Knowledge Discovery from Structured Mammography Reports Using Inductive Logic Programming

> Inês Dutra ines@dcc.fc.up.pt CRACS-INESC-Porto LA DCC/FCUP

Joint work with

Elizabeth Burnside¹ Jesse Davis³ Chuck Kahn² David Page¹ Vítor Santos Costa⁴

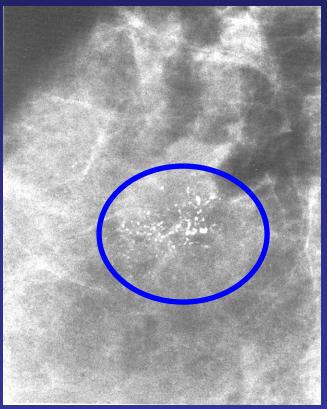
¹University of Wisconsin – Madison, WI, USA ²Medical College of Wisconsin – Milwaukee, WI, USA ³University of Leuven, Belgium ⁴University of Porto, Portugal

Objectives

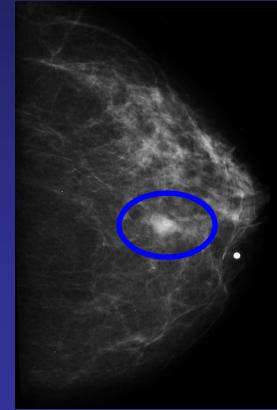
• Knowledge discovery using

- Demographic information
- Mammography findings
- Inductive logic programming (ILP)
- Discuss domain of breast cancer imaging
- Describe Data
- ILP
- Unique features of data discovery in this domain
- Results
- Conclusions

Background

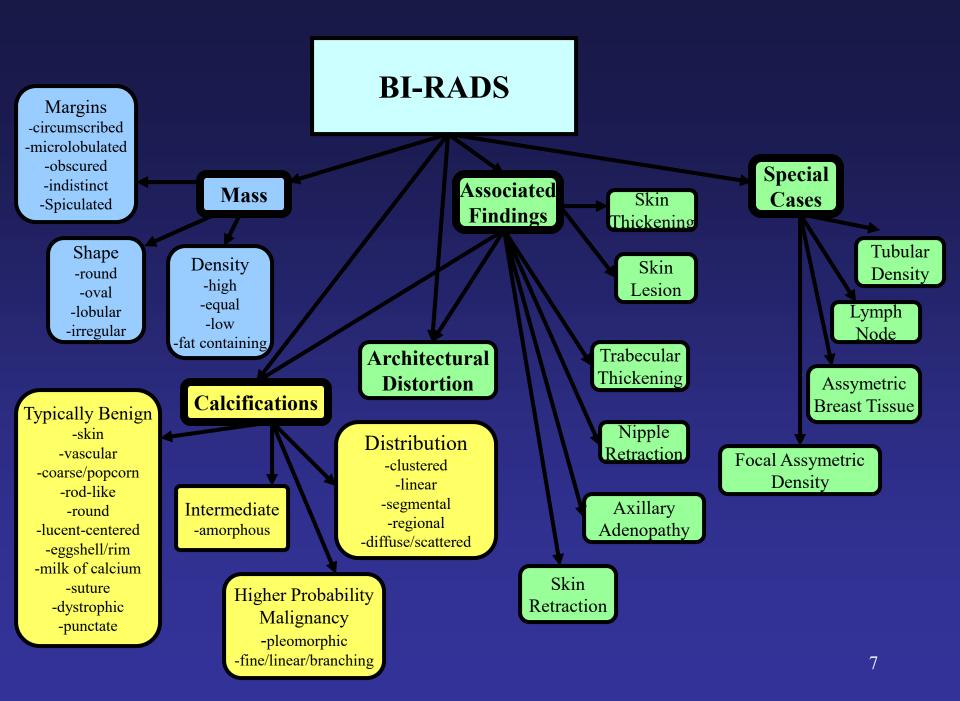

• Breast cancer is the most common cancer

• Mammography is the only proven screening test demonstrated in RCT to improve survival from breast cancer (also the cheapest)


