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Motivation Lot Sizing Games

Game Theory

Game Theory Generalization of decision theory; an individual’s
success depends on the choices of others.

1838 Cournot Duopoly (simultaneous game): earliest
examples of game analysis;

1952 Stackelberg Game (sequential game): a player, called
the leader, takes his decision before decisions of other
players, called the followers, are known;
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Motivation Lot Sizing Games

Motivation: Integer Programming Games

Normal form games: explicit specification of the players’ pure strategies.

Player II
Cooperates Defects

Player I

Cooperates 1 1 3 0

Defects 0 3 2 2

Integer Programming Games: players’ pure strategies are lattice points inside
polytopes described by systems of linear inequalities.
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Integer Programming games

Each player p solves a problem in the form of

Maximizexp Πp
(
xp, x−p

)

subject to Apx
p ≤ bp

xpi integer , ∀i
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Motivation Lot Sizing Games

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;

1991 Elzen and Talman;

2003 Global Newton method by Govindan and Wilson ;

However an explicit description of the set of strategies is required.
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Lot Sizing Game
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Lot Sizing Game: Model
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Lot Sizing Game: Model

P (Qt) = max(at − btQt, 0) with Qt =
∑m

t=1 q
p
t

Qt

P (Qt)

at

at
bt



Motivation Lot Sizing Games

Lot Sizing Game: Formulation

Each player i = 1, 2, . . . ,m solves the following parametric programming
optimization problem

max
yi,xi,qi,hi

T∑
t=1

max(at − bt

m∑
j=1

qjt , 0)q
i
t −

T∑
t=1

F i
t y

i
t −

T∑
t=1

Hi
th

i
t −

T∑
t=1

Ci
tx

i
t

subject to xi
t + hi

t−1 = hi
t + qit for t = 1, . . . , T

0 ≤ xi
t ≤Myi

t for t = 1, . . . , T

hi
0 = hi

T = 0

yi
t ∈ {0, 1} for t = 1, . . . , T
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Motivation Lot Sizing Games

Nash Equilibrium

Definition

A Nash equilibrium (in pure strategies) is a vector of feasible strategies(
y1, x1, q1, . . . , ym, xm, qm

)
, such that for i = 1, 2 . . . ,m:

Π
i
(
y
1
, x

1
, q

1
, . . . , y

i
, x

i
, q

i
, . . . , y

m
, x

m
, q

m
)
≥ Π

i
(
y
1
, x

1
, q

1
, . . . , y

i
, x

i
, q

i
, . . . , y

m
, x

m
, q

m
)

∀(yi, xi, qi) feasible

In a Nash equilibrium no player has incentive to unilaterally deviate.
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Motivation Lot Sizing Games

Lot Sizing Game: should it be reformulated?

Each player i = 1, 2, . . . ,m solves the following parametric programming
optimization problem
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In order to compute Nash equilibria the multilevel optimization problem can be relaxed leading to a one level
optimization programming one.
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Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Each player i solves the following parametric programming
optimization problem

max
xi

Πi(xi,
m∑

j=1

xj) = max(a− b

m∑

j=1

xj , 0)xi − xici (4a)

subject to xi ≥ 0 for i = 1, . . . ,m (4b)

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Each player i solves the following parametric programming
optimization problem

max
xi

Πi(xi,
m∑

j=1

xj) = max(a− b

m∑

j=1

xj , 0)xi − xici (4a)

subject to xi ≥ 0 for i = 1, . . . ,m (4b)

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Let S ⊆ {1, 2, . . . ,m} be a subset of players producing a strictly
positive quantity.
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Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Let S ⊆ {1, 2, . . . ,m} be a subset of players producing a strictly
positive quantity.

