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Logic Programming

Logic Programming: knowledge representation (KR) + programming
(program = logic + control)
Logic Programming: usually based on a subset of first-order logic →
Horn clauses
Horn clauses allow implications with at most one positive literal in
the consequent
This subset allows for a more efficient inference procedure: linear
resolution (by Robinson)
From KR point-of-view: easy way of representing relations and
relational data
Probabilistic logic programming: adding probabilities to logic
programming
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Knowledge Representation in Logic Programming

Classical and popular example of KR in logic programming (using the
Prolog syntax): family tree

mother(beryl,carol). mother(carol,john).
father(arthur, carol).
parent(X,Y) :- mother(X,Y); father(X,Y).
grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

In Prolog:
:- implication (←)
, conjunction (and)
; disjunction (or)

first letter uppercase: logical variable
first letter lowercase: constant (atom, predicate, literal, argument)
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Knowledge Representation in Logic Programming

Practice with the family tree
▶ Go to the swish webpage
▶ Click in the “Program” tab
▶ copy the family tree program to the swish editor area
▶ try queries according to list ex1
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Probabilistic Logic Programming

(Source: https://logic-data-science.github.io/Slides/DeRaedt.pdf - excellent presentation by de Raedt and Kimmig)

A key question in AI:
Dealing with uncertainty

Reasoning with 
relational data

Learning

?

2
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Probabilistic Logic Programming

A key question in AI:
Dealing with uncertainty

Reasoning with 
relational data

Learning

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

2
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Probabilistic Logic Programming

A key question in AI:
Dealing with uncertainty

Reasoning with 
relational data

Learning

Statistical relational learning, probabilistic logic 
learning, probabilistic programming, ...

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

2
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Probabilistic Logic Programming

Common theme
Dealing with 
uncertainty

Reasoning with 
relational data

Learning

Statistical relational learning, probabilistic logic 
learning, probabilistic programming, ...

10

• many different formalisms 
• our focus: probabilistic  
      (logic) programming

Inês Dutra SADC March 1st, 2024 8 / 57



Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

The (Incomplete) SRL Alphabet Soup

2011

´03´90 ´95

First KBMC approaches: 
Bresse,  
Bacchus, 
Charniak,  
Glesner, 
Goldman,  
Koller, 
Poole, Wellmann

[names in alphabetical order]

´99
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

LPAD: Bruynooghe 
Vennekens,Verbaeten

Markov Logic: Domingos, 
Richardson

CLP(BN): Cussens,Page,  
Qazi,Santos Costa

The (Incomplete) SRL Alphabet Soup

2011

PRMs: Friedman,Getoor,Koller, 
Pfeffer,Segal,Taskar

´03´96

SLPs: Cussens,Muggleton 

´90 ´95

First KBMC approaches: 
Bresse,  
Bacchus, 
Charniak,  
Glesner, 
Goldman,  
Koller, 
Poole, Wellmann

´00

BLPs: Kersting, De Raedt

RMMs: Anderson,Domingos, 
Weld

LOHMMs: De Raedt, Kersting, 
Raiko

[names in alphabetical order]

Prob. CLP: Eisele, Riezler

´02

PRISM: Kameya, Sato

´94

PLP: Haddawy, Ngo

´97´93

Prob. Horn  
Abduction: Poole

´99

1BC(2): Flach, 
Lachiche

Logical Bayesian Networks: 
 Blockeel,Bruynooghe, 

Fierens,Ramon, 

´07 RDNs: Jensen, Neville
´10 PSL: Broecheler, Getoor, Mihalkova

BUGS/Plates

Relational Markov Networks

Multi-Entity Bayes Nets

Object-Oriented Bayes Nets

IBAL

SPOOK

Relational Gaussian Processes Infinite Hidden Relational Models

Figaro

Church

Probabilistic Entity-Relationship Models

DAPER
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Probabilistic Logic Programming

Probabilistic Logic Programs

• devised by Poole and Sato in the 90s.

• built on top of the programming language Prolog

• upgrade directed graphical models

• combines the advantages / expressive power of 
programming languages (Turing equivalent) and graphical 
models 

• Generalises probabilistic databases (Suciu et al.)

