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Introduction

Time Series Data
A Definition

Definition

A time series is a set of observations of a variable that are ordered
by time.
E.g.,
x1, x2, · · · , xt�1, xt , xt+1, · · · , xn
where xt is the observation of variable X at time t .
A multivariate time series is a set of observations of a set of
variables over a certain period of time.
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Introduction

The Main Goals of Time Series Analysis

Explanation

Obtaining a Time Series Model help us to have
a Deeper Understanding of the Mechanism

that Generated the Observed Time Series Data.

Forecasting

Given: x1, x2, · · · , xt�1, xt The Past!

Obtain: a time series model

Which is able to make predictions concerning:
xt+1, · · · , xn The Future!
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Introduction

Other Goals
Time Series Data Mining

Main Time Series Data Mining Tasks

Indexing (Query by Content)
Given a query time series Q and a similarity measure D(Q,X )
find the most similar time series in a database D

Clustering
Find the natural goupings of a set of time series in a database D

using some similarity measure D(Q,X )

Classification
Given an unlabelled time series Q, assign it a label C from a set of
pre-defined labels (classes)
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Introduction

Time Series Data in R

R has several data structures capable of handling time series data
In our illustration we will use the infra-structure provided by
package xts

library(xts)

data(ice.river,package='tseries')

ice.river[1:4,]

## flow.vat flow.jok prec temp

## [1,] 16.1 30.2 8.1 0.9

## [2,] 19.2 29.0 4.4 1.6

## [3,] 14.5 28.4 7.0 0.1

## [4,] 11.0 27.8 0.0 0.6

ir <- xts(ice.river[,1],

seq.Date(as.Date('1972-01-01'),

by='day',

len=nrow(ice.river)))
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Introduction

Time Series Data in R - indexing examples

ir[1:3]

## [,1]

## 1972-01-01 16.1

## 1972-01-02 19.2

## 1972-01-03 14.5

ir['1973-05-02']

## [,1]

## 1973-05-02 11.6

head(ir['1972-01'],2)

## [,1]

## 1972-01-01 16.1

## 1972-01-02 19.2

head(ir['1972-01-23/1972-02-02'],2)

## [,1]

## 1972-01-23 6.9

## 1972-01-24 6.9

head(ir['/1972-01-10'],2)

## [,1]

## 1972-01-01 16.1

## 1972-01-02 19.2

head(ir['1974-12-21/'],2)

## [,1]

## 1974-12-21 4.65

## 1974-12-22 5.16

head(ir['1972-01-23/1972-02'],2)

## [,1]

## 1972-01-23 6.9

## 1972-01-24 6.9
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Exploratory Analysis Summaries

Summaries of Time Series Data

Standard descriptive statistics (mean, standard deviation, etc.) do
not allways work with time series (TS) data.

TS may contain trends, seasonality and some other systematic
components, making these stats misleading.

So, for proving summaries of TS data we will be interested in
concepts like trend, seasonality and correlation between
sucessive observations of the TS.
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Exploratory Analysis Variation

Types of Variation

Seasonal Variation
Some time series exhibit a variation that is annual in period, e.g.
demand for ice cream.

Other Cyclic Variation

Some time series have periodic variations that are not related to
seasons but to other factors, e.g. some economic time series.

Trends
A trend is a long-term change in the mean level of the time series.
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Exploratory Analysis Stationarity

Stationarity

An Informal Definition
A time series is said to be stationary if

there is no systematic change in mean (no trend),
if there is no systematic change in variance and
if strictly periodic variations have been removed.

Note that in these cases statistics like mean, standard deviation,
variance, etc., bring relevant information!
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Exploratory Analysis Time Plots

Time Plots
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Ploting the time series
values against time is
one of the most
important tools for
analysing its behaviour.

Time plots show
important features like
trends, seasonality,
outliers and
discontinuities.
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Exploratory Analysis Time Plots

Time Plots in R

plot(ir)
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Exploratory Analysis Transformations - I

Transformations - I
Plotting the data may suggest transformations :

To stabilize the variance
Symptoms: trend with the variance increasing with the mean.
Solution: logarithmic transformation.

