Lot Sizing Games

Margarida Carvalho ${ }^{1}$

${ }^{1}$ Faculdade de Ciências da Universidade do Porto and INESC TEC

INESCPORTO ${ }^{\circ}$
LABORATORIO ASSOCIADO

Mathieu Van Vyve ${ }^{2}$ Claudio Telha ${ }^{2}$
${ }^{2}$ CORE, Université catholique de Louvain

CENTER FOR OPERATIONS RESEARCH AND ECONOMETRICS

5th Porto Meeting on MATHEMATICS for INDUSTRY
April, 2014
(1) Motivation

- Game Theory and Operational Research
- Integer Programming Games
- State of the art
(2) Lot Sizing Games
- Formulation
- Solution Concept: Nash equilibria
- One Period Game
- T Period Game
- Future work

Game Theory

Game Theory Generalization of decision theory; an individual's success depends on the choices of others.

Game Theory

Game Theory Generalization of decision theory; an individual's success depends on the choices of others.

1838 Cournot Duopoly (simultaneous game): earliest examples of game analysis;

Game Theory

Game Theory Generalization of decision theory; an individual's success depends on the choices of others.

1838 Cournot Duopoly (simultaneous game): earliest examples of game analysis;

1952 Stackelberg Game (sequential game): a player, called the leader, takes his decision before decisions of other players, called the followers, are known;

Motivation: Integer Programming Games

Motivation: Integer Programming Games

Normal form games: explicit specification of the players' pure strategies.

		Player II			
	Cooperates	Defects			
Player I		1	3	0	
Defects	0	3	2	2	

Motivation: Integer Programming Games

Normal form games: explicit specification of the players' pure strategies.

		Player II			
		Cooperates		Defects	
Player I	Cooperates	1	1	3	0
	Defects	0	3	2	2

Integer Programming Games: players' pure strategies are lattice points inside polytopes described by systems of linear inequalities.

Integer Programming games

Each player p solves a problem in the form of

$$
\begin{array}{ll}
\text { Maximize }_{x^{p}} & \Pi^{p}\left(x^{p}, x^{-p}\right) \\
\text { subject to } & A_{p} x^{p} \leq b_{p} \\
& x_{i}^{p} \text { integer, } \quad \forall i
\end{array}
$$

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;
1991 Elzen and Talman;

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;
1991 Elzen and Talman;
2003 Global Newton method by Govindan and Wilson ;

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;
1991 Elzen and Talman;
2003 Global Newton method by Govindan and Wilson ;

State of Art

There are general methods to solve finite games:

1964 Lemke and Howson;
1991 Elzen and Talman;
2003 Global Newton method by Govindan and Wilson ;

However an explicit description of the set of strategies is required.

Lot Sizing Game

Equilibria on a Game with Discrete Variables

João Pedro PEDROSO ${ }^{1}$ and Yves SMEERS ${ }^{2}$
${ }^{1}$ INESC - Porto and
DCC - Faculdade de Ciências, Universidade do Porto, Portugal
jpp@fc.up.pt
${ }^{2}$ CORE, Université Catholique de Louvain
Yves.Smeers@uclouvain.be

Abstract

Equilibrium in Economics has been seldom addressed in a situation where some variables are discrete. This work introduces a problem related to lot-sizing with several players, and analyses some strategies which are likely to be found in real world games. An illustration with a simple example is presented, with concerns about the difficulty of the problem and computation possibilities.

Lot Sizing Game: Model

(1)

Lot Sizing Game: Model

Lot Sizing Game: Model

(t)

Lot Sizing Game: Model

(t)
(1)

Lot Sizing Game: Model

(t)
(1)

Lot Sizing Game: Model

(2)
(t)
(1)

Lot Sizing Game: Model

y_{1}^{p}
(2)
(t)
(T)

Lot Sizing Game: Model

y_{1}^{p} F_{1}^{p}

(2)
(t)
(I)

Lot Sizing Game: Model

$$
\begin{array}{lc}
y_{1}^{p} & x_{1}^{p} \tag{2}\\
F_{1}^{p} & \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{array}
$$

(t)
(1)

Lot Sizing Game: Model

$$
\begin{array}{cc}
y_{1}^{p} & x_{1}^{p} \tag{2}\\
F_{1}^{p} & +c_{1}^{p} \\
& \\
& \\
& \\
& \\
\hline
\end{array}
$$

(t)
(1)

Lot Sizing Game：Model

${ }^{(t)}$
（1）

Lot Sizing Game：Model

${ }^{(t)}$
（1）

Lot Sizing Game: Model

$$
\begin{align*}
y_{1}^{p} & x_{1}^{p} \tag{2}\\
F_{1}^{p} & +c_{1}^{p} \\
& \\
& \\
& \\
& \\
&
\end{align*}
$$