• Implementations include:  PRISM, ICL, ProbLog, LPADs, CP-
logic,  Dyna, Pita, DC, … 

13
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Probabilistic Logic Programming

Prolog / logic 
programming

ProbLog 
probabilistic Prolog

Dealing with 
uncertainty

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/
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Probabilistic Logic Programming

Prolog / logic 
programming

ProbLog 
probabilistic Prolog

Dealing with 
uncertainty

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

one world 

16 http://dtai.cs.kuleuven.be/problog/
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Probabilistic Logic Programming

Prolog / logic 
programming

atoms as random 
variables

ProbLog 
probabilistic Prolog

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl).

one world 

16 http://dtai.cs.kuleuven.be/problog/

Inês Dutra SADC March 1st, 2024 14 / 57



Probabilistic Logic Programming

Prolog / logic 
programming

atoms as random 
variables

ProbLog 
probabilistic Prolog

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl).

one world 

several possible worlds 

16 http://dtai.cs.kuleuven.be/problog/
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Probabilistic Logic Programming

Prolog / logic 
programming

atoms as random 
variables

ProbLog 
probabilistic Prolog

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl).

one world 

several possible worlds 

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

16 http://dtai.cs.kuleuven.be/problog/
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Probabilistic Logic Programming

parameter learning, 
adapted relational 

learning techniques

Prolog / logic 
programming

atoms as random 
variables

ProbLog 
probabilistic Prolog

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl).

one world 

several possible worlds 

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

16 http://dtai.cs.kuleuven.be/problog/
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Probabilistic Logic Programming

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

17
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Probabilistic Logic Programming

0.4 :: heads.  

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with 
probability 0.4 (and false with 0.6)

17
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Probabilistic Logic Programming

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

annotated disjunction: first ball is red 
with probability 0.3 and blue with 0.7

17
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Probabilistic Logic Programming

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue).  

annotated disjunction: second ball is red with 
probability 0.2, green with 0.3,  and blue with 0.5

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

17

Inês Dutra SADC March 1st, 2024 21 / 57



Probabilistic Logic Programming

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue).  

win :- heads, col(_,red). logical rule encoding 
background knowledge

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

17
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Probabilistic Logic Programming

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue).  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

logical rule encoding 
background knowledge

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

17
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Probabilistic Logic Programming

0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue).  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic choices

consequences
17
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

18
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

marginal probability

query

18
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

marginal probability

conditional probability

evidence

18
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

marginal probability

conditional probability

MPE inference

18
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Probabilistic Logic Programming

Possible Worlds

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

19
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Probabilistic Logic Programming

Possible Worlds

H

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

0.4

19
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Probabilistic Logic Programming

Possible Worlds

H R

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4

19
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Probabilistic Logic Programming

Possible Worlds

H R

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4
G

19
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Probabilistic Logic Programming

Possible Worlds

H
W

R

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4
G

19
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Probabilistic Logic Programming

Possible Worlds

W
R RH

W
R R G

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true. 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4 ×0.2×0.3(1−0.4) ×0.3×0.3(1−0.4)

G

20
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

All Possible Worlds

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

21
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Most likely world 
where win is true?

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

MPE Inference

22
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Most likely world 
where win is true?

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

MPE Inference
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

? Marginal 
Probability

23
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑ Marginal 
Probability
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win)=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑ =0.562 Marginal 
Probability
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win|col(2,green))=

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210

? Conditional 
Probability

24
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

=P(win∧col(2,green))/P(col(2,green))
P(win|col(2,green))=

W
R R

H
W

R B

H
W

R G

H
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R G

R B H
W
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H GB

H
W

RB RB
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W
BB

0.024
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0.036
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0.090

0.056 0.084

0.084 0.126

0.140 0.210

∑/∑ Conditional 
Probability

24
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

=P(win∧col(2,green))/P(col(2,green))
P(win|col(2,green))=
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win|col(2,green))=
=0.036/0.3=0.12
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Probability
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Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

“Program” Abstraction: 
▪ S, C logical variable representing students, courses 
▪ the set of individuals of a type is called a population 
▪ Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding: 
• for every student s, there is a random variable Int(s) 
• for every course c, there is a random variable Di(c) 
• for every s, c pair there is a random variable Grade(s,c) 
• all instances share the same structure and parameters
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Probabilistic Logic Programming

G

0.4 :: int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob).
course(ai).    course(ml).    course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-  
           int(S), diff(C).
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-  
           student(S), course(C), 
           not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :- 
           not int(S), diff(C).