Optimal quantity to be placed in the market by player i ∈ S is

∂Πi

∂xi
= a−2bxi−b

∑

j∈S−{i}

xj−ci = 0⇔ xi =
a− b

∑
j∈S−{i} x

j − ci

2b
.
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Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Let S ⊆ {1, 2, . . . ,m} be a subset of players producing a strictly
positive quantity.

xi =
p(S)− ci

b
∀i ∈ S (5a)

xi = 0 ∀i /∈ S. (5b)

where p(S) ≡ a+
∑

j∈S cj

|S+1| is the average of the numbers a, {cj}j∈S .
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Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Let S ⊆ {1, 2, . . . ,m} be a subset of players producing a strictly
positive quantity.

xi =
p(S)− ci

b
∀i ∈ S (5a)

xi = 0 ∀i /∈ S. (5b)

where p(S) ≡ a+
∑

j∈S cj

|S+1| is the average of the numbers a, {cj}j∈S .

p(S) is the resulting market price and the total quantity placed in

the market is
∑

i xi = a−p(S)
b .

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

Uncapacitated One Period Lot Sizing Game: m-Players
and No Fixed Cost

Using the Nash equilibrium conditions we get

m-Player Lot Sizing Game

INSTANCE Positive integers a, b, c1, c2, . . ., cm−1 and cm.

QUESTION Is there a subset S of {1, 2, . . . ,m} such that

p(S) > ck ∀k ∈ S (6a)

p(S) ≤ ck ∀k /∈ S. (6b)

where p(S) ≡ a+
∑

j∈S cj

|S|+1 .

There is always exactly one NE and we can find it in O(m) time (assuming ci

are sorted).
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Motivation Lot Sizing Games

m-Players and Fixed and Production Costs

Each player i solves the following parametric programming
optimization problem

max
yi,xi

Πi(xi,

m∑

j=1

xj) = max(a− b

m∑

j=1

xj , 0)xi − F iyi − cixi

subject to 0 ≤ xi ≤Myi for i = 1, . . . ,m

yi ∈ {0, 1} for i = 1, . . . ,m
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Motivation Lot Sizing Games

m-Players and Fixed and Production Costs

Let S ⊆ {1, 2, . . . ,m} be a subset of players producing a strictly positive
quantity.

Optimal quantity to be placed in the market by player i ∈ S is

xi =
(p(S)− ci)+

b

Player k ∈ S - A player k does not have incentive to stop producing if

(p(S)− ck)+

b
(p(S)− ck) ≥ F k ⇔ ck +

√
F kb ≤ p(S)

Player k /∈ S - A player k does not have incentive to start producing if

(p(S)− ck)

2b

(p(S)− ck)

2
≤ F k ⇔ ck + 2

√
F kb ≥ p(S)
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Motivation Lot Sizing Games

m-Players and Fixed and Production Costs

Using the Nash equilibrium conditions we get

m-Player Lot Sizing Game with fixed and production costs

INSTANCE Positive integers a, b, c1, c2, . . ., cm, F 1, F 2, . . ., Fm.

QUESTION Is there a subset S of {1, 2, . . . ,m} such that

ck +
√
F kb ≤ p(S) ∀k ∈ S (8a)

ck + 2
√
F kb ≥ p(S) ∀k /∈ S. (8b)

where p(S) ≡ a+
∑

j∈S cj

|S|+1

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

m-Players and Fixed and Production Costs

c
k

+
√

Fkb ≤ p(S) ∀k ∈ S

c
k

+ 2
√

Fkb ≥ p(S) ∀k /∈ S.

Computation of one Nash equilibrium

1: Assume that the players are ordered according with
√

F1b + c1 ≤
√
F2b + c2 ≤ . . . ≤

√
Fmb + cm.

2: Initialize S ← ∅
3: for 1 ≤ k ≤ m do

4: if ck + 2
√

Fkb < p(S) then

5: S = S ∪ {k}
6: else
7: if p(S ∪ {k}) ≥

√
Fkb + ck then

8: Arbitrarily decide to set k in S.

9: end if
10: end if
11: end for
12: return S

The algorithm implies that there is always (at least) one NE.

