Network Security

Alexandre Barbosa Augusto CRACS/INESCTEC, DCC-FCUP

Agenda

- Basic Tenets of Security
 - Good Security is Hard
 - Massively Deploy-able Security is Even Harder.
 - Problems with Passwords
 - Level of Authentication
- Public Key Infrastructure (PKI)
 - X.509
 - PGP
 - Smartcard

Basic Tenets of Security

Identity

- RW (RealWorld): <u>My Name</u>
- DW(DigitalWorld): Login
- Authentication
 - RW: <u>My Voice</u>
 - DW: <u>Password</u>

- Authorization
 - RW: Money
 - DW: <u>Cookie Session</u>
- Privacy
 - RW: <u>My thoughts</u>
 - DW: <u>Encrypted data</u>

Good Security is Hard

- Always a <u>compromise</u> between:
 - Easy of Use (convenience for the user)
 - Effectiveness (Confidentiality, Integrity, Privacy and Non-repudiation)
 - Cost
- It must be preceded by a comprehensive <u>Analysis of Risk</u>.
 - Otherwise security could end up being more costly then what needs to be protected.

Massively Deployable Security is Even Harder.

- What can you do when you have an installed base of thousands/millions ?
 - Security mechanisms must be extremely:
 - Cheap to deploy
 - Easy to use
 - Configurable by the user
- There is one such popular mechanism.
 - The LOGIN/PASSWORD

Problems with Passwords

- Selection
 - Good secure passwords are hard to find
- Memorization
 - It is easy to forget infrequently used passwords
 - It is hard to remember secure passwords
- Reuse
 - To many different passwords to memorize
 - People reuse the same password all over

Problems with Passwords

- Online Banking is one prime example of management of highly valuable assets on the Internet.
 - Online Banks are very convenient for the costumer and save of lot money to the Banks.
 - "Phishing" attacks became widespread and are quite effective at stealing user credentials.
 - Banking dedicated Malware provides high returns to the attacker

Risk Analysis tell us that Login/Password is not appropriate to protect these assets.

Level of Authentication

- Are based on:
 - Something you know (password/PIN)
 - Something you have (Token, Smartcard)
 - Something you are (Biometric)
- The typically single-factor authentication is the "username/password".
- The two-factor authentication adds something else, usually something you have.

Public Key Infrastructure (PKI)

- Is responsible to:
 - bind an identity to a public key by the usage of digital signature(s) in order to create the certificate.
 - Manage the digital certificates (create, store, distribute and revoke)
- Grants a two-factor authentication
- There are different concepts in order to manage a PKI.

X.509 certificate

- Is issued by a certificate authority (CA).
- Hierarchical approach
- Supports only one signature.
- Massively deployed over computer systems:
 - On browsers to prove web site authenticity and to establish a secure channel for data exchange.
 - On single sign-on (SSO) systems to give temporary access to a resource.

PGP (pretty good privacy) cert.

- Is issued by its creator (self-signed).
- Supports multiple signatures in order to grant a greater trust on network
- Based on a web of trust
- Widely used on emails systems in order to prove an identity or cypher information
- It is free

Smartcard

- Grants a non tampering security feature
- Provide the necessary crypto components allowing:
 - Secure personal and cryptographic data
 - Identification
 - Strong authentication
 - Digital signature
 - Encrypt data

Smartcard

- Grants:
 - a two-factor authentication
 - Data integrity
 - Privacy
 - Non-repudiation
- It is widely deployed on the world:
 - Citizen card
 - Bank cards
 - Universities

Question ?