(t)
(I)

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}}+x_{1}^{p} \tag{t}
\end{equation*}
$$

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{p}+c_{1}^{p} \tag{t}
\end{equation*}
$$

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{p}+c_{1}^{p} \tag{t}
\end{equation*}
$$

Lot Sizing Game: Model

$$
F_{1}^{y_{1}^{p}}+x_{1}^{p}
$$

Lot Sizing Game: Model

(t)

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}} \quad x_{1}^{p} \quad c_{1}^{p} \tag{t}
\end{equation*}
$$

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}} \quad x_{1}^{p} \quad c_{1}^{p} \tag{t}
\end{equation*}
$$

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}} \quad{ }^{x_{1}^{p}} c_{1}^{p} \tag{1}
\end{equation*}
$$

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}} \quad{ }^{x_{1}^{p}} c_{1}^{p} \tag{1}
\end{equation*}
$$

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
\begin{equation*}
F_{1}^{y_{1}^{p}}{ }^{x_{1}^{p}}+c_{1}^{p} \tag{1}
\end{equation*}
$$

Lot Sizing Game: Model

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
\begin{aligned}
& \begin{array}{cc}
y_{t}^{p} \quad x_{t}^{p} \\
F_{t}^{p}+c_{t}^{p}
\end{array}
\end{aligned}
$$

Lot Sizing Game: Model

$$
\begin{aligned}
& \begin{array}{cc}
y_{t}^{p} \quad x_{t}^{p} \\
F_{t}^{p}+c_{t}^{p}
\end{array}
\end{aligned}
$$

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
\begin{aligned}
& F_{1}^{p}+c_{1}^{p} y_{1}^{p} P_{1}^{p}
\end{aligned}
$$

Lot Sizing Game: Model

$$
\begin{aligned}
& F_{1}^{p}+c_{1}^{p} y_{1}^{p} P_{1}^{p}
\end{aligned}
$$

Lot Sizing Game: Model

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
\begin{aligned}
& \begin{array}{r}
y_{T}^{p} \\
F_{T}^{p}
\end{array}
\end{aligned}
$$

Lot Sizing Game: Model

Lot Sizing Game: Model

Lot Sizing Game: Model

Lot Sizing Game: Model

$$
P\left(Q_{t}\right)=\max \left(a_{t}-b_{t} Q_{t}, 0\right) \text { with } Q_{t}=\sum_{t=1}^{m} q_{t}^{p}
$$

Lot Sizing Game: Formulation

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Lot Sizing Game: Formulation

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Lot Sizing Game: Formulation

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Lot Sizing Game: Formulation

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Lot Sizing Game: Formulation

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Nash Equilibrium

Definition

A Nash equilibrium (in pure strategies) is a vector of feasible strategies $\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right)$, such that for $i=1,2 \ldots, m$:
$\Pi^{i}\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, \bar{y}^{i}, \bar{x}^{i}, \bar{q}^{i}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right) \geq \Pi^{i}\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, y^{i}, x^{i}, q^{i}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right)$
$\forall\left(y^{i}, x^{i}, q^{i}\right)$ feasible

Nash Equilibrium

Definition

A Nash equilibrium (in pure strategies) is a vector of feasible strategies $\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right)$, such that for $i=1,2 \ldots, m$:
$\Pi^{i}\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, \bar{y}^{i}, \bar{x}^{i}, \bar{q}^{i}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right) \geq \Pi^{i}\left(\bar{y}^{1}, \bar{x}^{1}, \bar{q}^{1}, \ldots, y^{i}, x^{i}, q^{i}, \ldots, \bar{y}^{m}, \bar{x}^{m}, \bar{q}^{m}\right)$
$\forall\left(y^{i}, x^{i}, q^{i}\right)$ feasible

In a Nash equilibrium no player has incentive to unilaterally deviate.

Lot Sizing Game: should it be reformulated?

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\begin{array}{lll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} & \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} & \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 & \\
& y_{t}^{i} \in\{0,1\} & \text { for } t=1, \ldots, T
\end{array}
$$

Lot Sizing Game: should it be reformulated?

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i}
$$

subject to $\left(y_{1}^{i}, x_{1}^{i}, q_{1}^{i}, h_{1}^{i}\right) \in X_{1}$

$$
\max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=2}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=2}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=2}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=2}^{T} C_{t}^{i} x_{t}^{i}
$$

subject to $\left(y_{2}^{i}, x_{2}^{i}, q_{2}^{i}, h_{2}^{i}\right) \in X_{2}$

$$
\begin{aligned}
& \max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=3}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=3}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=3}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=3}^{T} C_{t}^{i} x_{t}^{i} \\
& \text { subject to }\left(y_{3}^{i}, x_{3}^{i}, q_{3}^{i}, h_{3}^{i}\right) \in X_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \max _{y^{i}, x^{i}, q^{i}, h^{i}} \max \left(a_{T}-b_{T} \sum_{j=1}^{m} q_{T}^{j}, 0\right) q_{T}^{i}-F_{T}^{i} y_{T}^{i}-H_{T}^{i} h_{T}^{i}-C_{T}^{i} x_{T}^{i} \\
& \text { subject to }\left(y_{T}^{i}, x_{T}^{i}, q_{T}^{i}, h_{T}^{i}\right) \in X_{T}
\end{aligned}
$$

Lot Sizing Game: should it be reformulated?

