph. More important
nodes get a higher consideration prior-
ity for scheduling first. An important
structure in a task graph is the critical
path (CP). The nodes of the CP can be
identified by the nodes’ b-level and t-
level. In order to put the representative
work with different assumptions re-
ported in the literature in a unified
framework, we described a taxonomy of
scheduling algorithms which classifies
the algorithms into four categories: the
UNC (unbounded number of clusters)
scheduling, the BNP (bounded number
of processors) scheduling, the TDB (task
duplication based) scheduling, and APN
(arbitrary processor network) schedul-
ing. Analytical results as well as sched-
uling examples have been shown to
illustrate the functionality and characteris-
tics of the surveyed algorithms. Tasks
scheduling for heterogeneous systems,
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which are widely considered as promising
platforms for high-performance computing,
is briefly discussed. As a postprocessing
step of some scheduling algorithms, the
mapping process is also examined. Various
experimental software tools for scheduling
and mapping are also described.

Finally, we have surveyed a number
of new techniques which are recently
proposed for achieving these goals.
These techniques include genetic and
evolutionary algorithms, randomization
techniques, and parallelized scheduling
approaches.
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