Consider ans instance with ci = 0 and F i = F for i = 1, . . . ,m. Any set S of cardinality
da/(2

√
Fb)e − 1 is a NE.
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Motivation Lot Sizing Games

m-Players and Fixed and Production Costs: Nash equilibria
refinements

m-Player Lot Sizing Game with fixed and production costs: Optimization

INSTANCE Positive integers a, b, and integer vectors c, F, p ∈ Zm.

QUESTION Find a subset S of {1, 2, . . . ,m} maximizing
∑

i∈S pi such that

ck +
√
F kb ≤ p(S) ∀k ∈ S (9a)

ck + 2
√
F kb ≥ p(S) ∀k /∈ S. (9b)

where p(S) ≡ a+
∑

j∈S cj

|S|+1

Example of a refinement: Compute a NE with the minimum or the
maximum market price, largest number of players producing,...
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Motivation Lot Sizing Games

Nash equilibria refinements

Goal

max
∑
i∈S

pi

s. t. c
k

+
√

Fkb ≤ p(S) ∀k ∈ S

c
k

+ 2
√

Fkb ≥ p(S) ∀k /∈ S

p(S) ≡
a +

∑
j∈S cj

|S| + 1

Idea: dynamic programming

Lk =
√

Fkb + ck and Uk = 2
√

Fkb + ck for k = 1, 2, . . . ,m

H(k, l, r, s, C)− optimal cost of the problem limited to {1, 2, . . . , k}
|S| = l

Lr − the tightest lower bound

Us − the tightest upper bound∑
i∈S

c
i

= C.

1: Initialize H(·)← −∞ but H(0, 0, 0, 0, 0) = 0.

2: for k = 0→ m− 1; l, r, s = 0→ k;C = 0→∑
i ci do

3: H(k + 1, l + 1, arg maxi=k+1,r Li, s, C + ck+1) = H(k, l, r, s, C) + pk+1

4: H(k + 1, l, r, arg mini=k+1,s Ui, C) = H(k, l, r, s, C)

5: end for
6: return arg maxl,r,s,C{H(m, l, r, s, C)|Lr ≤ a+C

l+1
≤ Us}.

We can solve this problem in O(m4d∑i cie) time by dynamic programming.
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Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Each player i = 1, 2 solves the following parametric programming
optimization problem

max
yi,xi,qi,hi

Πi(yi, xi, qi, hi) =

T∑

t=1

max(at − bt(q
1
t + q2t ), 0)qit −

T∑

t=1

F i
t y

i
t

subject to xit + hit−1 = hit + qit for t = 1, . . . , T

0 ≤ xit ≤Myit for t = 1, . . . , T

hi0 = hiT = 0

yit ∈ {0, 1} for t = 1, . . . , T

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1’s best reaction to a Player 2’s strategy q2 in which
production takes place only once.

Proof.

Assume that given Player 2’s strategy q2 the best reaction of Player 1 involves
producing in periods 1 ≤ t1 < t2 < . . . < tk ≤ T with k ≥ 2.
Let (q1, h1, x1, y1) be the associated Player 1’s strategy. Then, Player 1’s profit
is

T∑
t=t1

max(at − bt(q
2
t + q1

t , 0)q
1
t − Ft1 − Ft2 − . . .− Ftk .

However, Player 1 can maintain or increase her profit by producing only at t1
the quantity x1

t1 + x1
t1 + . . .+ x1

tk .

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1’s best reaction to a Player 2’s strategy q2 in which
production takes place only once.

Proof.

Assume that given Player 2’s strategy q2 the best reaction of Player 1 involves
producing in periods 1 ≤ t1 < t2 < . . . < tk ≤ T with k ≥ 2.

Let (q1, h1, x1, y1) be the associated Player 1’s strategy. Then, Player 1’s profit
is

T∑
t=t1

max(at − bt(q
2
t + q1

t , 0)q
1
t − Ft1 − Ft2 − . . .− Ftk .

However, Player 1 can maintain or increase her profit by producing only at t1
the quantity x1

t1 + x1
t1 + . . .+ x1

tk .