Each player $i=1,2, \ldots, m$ solves the following parametric programming optimization problem

$$
\max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=1}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=1}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=1}^{T} C_{t}^{i} x_{t}^{i}
$$

subject to $\left(y_{1}^{i}, x_{1}^{i}, q_{1}^{i}, h_{1}^{i}\right) \in X_{1}$

$$
\begin{aligned}
& \max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=2}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=2}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=2}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=2}^{T} C_{t}^{i} x_{t}^{i} \\
& \text { subject to }\left(y_{2}^{i}, x_{2}^{i}, q_{2}^{i}, h_{2}^{i}\right) \in X_{2} \\
& \qquad \max _{y^{i}, x^{i}, q^{i}, h^{i}} \sum_{t=3}^{T} \max \left(a_{t}-b_{t} \sum_{j=1}^{m} q_{t}^{j}, 0\right) q_{t}^{i}-\sum_{t=3}^{T} F_{t}^{i} y_{t}^{i}-\sum_{t=3}^{T} H_{t}^{i} h_{t}^{i}-\sum_{t=3}^{T} C_{t}^{i} x_{t}^{i} \\
& \text { subject to }\left(y_{3}^{i}, x_{3}^{i}, q_{3}^{i}, h_{3}^{i}\right) \in X_{3} \\
& \cdot \\
& \cdot \\
& y^{i}, x^{i}, q^{i}, h^{i} \\
& \operatorname{subject~to~}\left(y_{T}^{i}, x_{T}^{i}, q_{T}^{i}, h_{T}^{i}\right) \in X_{T}
\end{aligned}
$$

In order to compute Nash equilibria the multilevel optimization problem can be relaxed leading to a one level optimization programming one.

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Each player i solves the following parametric programming optimization problem

$$
\begin{array}{ll}
\max _{x^{i}} \Pi^{i}\left(x^{i}, \sum_{j=1}^{m} x^{j}\right)=\max \left(a-b \sum_{j=1}^{m} x^{j}, 0\right) x^{i}-x^{i} c^{i} \\
\text { subject to } x^{i} \geq 0 & \text { for } i=1, \ldots, m
\end{array}
$$

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Each player i solves the following parametric programming optimization problem

$$
\begin{array}{ll}
\max _{x^{i}} \Pi^{i}\left(x^{i}, \sum_{j=1}^{m} x^{j}\right)=\max \left(a-b \sum_{j=1}^{m} x^{j}, 0\right) x^{i}-x^{i} c^{i} \\
\text { subject to } x^{i} \geq 0 & \text { for } i=1, \ldots, m \tag{4b}
\end{array}
$$

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

Optimal quantity to be placed in the market by player $i \in S$ is

$$
\frac{\partial \Pi^{i}}{\partial x^{i}}=a-2 b x^{i}-b \sum_{j \in S-\{i\}} x^{j}-c^{i}=0 \Leftrightarrow x^{i}=\frac{a-b \sum_{j \in S-\{i\}} x^{j}-c^{i}}{2 b} .
$$

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

$$
\begin{align*}
x^{i} & =\frac{p(S)-c^{i}}{b} & & \forall i \in S \tag{5a}\\
x^{i} & =0 & & \forall i \notin S . \tag{5b}
\end{align*}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S^{c}}{ }^{j}}{|S+1|}$ is the average of the numbers $a,\left\{c^{j}\right\}_{j \in S}$.

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

$$
\begin{array}{rlrl}
x^{i} & = & \frac{p(S)-c^{i}}{b} & \\
x^{i} & =0 & & \forall i \in S \tag{5b}\\
x^{2} & \forall i \notin S
\end{array}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S+1|}$ is the average of the numbers $a,\left\{c^{j}\right\}_{j \in S}$.
$p(S)$ is the resulting market price and the total quantity placed in the market is $\sum_{i} x_{i}=\frac{a-p(S)}{b}$.

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Using the Nash equilibrium conditions we get

m-Player Lot Sizing Game

INSTANCE Positive integers $a, b, c^{1}, c^{2}, \ldots, c^{m-1}$ and c^{m}.
QUESTION Is there a subset S of $\{1,2, \ldots, m\}$ such that

$$
\begin{array}{lr}
p(S)>c^{k} & \forall k \in S \\
p(S) \leq c^{k} & \forall k \notin S \tag{6b}
\end{array}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}$.