• 20 million mammograms every 2 years

Common Mammogram Findings

Calcifications



Masses

Mammography Lexicon

- BI-RADS
- A controlled terminology for mammography reporting
- A hierarchy of terms describing features of findings seen on mammograms
- Terms were selected among those most predictive of benign and malignant diseases

BI-RADS Category

- Decisions are based on category:
 - BI-RADS 0: "Needs Additional Imaging"
 - BI-RADS 1: "Negative"
 - BI-RADS 2: "Benign"
 - BI-RADS 3: "Probably Benign"
 - BI-RADS 4: "Suspicious for malignancy"
 - BI-RADS 5: "Highly suggestive of malignancy"

Data

- National Mammography Database
- Defines a standard for reporting
 - Observed abnormalities on mammograms
 - Structured data that facilitates the use of computer technologies
- Our dataset contains
 - All abnormalities from 1999-2004 at MCW
 - 435 malignancies
 - 65,365 benign abnormalities

Data

Patient information	Abnormality location	Mass descriptors	Calcification descriptors
Age	Side	Shape	Shape
Hormone therapy	Depth	Density	Distribution
Family medical history	Clock location	Margins	Stability
Personal medical history	Quadrant location	Stability	10

Mammography Database

Р	atient	Finding	Date	Calcification Fine/Linear	-		Benign/ Malignant	
	P1	1	5/02	No		0.03	RU4	В
	P1	2	5/04	Yes		0.05	RU4	М
	P1	3	5/04	No		0.04	LL3	В
	P2	4	6/00	No		0.02	RL2	В
	•••	• • •	• • •	• • •		• • •	• • •	• • •

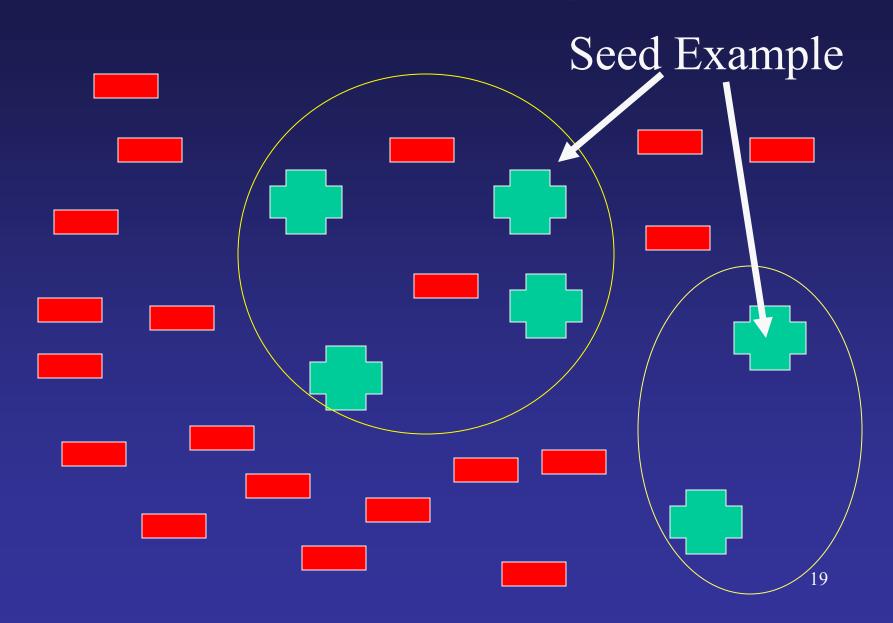
Important Change Over Time

Patient	Finding	Date	Calcification Fine/Linear	••••	Mass Size	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	RU4	В
P1	2	5/04	Yes	(0.05	RU4	М
P1	3	5/04	No		0.04	LL3	В
P2	4	6/00	No		0.02	RL2	В
•••	• • •	•••	• • •		• • •	•••	• • •