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1’s best reaction to a Player 2’s strategy q2 in which
production takes place only once.

Proof.

Assume that given Player 2’s strategy q2 the best reaction of Player 1 involves
producing in periods 1 ≤ t1 < t2 < . . . < tk ≤ T with k ≥ 2.
Let (q1, h1, x1, y1) be the associated Player 1’s strategy. Then, Player 1’s profit
is

T∑
t=t1

max(at − bt(q
2
t + q1

t , 0)q
1
t − Ft1 − Ft2 − . . .− Ftk .

However, Player 1 can maintain or increase her profit by producing only at t1
the quantity x1

t1 + x1
t1 + . . .+ x1

tk .

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1’s best reaction to a Player 2’s strategy q2 in which
production takes place only once.

Proof.

Assume that given Player 2’s strategy q2 the best reaction of Player 1 involves
producing in periods 1 ≤ t1 < t2 < . . . < tk ≤ T with k ≥ 2.
Let (q1, h1, x1, y1) be the associated Player 1’s strategy. Then, Player 1’s profit
is

T∑
t=t1

max(at − bt(q
2
t + q1

t , 0)q
1
t − Ft1 − Ft2 − . . .− Ftk .

However, Player 1 can maintain or increase her profit by producing only at t1
the quantity x1

t1 + x1
t1 + . . .+ x1

tk .

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

Consider that Player 1 only produces at 1 ≤ t1 ≤ T and Player 2 only at
1 ≤ t2 ≤ T . Then, Player 1 optimal strategy is

q1
t = 0 for t ∈ 1, 2, . . . , t1 − 1

q1
t =

at

2bt
for t ∈ t1, . . . , t2 − 1, if min(t1, t2) = t1

q1
t =

at

3bt
for t ∈ max(t1, t2), . . . , T

x1
t = 0 for t 6= t1

x1
t1 =

T∑
t=t1

q1
t

Analogous for Player 2.

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

All pure Nash equilibria can be computed in O(T 2) time.

Proof.

Each player has T + 1 strategies to consider. There are (T + 1)2 combinations
of strategies to check the Nash equilibria conditions.

The computational time can be improved!.
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Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Definition

tRp (t) is Player p’s best time to produce when her rival
produces at time t.

Lemma

t
Rp (T + 1) ≤ t

Rp (T ) ≤ . . . t
Rp (1) for p = 1, 2.
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Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly
Consider the time reaction graph GR:

Bipartite graph: R2 = R1 = {1, 2, . . . , T + 1}.

(i, j) is an arc of GR if tR1 (i) = j or tR2 (i) = j.

t
Rp (T + 1) ≤ t

Rp (T ) ≤ . . . t
Rp (1) for p = 1, 2.

Traduces in

Lemma (Property 1)

Let (t2, t1) and (t′2, t
′
1) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. Then, these arcs cross. The

symmetric result also holds.

Idea: t1 = tR1 (t2) and t′1 = tR1 (t′2).

Assume t2 < t′2,

then tR1 (t2) > tR1 (t′2).

t2 t′2

t1t′1
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Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in GR represents a Nash Equilibrium.

Cycle of length two (t1, t2, t1).

Then tR2(t1) = t2, tR1(t2) = t1.

No player has incentive to unilaterally deviate from the profile of
strategies (t1, t2).

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in GR represents a Nash Equilibrium.

Cycle of length two (t1, t2, t1).

Then tR2(t1) = t2, tR1(t2) = t1.

No player has incentive to unilaterally deviate from the profile of
strategies (t1, t2).

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in GR represents a Nash Equilibrium.

Cycle of length two (t1, t2, t1).

Then tR2(t1) = t2,

tR1(t2) = t1.

No player has incentive to unilaterally deviate from the profile of
strategies (t1, t2).

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in GR represents a Nash Equilibrium.

Cycle of length two (t1, t2, t1).

Then tR2(t1) = t2, tR1(t2) = t1.