Uncapacitated One Period Lot Sizing Game: m-Players and No Fixed Cost

Using the Nash equilibrium conditions we get

m-Player Lot Sizing Game

INSTANCE Positive integers $a, b, c^{1}, c^{2}, \ldots, c^{m-1}$ and c^{m}.
QUESTION Is there a subset S of $\{1,2, \ldots, m\}$ such that

$$
\begin{array}{cc}
p(S)>c^{k} & \forall k \in S \\
p(S) \leq c^{k} & \forall k \notin S . \tag{6b}
\end{array}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}$.
There is always exactly one NE and we can find it in $O(m)$ time (assuming c^{i} are sorted).

m-Players and Fixed and Production Costs

Each player i solves the following parametric programming optimization problem

$$
\begin{array}{cr}
\max _{y^{i}, x^{i}} \Pi^{i}\left(x^{i}, \sum_{j=1}^{m} x^{j}\right)=\max \left(a-b \sum_{j=1}^{m} x^{j}, 0\right) x^{i}-F^{i} y^{i}-c^{i} x^{i} \\
\text { subject to } 0 \leq x^{i} \leq M y^{i} & \text { for } i=1, \ldots, m \\
y^{i} \in\{0,1\} & \text { for } i=1, \ldots, m
\end{array}
$$

m-Players and Fixed and Production Costs

Each player i solves the following parametric programming optimization problem

$$
\begin{array}{cl}
\max _{y^{i}, x^{i}} \Pi^{i}\left(x^{i}, \sum_{j=1}^{m} x^{j}\right)=\max \left(a-b \sum_{j=1}^{m} x^{j}, 0\right) x^{i}-F^{i} y^{i}-c^{i} x^{i} \\
\text { subject to } 0 \leq x^{i} \leq M y^{i} & \text { for } i=1, \ldots, m \\
y^{i} \in\{0,1\} & \text { for } i=1, \ldots, m
\end{array}
$$

m-Players and Fixed and Production Costs

Each player i solves the following parametric programming optimization problem

$$
\begin{array}{cl}
\max _{y^{i}, x^{i}} \Pi^{i}\left(x^{i}, \sum_{j=1}^{m} x^{j}\right)=\max \left(a-b \sum_{j=1}^{m} x^{j}, 0\right) x^{i}-F^{i} y^{i}-c^{i} x^{i} \\
\text { subject to } 0 \leq x^{i} \leq M y^{i} & \text { for } i=1, \ldots, m \\
y^{i} \in\{0,1\} & \text { for } i=1, \ldots, m
\end{array}
$$

m-Players and Fixed and Production Costs

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

m-Players and Fixed and Production Costs

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

Optimal quantity to be placed in the market by player $i \in S$ is

$$
x^{i}=\frac{\left(p(S)-c^{i}\right)^{+}}{b}
$$

m-Players and Fixed and Production Costs

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

Optimal quantity to be placed in the market by player $i \in S$ is

$$
x^{i}=\frac{\left(p(S)-c^{i}\right)^{+}}{b}
$$

Player $k \in S$ - A player k does not have incentive to stop producing if

$$
\frac{\left(p(S)-c^{k}\right)^{+}}{b}\left(p(S)-c^{k}\right) \geq F^{k} \Leftrightarrow c^{k}+\sqrt{F^{k} b} \leq p(S)
$$

m-Players and Fixed and Production Costs

Let $S \subseteq\{1,2, \ldots, m\}$ be a subset of players producing a strictly positive quantity.

Optimal quantity to be placed in the market by player $i \in S$ is

$$
x^{i}=\frac{\left(p(S)-c^{i}\right)^{+}}{b}
$$

Player $k \in S$ - A player k does not have incentive to stop producing if

$$
\frac{\left(p(S)-c^{k}\right)^{+}}{b}\left(p(S)-c^{k}\right) \geq F^{k} \Leftrightarrow c^{k}+\sqrt{F^{k} b} \leq p(S)
$$

Player $k \notin S$ - A player k does not have incentive to start producing if

$$
\frac{\left(p(S)-c^{k}\right)}{2 b} \frac{\left(p(S)-c^{k}\right)}{2} \leq F^{k} \Leftrightarrow c^{k}+2 \sqrt{F^{k} b} \geq p(S)
$$

m-Players and Fixed and Production Costs

Using the Nash equilibrium conditions we get
m-Player Lot Sizing Game with fixed and production costs
INSTANCE Positive integers $a, b, c^{1}, c^{2}, \ldots, c^{m}, F^{1}, F^{2}, \ldots, F^{m}$. QUESTION Is there a subset S of $\{1,2, \ldots, m\}$ such that

$$
\begin{align*}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \tag{8a}\\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S \tag{8b}
\end{align*}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}$

m-Players and Fixed and Production Costs

$$
\begin{aligned}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S
\end{aligned}
$$

m-Players and Fixed and Production Costs

$$
\begin{aligned}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S
\end{aligned}
$$