To make the seasonal effects additive
Symptoms: there is a trend and the size of the seasonal effect
increases with the mean(multiplicative seasonality).
Solution: logarithmic transformation.

To remove trend
Symptoms: there is systematic change on the mean.
Solution 1: first order differentiation (rXt = Xt � Xt�1).
Solution 2: model the trend and subtractit from the original series
(Yt = Xt � rt ).
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Exploratory Analysis Transformations - an example (1)

Transformations - a simple example (1)
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An example time series with
trend and a multiplicative
seasonality effect.
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Exploratory Analysis Transformations - an example (2)

Transformations - a simple example (2)
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Exploratory Analysis Transformations - an example (2)

Some useful functions in R

(s <- ir[1:10])

## [,1]

## 1972-01-01 16.10

## 1972-01-02 19.20

## 1972-01-03 14.50

## 1972-01-04 11.00

## 1972-01-05 13.60

## 1972-01-06 12.50

## 1972-01-07 10.50

## 1972-01-08 10.10

## 1972-01-09 9.68

## 1972-01-10 9.02

diff(s)

## [,1]

## 1972-01-01 NA

## 1972-01-02 3.10

## 1972-01-03 -4.70

## 1972-01-04 -3.50

## 1972-01-05 2.60

## 1972-01-06 -1.10

## 1972-01-07 -2.00

## 1972-01-08 -0.40

## 1972-01-09 -0.42

## 1972-01-10 -0.66

diff(s,diff=2)

## [,1]

## 1972-01-01 NA

## 1972-01-02 NA

## 1972-01-03 -7.80

## 1972-01-04 1.20

## 1972-01-05 6.10

## 1972-01-06 -3.70

## 1972-01-07 -0.90

## 1972-01-08 1.60

## 1972-01-09 -0.02

## 1972-01-10 -0.24

log10(s)

## [,1]

## 1972-01-01 1.2068259

## 1972-01-02 1.2833012

## 1972-01-03 1.1613680

## 1972-01-04 1.0413927

## 1972-01-05 1.1335389

## 1972-01-06 1.0969100

## 1972-01-07 1.0211893

## 1972-01-08 1.0043214

## 1972-01-09 0.9858754

## 1972-01-10 0.9552065
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Exploratory Analysis Autocorrelation

Autocorrelation

Sample Autocorrelation Coefficients

They measure the correlation between observations different distances
apart.

rk =

PN�k
t=1 (xt � x̄)(xt+k � x̄)

PN
t=1(xt � x̄)2
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Exploratory Analysis Autocorrelation

Correlogram
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Plot the sample
autocorrelation coefficients
against the lags,
k = 0, 1, · · · ,M.
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Exploratory Analysis Autocorrelation

Time Plots in R

plot(ir)

acf(ir)
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Exploratory Analysis Autocorrelation

Interpreting the Correlogram

Random Series
Most rk ’s near 0. Still, it is possible
that 1 on 20 is significant...

Short-Term Correlation
Fairly large value of r1 with
sucessive values rapidly tending to
non-significant.
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Exploratory Analysis Autocorrelation

Interpreting the Correlogram (cont.)

Alternating Series

Similar pattern on the values of rk .

Non-Stationary Series

For series with a trend the values
of rk will not go down till very large
values of the lag.

Seasonal Series
The correlagram tends to exhibit
the same periodicity as the original
series.
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Exploratory Analysis Check List

Handling Real World Data

A Check List of Common Sense Things to Do
(taken from Chatfield, 2004)

Do you understand the context? Have the right variables been
measured?
Have all the time series been plotted?
Are there missing values? If so, what should be done about them?
Are there any outliers? If so, what should be done about them?
Are there any discontinuities? If so, what do they mean?
Does it make sense to transform the variables?
Is trend present? If so, what should be done about it?
Is seasonality present? If so, what should be done about it?

Chatfield, C. (2004): The Analysis of Time Series - an introduction. CRC.
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Forecasting

Time Series Forecasting

Given:
x1, x2, · · · , xt�1, xt The Past!

