# Traveling Salesman Problem with Time Windows

Results obtained using Gurobi for solving the Traveling Salesman Problem with Time Windows, using the models described in Mathematical Optimization: Solving Problems using Python and Gurobi. Benchmark instances are available in this site. CPU time limited to 3600 seconds. (Click on values for selecting instance type and time window factor.)

 Performance data Dumas Dumas Dumas Dumas Gendreau Gendreau Gendreau Gendreau Gendreau Gendreau Gendreau CPU time required [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200] Number of solution failures [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200] Solutions [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200]

## Solutions obtained

### Instance type: Dumas, time window factor: 40

Results obtained using Gurobi for solving the Traveling Salesman Problem with Time Windows, using the models described in Mathematical Optimization: Solving Problems using Python and Gurobi. Benchmark instances are available in this site. CPU time limited to 3600 seconds. (Click on values for selecting instance type and time window factor.)

Benchmark instances used are described in "Dumas et al. 1995. An Optimal Algorithm for the Traveling Salesman Problem with Time Windows. Operations Research, 43, 367 - 371."

 Label Description mtz-tw model based on Miller-Tucker-Zemlin's one-index potential formulation mtz-strong based on Miller-Tucker-Zemlin's one-index potential formulation, with stronger constraints mtz-2idx based on Miller-Tucker-Zemlin's formulation, two-index potential formulation

 Instance Size mtz-tw mtz-strong mtz-2idx n20w40.001 20 254* 254* 254* n20w40.002 20 333* 333* 333* n20w40.003 20 317* 317* 317* n20w40.004 20 388* 388* 388* n20w40.005 20 288* 288* 288* n40w40.001 40 465* 465* 465* n40w40.002 40 461* 461* 461* n40w40.003 40 470* 474* 470* n40w40.004 40 452* 452* 452* n40w40.005 40 453* 453* 453* n60w40.001 60 591* 591* 591* n60w40.002 60 621* 621* 621* n60w40.003 60 603* 603* 603, 588 n60w40.004 60 597* 597* 597* n60w40.005 60 539* 539* 539* n80w40.001 80 604* 606* 604* n80w40.002 80 no sol, 588 618, 611 no sol, 521 n80w40.003 80 668* 674* no sol, 637 n80w40.004 80 557* 557* no sol, 503 n80w40.005 80 695* 695* no sol, 633 n100w40.001 100 770* 770* no sol, 716 n100w40.002 100 633, 626 656, 642 no sol, 570 n100w40.003 100 734, 724 736* no sol, 659 n100w40.004 100 651* 651* no sol, 563 n100w40.005 100 699* 699* no sol, 644 n150w40.001 150 no sol, 897 no sol, 906 no sol, 824 n150w40.002 150 942, 934 943, 930 no sol, 844 n150w40.003 150 no sol, 702 754, 710 no sol, 608 n150w40.004 150 761* 764* no sol, 684 n150w40.005 150 no sol, 784 no sol, 783 no sol, 725 n200w40.001 200 no sol, 980 no sol, 984 no sol, 868 n200w40.002 200 no sol, 902 no sol, 907 no sol, 761 n200w40.003 200 954, 908 no sol, 900 no sol, 748 n200w40.004 200 no sol, 958 1008, 957 no sol, 787 n200w40.005 200 no sol, 989 no sol, 997 no sol, 824