Computation of one Nash equilibrium

```
1: Assume that the players are ordered according with \(\sqrt{F^{1} b}+c^{1} \leq \sqrt{F^{2} b}+c^{2} \leq \ldots \leq \sqrt{F^{m} b}+c^{m}\).
2: Initialize \(S \leftarrow \emptyset\)
3: for \(1 \leq k \leq m\) do
4: if \(c^{k}+2 \sqrt{F^{k} b}<p(S)\) then
5: \(\quad S=S \cup\{k\}\)
6: else
7: \(\quad\) if \(p(S \cup\{k\}) \geq \sqrt{F^{k} b}+c^{k}\) then
8: \(\quad\) Arbitrarily decide to set \(k\) in \(S\).
9: end if
10: end if
11: end for
12: return \(S\)
```


m-Players and Fixed and Production Costs

$$
\begin{aligned}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S
\end{aligned}
$$

Computation of one Nash equilibrium
1: Assume that the players are ordered according with $\sqrt{F^{1} b}+c^{1} \leq \sqrt{F^{2} b}+c^{2} \leq \ldots \leq \sqrt{F^{m} b}+c^{m}$.
2: Initialize $S \leftarrow \emptyset$
3: for $1 \leq k \leq m$ do
4: if $c^{k}+2 \sqrt{F^{k} b}<p(S)$ then
5: $\quad S=S \cup\{k\}$
6: else
7: \quad if $p(S \cup\{k\}) \geq \sqrt{F^{k} b}+c^{k}$ then
8: \quad Arbitrarily decide to set k in S.
9: end if
10: end if
11: end for
12: return S

- The algorithm implies that there is always (at least) one NE.

m-Players and Fixed and Production Costs

$$
\begin{aligned}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S
\end{aligned}
$$

Computation of one Nash equilibrium
1: Assume that the players are ordered according with $\sqrt{F^{1} b}+c^{1} \leq \sqrt{F^{2} b}+c^{2} \leq \ldots \leq \sqrt{F^{m} b}+c^{m}$.
2: Initialize $S \leftarrow \emptyset$
3: for $1 \leq k \leq m$ do
4:

$$
\text { if } c^{k}+2 \sqrt{F^{k} b}<p(S) \text { then }
$$

$$
S=S \cup\{k\}
$$

5:
else

$$
\text { if } p(S \cup\{k\}) \geq \sqrt{F^{k} b}+c^{k} \text { then }
$$

Arbitrarily decide to set k in S.
end if
end if
11: end for
12: return S

- The algorithm implies that there is always (at least) one NE.
- Consider ans instance with $c^{i}=0$ and $F^{i}=F$ for $i=1, \ldots, m$. Any set S of cardinality $\lceil a /(2 \sqrt{F b})\rceil-1$ is a NE.
m-Players and Fixed and Production Costs: Nash equilibria refinements
m-Player Lot Sizing Game with fixed and production costs: Optimization
INSTANCE Positive integers a, b, and integer vectors $c, F, p \in \mathbb{Z}^{m}$.
QUESTION Find a subset S of $\{1,2, \ldots, m\}$ maximizing $\sum_{i \in S} p_{i}$ such that

$$
\begin{align*}
c^{k}+\sqrt{F^{k} b} & \leq p(S) \quad \forall k \in S \tag{9a}\\
c^{k}+2 \sqrt{F^{k} b} & \geq p(S) \quad \forall k \notin S \tag{9b}
\end{align*}
$$

where $p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}$

Example of a refinement: Compute a NE with the minimum or the maximum market price, largest number of players producing,...

Nash equilibria refinements

Goal

\max	$\sum_{i \in S} p_{i}$
s. t.	$c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S$
	$c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S$
	$p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{\|S\|+1}$

Nash equilibria refinements

Goal

Idea: dynamic programming

$$
\begin{array}{ll}
\max & \sum_{i \in S} p_{i} \\
\text { s. t. } & c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{array}
$$

Nash equilibria refinements

Goal

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

\max	$\sum_{i \in S} p_{i}$
s. t.	$c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S$
	$c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S$
	$p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{\|S\|+1}$

Nash equilibria refinements

Goal

max

$$
\sum_{i \in S} p_{i}
$$

s. t .

$$
\begin{aligned}
& c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{aligned}
$$

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$$
\begin{aligned}
H(k, l, r, s, C)- & \text { optimal cost of the problem limited to }\{1,2, \ldots, k\} \\
& |S|=l \\
& L_{r}-\text { the tightest lower bound } \\
& U_{s}-\text { the tightest upper bound } \\
& \sum_{i \in S} c^{i}=C
\end{aligned}
$$

Nash equilibria refinements

Goal

max

$$
\sum_{i \in S} p_{i}
$$

s. t .

$$
\begin{aligned}
& c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{aligned}
$$

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$H(k, l, r, s, C)-$ optimal cost of the problem limited to $\{1,2, \ldots, k\}$ $|S|=l$
$L_{r}-$ the tightest lower bound
$U_{s}-$ the tightest upper bound
$\sum_{i \in S} c^{i}=C$.

