# Traveling Salesman Problem with Time Windows

Results obtained using Gurobi for solving the Traveling Salesman Problem with Time Windows, using the models described in Mathematical Optimization: Solving Problems using Python and Gurobi. Benchmark instances are available in this site. CPU time limited to 3600 seconds. (Click on values for selecting instance type and time window factor.)

 Performance data Dumas Dumas Dumas Dumas Gendreau Gendreau Gendreau Gendreau Gendreau Gendreau Gendreau CPU time required [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200] Number of solution failures [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200] Solutions [20] [40] [60] [80] [80] [100] [120] [140] [160] [180] [200]

## Solutions obtained

### Instance type: Dumas, time window factor: 60

Results obtained using Gurobi for solving the Traveling Salesman Problem with Time Windows, using the models described in Mathematical Optimization: Solving Problems using Python and Gurobi. Benchmark instances are available in this site. CPU time limited to 3600 seconds. (Click on values for selecting instance type and time window factor.)

Benchmark instances used are described in "Dumas et al. 1995. An Optimal Algorithm for the Traveling Salesman Problem with Time Windows. Operations Research, 43, 367 - 371."

 Label Description mtz-tw model based on Miller-Tucker-Zemlin's one-index potential formulation mtz-strong based on Miller-Tucker-Zemlin's one-index potential formulation, with stronger constraints mtz-2idx based on Miller-Tucker-Zemlin's formulation, two-index potential formulation

 Instance Size mtz-tw mtz-strong mtz-2idx n20w60.001 20 335* 335* 335* n20w60.002 20 244* 244* 244* n20w60.003 20 352* 352* 352* n20w60.004 20 280* 280* 280* n20w60.005 20 338* 338* 338* n40w60.001 40 494* 494* 494* n40w60.002 40 470* 470* 470* n40w60.003 40 393* 408* 393* n40w60.004 40 382* 382* 382* n40w60.005 40 328* 328* 328* n60w60.001 60 609* 609* 609* n60w60.002 60 566* 566* 566, 543 n60w60.003 60 485* 485* 485, 475 n60w60.004 60 571* 571* no sol, 529 n60w60.005 60 569* 569* 569* n80w60.001 80 554* 554* 554, 505 n80w60.002 80 628* 633* no sol, 592 n80w60.003 80 649, 642 651* no sol, 588 n80w60.004 80 612, 588 619, 597 no sol, 509 n80w60.005 80 no sol, 528 596, 535 no sol, 470 n100w60.001 100 658, 642 670, 646 no sol, 577 n100w60.002 100 no sol, 610 no sol, 597 no sol, 529 n100w60.003 100 no sol, 697 no sol, 698 no sol, 635 n100w60.004 100 772, 733 no sol, 739 no sol, 690 n100w60.005 100 661* 661* no sol, 600 n150w60.001 150 no sol, 799 no sol, 801 no sol, 713 n150w60.002 150 no sol, 768 no sol, 771 no sol, 666 n150w60.003 150 no sol, 729 no sol, 741 no sol, 662 n150w60.004 150 no sol, 751 no sol, 753 no sol, 675 n150w60.005 150 no sol, 802 no sol, 802 no sol, 723