No player has incentive to unilaterally deviate from the profile of
strategies (t1, t2).

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in GR represents a Nash Equilibrium.

Cycle of length two (t1, t2, t1).

Then tR2(t1) = t2, tR1(t2) = t1.

No player has incentive to unilaterally deviate from the profile of
strategies (t1, t2).

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2)

and Π2(t′1, t
′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2)

and Π2(t′1, t
′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly

−F 2
t′2

+
a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly

−F 2
t′2

+
a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly

−F 2
t′2

+
a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2

⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly

−F 2
t′2

+
a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)

⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let (t1, t2), (t2, t
′
1) and (t′1, t

′
2) be arcs of GR with t2, t

′
2 ∈ R2 and t1, t

′
1 ∈ R1. If t1 ≤ t′1 ≤ t′2 ≤ t2

then, (t′1, t2) is a NE.

1 . . . t1 t′1 . . . T T + 1

1 . . . t′2 t2 . . . T T + 1

−F 2
t2 +

a2
t2

9bt2

a2
t2

9bt2

a2
T

9bT
duopoly−F 2

t′2
+

a2
t′2

9bt′2

Π2(t1, t2) ≥ Π2(t1, t
′
2) and Π2(t′1, t

′
2) ≥ Π2(t′1, t2)

Π2(t1, t2) = Π2(t′1, t2)

⇒ Π2(t1, t2) = Π2(t1, t
′
2) = Π2(t′1, t

′
2) = Π2(t′1, t2)⇒ tR2 (t1) = tR2 (t′1) = t2 ⇒ NE: (t′1, t2)

Π2(t′1, t
′
2) = Π2(t1, t

′
2)⇒ tR2 (t′1) = tR2 (t1) = t′2

Margarida Carvalho margarida.carvalho@dcc.fc.up.pt Lot Sizing Games



Motivation Lot Sizing Games

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of
length 5 in GR. In particular, there is always a Nash equilibrium.

t1 . . . t′1 . . . t̂1

t̂2 . . . t′2 . . . t2
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Theorem

For p = 1, 2

tRp(t) ∈ {tRp(T + 1), tRp(1)} ∀t ∈ {1, 2, . . . , T, T + 1}.

Moreover, (tR1(1), tR2(T + 1)) and (tR1(T + 1), tR2(1)) are the only
candidates to be Nash equilibria.
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T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for m > 2.

All pure Nash equilibria can be computed in polynomial time
for a fixed number of players, more precisely, in O(Tm) time.
Idea: Each player only has to decide one period to produce.

All pure Nash equilibria can be computed in polynomial time
for a fixed number of periods, more precisely, in O(mT ) time.
Idea:

Define Si as the set of players producing in period i.
For the point of view of player k, only the fixed costs of k and
the sizes of the sets Si matter.
We can enumerate all possible sizes for these partitions:
O(mT ) time.
Once these sizes are fixed, assigning the players to the sets Si

is easy - a transportation problem.
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T-Periods Lot Sizing Game with Fixed Costs: oligopoly

Theorem

For p = 1, 2, . . . ,m and for all feasible partitions
S−p = (|S1|, |S2|, . . . , |ST |) of the set of all players except p:

tRp(S−p) ∈ {tRp(0, 0, . . . , 0), tRp(1, 0, . . . , 0), . . . , tRp(m− 1, 0. . . . , 0)}.

There are mm candidates to be Nash equilibria...
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Motivation Lot Sizing Games

Conclusion and Future work

1-Period Lot sizing game:

F Existence of a pure Nash equilibrium.

F A pure Nash equilibrium can be computed in polynomial
time.

F Current work: Is it “NP -complete” to compute a Nash
equilibrium optimizing a certain function? What is the economic
meaning of ck +

√
F kb?

T-Period Lot sizing game with fixed costs:

F Computation in polynomial time of all equilibria for the
2-players game.

F Current work: Can we compute in polynomial time (on
the number of players and number of periods) a Nash equilibrium?
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