ProbLog by example: 

Grading
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Probabilistic Logic Programming

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C). 

   ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f). 

excellent(S) :- student(S), not grade(S,C,G), below(G,a).  
excellent(S) :- student(S), grade(S,C,a).
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De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Inference
The challenge : disjoint sum problem

P(win) = P(h(1) ⋁ (h(2) ⋀ h(3))

           =/= P(h(1)) +  P(h(2) ⋀ h(3))

should be

= P(h(1)) +  P(h(2) ⋀ h(3)) - P(h(1) ⋀h(2) ⋀ h(3))
35

0.4::heads(1). 
0.7::heads(2). 
0.5::heads(3). 
win :- heads(1). 
win :- heads(2), heads(3).

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 
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Inference
Map to Weighted Model Counting Problem and Solver

Ground out

+ Put formula in  CNF format

+ weights

+ call WMC

36

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 

h(1) → 0.4
¬h(1) → 0.6

h(2) → 0.7
¬h(2) → 0.3

h(3) → 0.5
¬h(3) → 0.5

(¬win ⋁ h(1) ⋁ h(2))
⋀ (¬win ⋁ h(1) ⋁ h(3))

⋀ (win ⋁ ¬h(1))
⋀ (win ⋁ ¬h(2) ⋁ ¬h(3))

0.4::heads(1). 
0.7::heads(2). 
0.5::heads(3). 
win :- heads(1). 
win :- heads(2), heads(3).
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Weighted Model Counting

37

WMC(�) =
X

IV |=�

Y

l2IV

w(l)
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Weighted Model Counting
propositional formula in conjunctive normal form (CNF)

interpretations (truth 
value assignments) of 
propositional variables

weight 
of literal

37

WMC(�) =
X

IV |=�

Y

l2IV

w(l)
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Weighted Model Counting
propositional formula in conjunctive normal form (CNF)

interpretations (truth 
value assignments) of 
propositional variables

weight 
of literal

given by SRL model & query 

possible worlds

for p::f,
w(f) = p
w(not f) = 1−p

37

WMC(�) =
X

IV |=�

Y

l2IV

w(l)
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Weighted Model Counting 
• Simple WMC solvers based on a generalisation of DPLL 

algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

• Current solvers often use knowledge compilation (is also state 
of the art for inference in graphical models)  — here an OBDD, 
many variations s-dDNNF, SDDs, … 

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 

A good source for Binary Decision Diagrams OBDD: ordered binary decision diagrams

s-dDNNF: structured-deterministic Decomposable Negation Normal Form SDD: Sentential Decision Diagram
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https://www.cmi.ac.in/~madhavan/courses/verification-2011/andersen-bdd.pdf
http://users.ece.cmu.edu/~gnb/Related%20Work_files/bryant92.pdf
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Weighted Model Counting 
• Simple WMC solvers based on a generalisation of DPLL 

algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

• Current solvers often use knowledge compilation (is also state 
of the art for inference in graphical models)  — here an OBDD, 
many variations s-dDNNF, SDDs, … 

h(1)

h(2)

h(3)

0 1win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 

Inês Dutra SADC March 1st, 2024 54 / 57



Probabilistic Logic Programming

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Weighted Model Counting 
• Simple WMC solvers based on a generalisation of DPLL 

algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

• Current solvers often use knowledge compilation (is also state 
of the art for inference in graphical models)  — here an OBDD, 
many variations s-dDNNF, SDDs, … 

truefalse

win?

h(1)

h(2)

h(3)

0 1win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 
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Weighted Model Counting 
• Simple WMC solvers based on a generalisation of DPLL 

algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

• Current solvers often use knowledge compilation (is also state 
of the art for inference in graphical models)  — here an OBDD, 
many variations s-dDNNF, SDDs, … 

win?

0.4
h(1)

h(2)

h(3)

0 1

0.6

0.70.3

0.50.5

P(win) = 
probability of 
reaching 1-leaf

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 
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Probabilistic Logic Programming

More inference

• Many variations / extensions  

• Approximate inference  

• Lifted inference  

• infected(X) :- contact(X,Y), sick(Y).
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