• Learn set of rules in 1st order logic

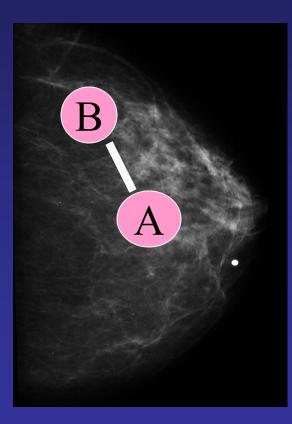
• Rules distinguish between positive and negative examples

• ILP algorithms: <u>Aleph</u> (Srinivasan), Progol (Muggleton), FOIL (Quinlan), etc.

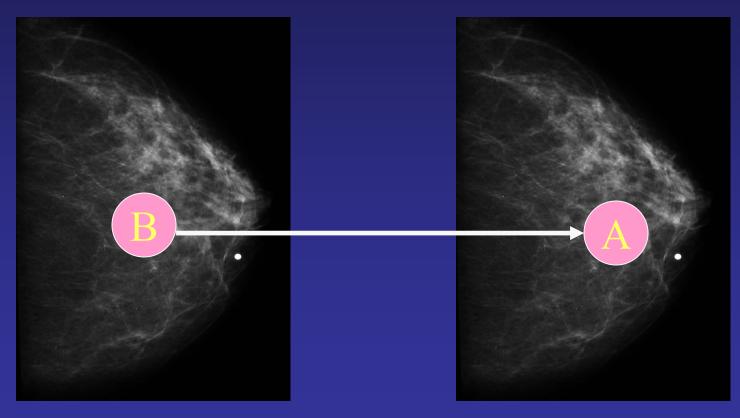

- Assumption 1
 - -Background knowledge B
 - -Form of a Prolog program

• Assumption 2 -Language specification -Clause representation is malignant(A) :-'Age'(A,age6570), 'MassesShape'(A, spiculated), 'BIRADS category'(A,b5)

- Assumption 3
 - -Constraints on acceptable clauses
 - -Example:
 - clause cannot have more than six literals


- Assumption 4
 - -Finite set of examples
 - E+ are positive examples (malignant)
 - E- are negative examples (benign)

ILP as in Aleph


Incorporating related information

in_same_mammogram(A,B)

Incorporating related information

prior_mammogram(A,B)

Results

- Aleph discovered millions of rules
- Evaluated each rule by how well it covered E+ and not E-
- We quantify performance using the m-estimate, a smoothed ratio between the number of positive E+ covered and the total E covered
- Selected the top 130 rules

Review of Results

- Radiologist reviewed these rules
- Found 2 to be interesting
- Significance of these rules was validated using the data

Rule #1

is malignant(A) :-'BIRADS category'(A,b5), 'MassPAO'(A, present), 'MassesDensity'(A,high), 'HO BreastCA'(A,hxDCorLC), in same mammogram(A,B), 'Calc Pleomorphic'(B,notPresent), 'Calc Punctate'(B,notPresent).

Rule #1

is malignant(A) :-'BIRADS category'(A,b5), 'MassPAO'(A, present), 'MassesDensity'(A,high), 'HO BreastCA'(A,hxDCorLC), in same mammogram(A,B), 'Calc Pleomorphic'(B,notPresent), 'Calc Punctate'(B,notPresent).

42 malignant and 11 benign findings 27

Significance of Rule #1

Mass density has not previously been significantly associated with breast cancer

Jackson VP, Dines KA, Bassett LW, Gold RH, Reynolds HE, <u>Diagnostic importance of the radiographic density of</u> <u>noncalcified breast masses: analysis of 91 lesions</u>. Am J Roentgenol. 1991 Jul;157(1):25-8.