Nash equilibria refinements

Goal

max

$$
\sum_{i \in S} p_{i}
$$

s. t .

$$
\begin{aligned}
& c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{aligned}
$$

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$H(k, l, r, s, C)-$ optimal cost of the problem limited to $\{1,2, \ldots, k\}$ $|S|=l$
$L_{r}-$ the tightest lower bound
U_{s} - the tightest upper bound
$\sum_{i \in S} c^{i}=C$.

Nash equilibria refinements

Goal

max

$$
\sum_{i \in S} p_{i}
$$

s. t .

$$
\begin{aligned}
& c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{aligned}
$$

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$H(k, l, r, s, C)-$ optimal cost of the problem limited to $\{1,2, \ldots, k\}$

$$
|S|=l
$$

$L_{r}-$ the tightest lower bound
U_{s} - the tightest upper bound
$\sum_{i \in S} c^{i}=C$.

Nash equilibria refinements

Goal

max

$$
\sum_{i \in S} p_{i}
$$

s. t .

$$
\begin{aligned}
& c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S \\
& c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S \\
& p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
\end{aligned}
$$

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$H(k, l, r, s, C)-$ optimal cost of the problem limited to $\{1,2, \ldots, k\}$ $|S|=l$
$L_{r}-$ the tightest lower bound
$U_{s}-$ the tightest upper bound
$\sum_{i \in S} c^{i}=C$.

Nash equilibria refinements

Goal

Idea: dynamic programming
$\max \quad \sum_{i \in S} p_{i}$
s. t. $c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S$

$$
c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S
$$

$$
p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1}
$$

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$$
H(k, l, r, s, C)-\text { optimal cost of the problem limited to }\{1,2, \ldots, k\}
$$

$$
|S|=l
$$

$$
L_{r}-\text { the tightest lower bound }
$$

$$
U_{s}-\text { the tightest upper bound }
$$

$$
\sum_{i \in S} c^{i}=C
$$

1: Initialize $H(\cdot) \leftarrow-\infty$ but $H(0,0,0,0,0)=0$.
2: for $k=0 \rightarrow m-1 ; l, r, s=0 \rightarrow k ; C=0 \rightarrow \sum_{i} c^{i}$ do
3: $\quad H\left(k+1, l+1, \arg \max _{i=k+1, r} L_{i}, s, C+c^{k+1}\right)=H(k, l, r, s, C)+p^{k+1}$
4: $\quad H\left(k+1, l, r, \arg \min _{i=k+1, s} U_{i}, C\right)=H(k, l, r, s, C)$
5: end for
6: return $\arg \max _{l, r, s, C}\left\{H(m, l, r, s, C) \left\lvert\, L_{r} \leq \frac{a+C}{l+1} \leq U_{s}\right.\right\}$.

Nash equilibria refinements

Goal

Idea: dynamic programming

$$
L_{k}=\sqrt{F^{k} b}+c^{k} \text { and } U_{k}=2 \sqrt{F^{k} b}+c^{k} \text { for } k=1,2, \ldots, m
$$

$\max \quad \sum_{i \in S} p_{i}$
s. t. $c^{k}+\sqrt{F^{k} b} \leq p(S) \quad \forall k \in S$

$$
c^{k}+2 \sqrt{F^{k} b} \geq p(S) \quad \forall k \notin S
$$

$$
p(S) \equiv \frac{a+\sum_{j \in S} c^{j}}{|S|+1} \quad \begin{aligned}
& U_{s}-\text { the tig } \\
& \\
& \sum_{i \in S} c^{i}=C .
\end{aligned}
$$

1: Initialize $H(\cdot) \leftarrow-\infty$ but $H(0,0,0,0,0)=0$.
2: for $k=0 \rightarrow m-1 ; l, r, s=0 \rightarrow k ; C=0 \rightarrow \sum_{i} c^{i}$ do
3: $\quad H\left(k+1, l+1, \arg \max _{i=k+1, r} L_{i}, s, C+c^{k+1}\right)=H(k, l, r, s, C)+p^{k+1}$
4: $\quad H\left(k+1, l, r, \arg \min _{i=k+1, s} U_{i}, C\right)=H(k, l, r, s, C)$
5: end for
6: return $\arg \max _{l, r, s, C}\left\{H(m, l, r, s, C) \left\lvert\, L_{r} \leq \frac{a+C}{l+1} \leq U_{s}\right.\right\}$.

