Solvability of $N \times N-1$ tile sliding problems

February 18, 2018

Solvability of $N \times N-1$ tile sliding problems

NOTE: These conditions are valid for boards of width even!

- Let B be an initial board of dimension $N \times N$, with N even;
- Let the condition to reach from B to the final standard configuration be:

$$
(\operatorname{Inv} \% 2==0)==(\text { blankRow } \% 2==1)
$$

where Inv is the number of inversions of B, and blankRow is the row of the blank space in B

Final standard configuration (STD):

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Solvability of $N \times N-1$ tile sliding problems

- Let $I n v_{i}$ be the number of inversions of any initial configuration $\left(C_{i}\right)$;
- Let $I n v_{f}$ be the number of inversions of any final configuration $\left(C_{f}\right)$;
- Let blankRow be the row of the blank space in the initial $^{\text {b }}$ configuration counting from bottom (first row starts from 1);
- Let blankRow ${ }_{f}$ be the row of the blank space in the final configuration counting from bottom (first row starts from 1);

Solvability of $N \times N-1$ tile sliding problems

- If there is a solution from C_{i} to the final standard config $(S T D)$ AND there is a solution from C_{f} to the final standard config (STD), then there is a solution from C_{i} to C_{f} and vice-versa. Conversely,
- If there is NO solution from C_{i} to the final standard config AND there is NO solution from C_{f} to the final standard config, then there is a solution from C_{i} to C_{f} and vice-versa.

Solvability of $N \times N-1$ tile sliding problems: conditions

- Let Cond $_{i}$ be the result of condition:

$$
\left(\operatorname{Inv}_{i} \% 2==0\right)==\left(\text { blankRow }_{i} \% 2==1\right)
$$

- Let Cond_{f} be the result of condition:

$$
\left(\operatorname{Inv}_{f} \% 2==0\right)==\left(\operatorname{blankRow}_{f} \% 2==1\right)
$$

- There will be a solution from C_{i} to C_{f} and vice-versa, iff:

$$
\operatorname{Cond}_{i}==\operatorname{Cond}_{f}
$$