Mass Density	Mal (Total	
Fat-density	0	(0)	493
Low	2 (.1)		3408
Equal	17 (3.3)		513
High	103 (31.7)		324
Total	122	(2.6)	4738

Mass Density		ignant %)	Total	
Fat-density	0	(0)	493	Ĵ
Low	2	(.1)	3408	ſ
Equal	17	(3.3)	513	
High	103	(31.7)	324	
Total	122	(2.6)	4738	

Mass Density		ignant %)	Total	
Fat-density	0	(0)	493	
Low	2	(.1)	3408	
Equal	17	(3.3)	513	
High	103	(31.7)	324	
Total	122	(2.6)	4738	

P < .001

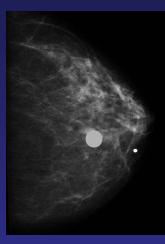
Mass Density		ignant %)	Total		
Fat-density	0	(0)	493		
Low	2	(.1)	3408	J	P < .001
Equal	17	(3.3)	513		
High	103	(31.7)	324	}	
Total	122	(2.6)	4738		

Mass Density	Mal (Total	
Fat-density	0 (0)		493
Low	2 (.1)		3408
Equal	17 (3.3)		513
High	103 (31.7)		324
Total	122 (2.6)		4738

P < .001

-

Rule #2


is_malignant(A) : 'BIRADS_category'(A,b5),
'Mass'(A,present),
'Age'(A,age6570),
previous_finding(A,B),
'Calc_Punctate'(B,notPresent),
'BIRADS_category'(B,b3).

Rule #2

is malignant(A) :-'BIRADS category'(A,b5), 'Mass'(A, present), 'Age'(A,age6570), previous finding(A,B), 'Calc Punctate'(B,notPresent), 'BIRADS category'(B,b3).

7 malignant and 0 benign findings

Significance of Rule #2

BI-RADS 3: Probably Benign

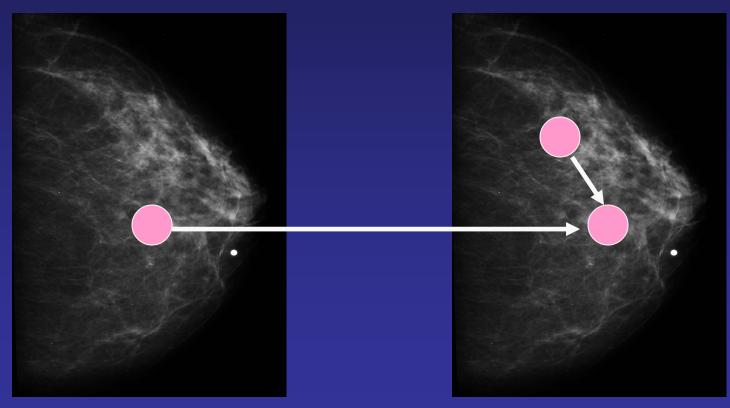
BI-RADS 5: Highly Suggestive of Malignancy

Significance of Rule #2

BI-RADS 3: **Probably Benign** Delay in Diagnosis!! **BI-RADS 5:** Highly Suggestive of Malignancy

Analysing all cases labeled as BI-RADS 3 and later diagnosed with cancer

BI-RADS 3 abnormality				BI-RADS 5 abnormality						
abnormality	side	clock	depth	quad	abnormality	side	clock	depth	quad	match
Clustered calcifications	L	12	М	UO	High density spiculated mass	L	С	М	*	possible
Ill-defined oval mass	R	11	М	UO	High density spiculated mass	R	11	М	UO	yes
Oval circumscribed mass	R	12	А	UI	Oval spiculated mass	R	5	Р	UI	no
*	R	4	М	*	Round spiculated mass	R	4	М	LI	yes
Oval mass	R	12	Р	UO	Irregular spiculated mass	R	12	Р	UO	yes
Ill-defined oval mass	R	2	Р	LI	Irregular high density mass	R	2	Р	LI	yes
*	L	12	М	UO	Irregular spiculated mass	L	1	М	UO	possible


Important: location!

Conclusion

• With large amounts of data, ILP holds significant promise in the domain of mammography to discover novel hypothesis and provide quality assurance.

Thank you!

Connecting AbnormalitiesMayPatient 1May200220022004