We can solve this problem in $\mathcal{O}\left(m^{4}\left\lceil\sum_{i} c^{i}\right\rceil\right)$ time by dynamic programming.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Each player $i=1,2$ solves the following parametric programming optimization problem

$$
\begin{array}{ll}
\max _{y^{i}, x^{i}, q^{i}, h^{i}} & \Pi^{i}\left(y^{i}, x^{i}, q^{i}, h^{i}\right)=\sum_{t=1}^{T} \max \left(a_{t}-b_{t}\left(q_{t}^{1}+q_{t}^{2}\right), 0\right) q_{t}^{i}-\sum_{t=1}^{T} F_{t}^{i} y_{t}^{i} \\
\text { subject to } & x_{t}^{i}+h_{t-1}^{i}=h_{t}^{i}+q_{t}^{i} \quad \text { for } t=1, \ldots, T \\
& 0 \leq x_{t}^{i} \leq M y_{t}^{i} \quad \text { for } t=1, \ldots, T \\
& h_{0}^{i}=h_{T}^{i}=0 \\
& y_{t}^{i} \in\{0,1\}
\end{array} \quad \text { for } t=1, \ldots, T ?
$$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1's best reaction to a Player 2's strategy q^{2} in which production takes place only once.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1's best reaction to a Player 2's strategy q^{2} in which production takes place only once.

Proof.

Assume that given Player 2's strategy q^{2} the best reaction of Player 1 involves producing in periods $1 \leq t_{1}<t_{2}<\ldots<t_{k} \leq T$ with $k \geq 2$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1's best reaction to a Player 2's strategy q^{2} in which production takes place only once.

Proof.

Assume that given Player 2's strategy q^{2} the best reaction of Player 1 involves producing in periods $1 \leq t_{1}<t_{2}<\ldots<t_{k} \leq T$ with $k \geq 2$.
Let ($q^{1}, h^{1}, x^{1}, y^{1}$) be the associated Player 1's strategy. Then, Player 1's profit is

$$
\sum_{t=t_{1}}^{T} \max \left(a_{t}-b_{t}\left(q_{t}^{2}+q_{t}^{1}, 0\right) q_{t}^{1}-F_{t_{1}}-F_{t_{2}}-\ldots-F_{t_{k}}\right.
$$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

There is always a Player 1's best reaction to a Player 2's strategy q^{2} in which production takes place only once.

Proof.

Assume that given Player 2's strategy q^{2} the best reaction of Player 1 involves producing in periods $1 \leq t_{1}<t_{2}<\ldots<t_{k} \leq T$ with $k \geq 2$.
Let ($q^{1}, h^{1}, x^{1}, y^{1}$) be the associated Player 1's strategy. Then, Player 1's profit is

$$
\sum_{t=t_{1}}^{T} \max \left(a_{t}-b_{t}\left(q_{t}^{2}+q_{t}^{1}, 0\right) q_{t}^{1}-F_{t_{1}}-F_{t_{2}}-\ldots-F_{t_{k}}\right.
$$

However, Player 1 can maintain or increase her profit by producing only at t_{1} the quantity $x_{t_{1}}^{1}+x_{t_{1}}^{1}+\ldots+x_{t_{k}}^{1}$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma

Consider that Player 1 only produces at $1 \leq t_{1} \leq T$ and Player 2 only at $1 \leq t_{2} \leq T$. Then, Player 1 optimal strategy is

$$
\begin{array}{lrr}
q_{t}^{1}=0 & \text { for } t \in 1,2, \ldots, t_{1}-1 & \\
q_{t}^{1}=\frac{a_{t}}{2 b_{t}} & \text { for } t \in t_{1}, \ldots, t_{2}-1, \quad \text { if } \min \left(t_{1}, t_{2}\right)=t_{1} \\
q_{t}^{1}=\frac{a_{t}}{3 b_{t}} & \text { for } t \in \max \left(t_{1}, t_{2}\right), \ldots, T \\
x_{t}^{1}=0 & \text { for } t \neq t_{1} & \\
x_{t_{1}}^{1}=\sum_{t=t_{1}}^{T} q_{t}^{1} &
\end{array}
$$

Analogous for Player 2.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

All pure Nash equilibria can be computed in $O\left(T^{2}\right)$ time.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

All pure Nash equilibria can be computed in $O\left(T^{2}\right)$ time.

Proof.

Each player has $T+1$ strategies to consider. There are $(T+1)^{2}$ combinations of strategies to check the Nash equilibria conditions.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

All pure Nash equilibria can be computed in $O\left(T^{2}\right)$ time.