Obtain:
a time series model

Which is able to make predictions concerning:
xt+1, · · · , xn The Future!
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Forecasting

Goals of an Evaluation Method

The golden rule:

The data used for evaluating (or comparing) any models cannot
be seen during model development.

The goal of any evaluation procedure:
Obtain a reliable estimate of some evaluation measure.
High probability of achieving the same score on other samples of
the same population.

Evaluation Measures
Predictive accuracy.
Model size.
Computational complexity.
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Forecasting Reliable Estimates

Obtaining Reliable Estimates

The usual techniques for model evaluation revolve around
resampling.

Simulating the reality.
Obtain an evaluation estimate for unseen data.

Examples of Resampling-based Methods
Holdout.
Cross-validation.
Bootstrap.

Time Series Data Are Special!

Any form of resampling changes the natural order of the data!
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Forecasting Evaluation Methodology

Correct Evalution of Time Series Models

General Guidelines
Do not “forget” the time tags of the observations.
Do not evaluate a model on past data.

A possible method
Divide the existing data in two time windows

Past data (observations till a time t).
“Future” data (observations after t).

Use one of these three learn-test alternatives
Fixed learning window.
Growing window.
Sliding window.
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Forecasting Evaluation Methodology

Learn-Test Strategies

tinit tfinalt

Fixed

Grow

Slide

ws
wv

Fixed Window
A single model is obtained with the available “training” data, and
applied to all test period.

Growing Window

Every wv test cases a new model is obtained using all data available till
then.

Sliding Window

Every wv test cases a new model is obtained using the previous ws
observations of the time series.
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Forecasting Evaluation Methodology

Dealing with model selection

Most modelling techniques involve some form of parameters that
usually need to be tunned.
The following describes an evaluation methodology considering
this issue:

sy ty ny1y ... ... ...
Data used for obtaining
the model alternatives

Data used for obtaining the selected
model alternative / variant

Stage 1

Stage 2

Model tunning and
selection period

Period
Final Evaluation
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Forecasting Evaluation Measures

Some Metrics for Evaluating Predictive Performance

Absolute Measures

Mean Squared Error (MSE)

MSE =
1
n

nX

i=1

(x̂i � xi)
2

Mean Absolute Deviation
(MAD)

MAD =
1
n

nX

i=1

|x̂i � xi |

Relative Measures

Theil Coefficient

U =

qPn
i=1(x̂i � xi)2

qPn
i=1(xi � xi�1)2

Mean Absolute Percentage
Error (MAPE)

MAPE =
1
n

nX

i=1

����
(x̂i � xi)

xi

����
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Forecasting Experimental Comparisons

The Goal of an Experimental Comparison

Given a set of observations of a time series X .
Given a set of alternative modelling approaches M.
Obtain estimates of the predictive performance of each mi for this
time series.

More specifically,
given a forecasting period size, wtest ,
and a predictive performance statistic, Err ,
we want to obtain a reliable estimate of the value of Err
for each mi .
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Forecasting Experimental Comparisons

Using Monte Carlo Simulations for Obtaining Reliable
Estimates of Err

A possible approach would be to use our proposed method of
Model Selection.
This would give us one estimate of Err .
More reliability is achievable if more repetitions of the process are
carried out.

Monte Carlo Estimates for Time Series Forecasting

Given: a time series, a training window size, wtrain, a testing window
size, wtest , and a number of repetitions, r ,
- randomly generate r points in the interval ]wtrain..(n � wtest)[,
- for each point proceed according to our Model Selection strategy.
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Forecasting Experimental Comparisons

Using Monte Carlo Simulations for Obtaining Reliable
Estimates of Err
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Forecasting Classical Approaches to Forecasting

Assumptions of “Classical” Linear Approaches

Linearity
The model of the time series behaviour is linear on its inputs.
Stationarity
The underlying equations governing the behaviour of the system
do not change with time.

Most “classical” approaches assume stationary time series, thus one
usually needs to transform non-stationary time series into stationary

ones before using these tools.
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Forecasting Classical Approaches to Forecasting

Integrated ARMA (or ARIMA) Models

Definition
An integrated ARMA (or ARIMA) model of order p, d , q is a series
given by
ˆYt+1 = µY +

Pp
i=0 ↵iYt�i +

Pd
m=0 �i(Yt�m �Yt�m�1)+

Pq
k=0 ✓ke(t � k)

where e(t � k) = ˆYt�k � Yt�k

There are many other variants, e.g. including seasonal components.
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Forecasting Classical Approaches to Forecasting

ARIMA models in R
The package forecast

library(forecast)

train <- ir['/1973-12-31']

test <- ir['1974-01-01/']

model <- Arima(train,order=c(3,1,1))

model

## Series: train

## ARIMA(3,1,1)

##

## Coefficients:

## ar1 ar2 ar3 ma1

## 0.6306 -0.3610 0.1538 -0.3196

## s.e. 0.2010 0.0706 0.0568 0.2003

##

## sigma^2 estimated as 3.059: log likelihood=-1442.06

## AIC=2894.12 AICc=2894.2 BIC=2917.09
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Forecasting Classical Approaches to Forecasting

ARIMA models in R

pred.train <- fitted(model)

## plotting this

plot(as.xts(as.numeric(pred.train),index(train)),

main="Performance on the training data")

lines(train,col="red")
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Forecasting Classical Approaches to Forecasting

ARIMA models in R
preds.test <- fitted(Arima(ir,model=model))[(length(train)+1):length(ir)]

mad <- function(p,t) mean(abs(as.numeric(p)-as.numeric(t)))

cat("The average mean absolute error was ",mad(preds.test,test))

## The average mean absolute error was 0.9338048

## plotting this

plot(as.xts(as.numeric(preds.test),index(test)),

main="Performance on the test data")

lines(test,col="red")
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Forecasting Classical Approaches to Forecasting

How to set the order of the ARIMA models ?
Function auto.arima

m <- auto.arima(train)

preds <- fitted(Arima(ir,model=m))[(length(train)+1):length(ir)]

cat("The average mean absolute error was ",mad(preds,test))

## The average mean absolute error was 1.118131

plot(as.xts(as.numeric(preds.test),index(test)),

main="Performance on the test data")

lines(test,col="red")
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Forecasting Non-Linear Approaches to Forecasting

Delay-Coordinate Embedding

Theorem (Takens, 1981)

Informally, it states we can uncover the dynamics of any time series
given the information on e past values of the series. For that to be
possible we need to know the correct embed size (how far back in time
to look)
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Forecasting Non-Linear Approaches to Forecasting

An Example of Delay-Coordinate Embedding

Example

Given the time series, y1, y2, y3, · · · , y100, an embed dimension of 5,
the resulting embed vectors are,

r5 = < y5, y4, y3, y2, y1 >
r6 = < y6, y5, y4, y3, y2 >
r7 = < y7, y6, y5, y4, y3 >
r8 = < y8, y7, y6, y5, y4 >

· · ·
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Forecasting Non-Linear Approaches to Forecasting

Consequences of Delay-Coordinate Embedding

If the system dynamics can be captured by a certain embed,
then we may try to model the relationship between the state of the

system and the future values of the series.

That is, we can try to obtain a model of the form,
Yt+h = f (rt)

This modelling task can be handled by any
multiple regression tool we have studied before!
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Forecasting Non-Linear Approaches to Forecasting

An Example with SVMs

## A simple function to create an embeded data set

create.data <- function(ts,embed) {

t <- index(ts)[-(1:(embed-1))]

e <- embed(ts,embed)

colnames(e) <- paste('V',embed:1,sep='')

xts(e,t)

}

## Preparing the data

ds <- create.data(ir,5)

train <- ds['/1973-12-31']

test <- ds['1974-01-01/']

## Now obtaining an SVM

library(e1071)

m <- svm(V5 ~ .,train,cost=10)

p.s <- predict(m,test)

mad(p.s,test$V5)

## [1] 1.26
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Forecasting Non-Linear Approaches to Forecasting

SVMs - 2

## plotting the predictions of SVM

plot(as.xts(as.numeric(p.s),index(test)),

main="Performance on the SVM on the test data")

lines(test$V5,col="red")
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