Proof.

Each player has $T+1$ strategies to consider. There are $(T+1)^{2}$ combinations of strategies to check the Nash equilibria conditions.

The computational time can be improved!.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Definition

$t^{R}(t)$ is Player p 's best time to produce when her rival produces at time t.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Definition

$t^{R p}(t)$ is Player p 's best time to produce when her rival produces at time t.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Definition

$t^{R p}(t)$ is Player p 's best time to produce when her rival produces at time t.

Lemma

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,
then $t^{R_{1}}\left(t_{2}\right)>t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,
then $t^{R_{1}}\left(t_{2}\right)>t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,
then $t^{R_{1}}\left(t_{2}\right)>t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,
then $t^{R_{1}}\left(t_{2}\right)>t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Consider the time reaction graph G^{R} :

- Bipartite graph: $R_{2}=R_{1}=\{1,2, \ldots, T+1\}$.
- (i, j) is an arc of G^{R} if $t^{R_{1}}(i)=j$ or $t^{R_{2}}(i)=j$.

$$
t^{R_{p}}(T+1) \leq t^{R_{p}}(T) \leq \ldots t^{R_{p}}(1) \quad \text { for } p=1,2
$$

Traduces in

Lemma (Property 1)

Let $\left(t_{2}, t_{1}\right)$ and $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. Then, these arcs cross. The symmetric result also holds.

Idea: $t_{1}=t^{R_{1}}\left(t_{2}\right)$ and $t_{1}^{\prime}=t^{R_{1}}\left(t_{2}^{\prime}\right)$.
Assume $t_{2}<t_{2}^{\prime}$,
then $t^{R_{1}}\left(t_{2}\right)>t^{R_{1}}\left(t_{2}^{\prime}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)
A cycle of length two in G^{R} represents a Nash Equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)
A cycle of length two in G^{R} represents a Nash Equilibrium.

Cycle of length two $\left(t_{1}, t_{2}, t_{1}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in G^{R} represents a Nash Equilibrium.

Cycle of length two $\left(t_{1}, t_{2}, t_{1}\right)$.
Then $t^{R_{2}}\left(t_{1}\right)=t_{2}$,

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in G^{R} represents a Nash Equilibrium.

Cycle of length two $\left(t_{1}, t_{2}, t_{1}\right)$.
Then $t^{R_{2}}\left(t_{1}\right)=t_{2}, t^{R_{1}}\left(t_{2}\right)=t_{1}$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 2)

A cycle of length two in G^{R} represents a Nash Equilibrium.

Cycle of length two $\left(t_{1}, t_{2}, t_{1}\right)$.
Then $t^{R_{2}}\left(t_{1}\right)=t_{2}, t^{R_{1}}\left(t_{2}\right)=t_{1}$.
No player has incentive to unilaterally deviate from the profile of strategies $\left(t_{1}, t_{2}\right)$.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)
Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.
(1) $\quad t_{1} \quad t_{1}^{\prime} \quad \cdots$
$(T+1$
(1) \cdots

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a $N E$.

$\Pi^{2}\left(t_{1}, t_{2}\right) \geq \Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)$ and $\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \geq \Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)$
$\Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)$
$\Rightarrow \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \Rightarrow t_{2}^{R}\left(t_{1}\right)=t^{R_{2}}\left(t_{1}^{\prime}\right)=t_{2}$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a $N E$.

$$
\begin{aligned}
& \Pi^{2}\left(t_{1}, t_{2}\right) \geq \Pi^{2}\left(t_{1}, t_{2}^{\prime}\right) \text { and } \Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \geq \Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \\
& \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \\
& \Rightarrow \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \Rightarrow t_{2}^{R}\left(t_{1}\right)=t^{R_{2}}\left(t_{1}^{\prime}\right)=t_{2} \Rightarrow \mathrm{NE}:\left(t_{1}^{\prime}, t_{2}\right)
\end{aligned}
$$

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.
(1) \cdots
(1) \cdots

$$
-F_{t_{2}^{\prime}}^{2}+\frac{a_{t_{2}^{\prime}}^{2}}{9 b_{t_{2}^{\prime}}} \quad \frac{a_{t_{2}}^{2}}{9 b_{t_{2}}} \quad \frac{a_{T}^{2}}{9 b_{T}} \text { duopoly }
$$

(T) $T+1$

```
\(\Pi^{2}\left(t_{1}, t_{2}\right) \geq \Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)\) and \(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \geq \Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Rightarrow \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \Rightarrow t_{2}^{R}\left(t_{1}\right)=t^{R_{2}}\left(t_{1}^{\prime}\right)=t_{2} \Rightarrow \mathrm{NE}:\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)\)
```


T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.
(1)

(T) $T+1$
(1)

$$
-F_{t_{2}^{\prime}}^{2}+\frac{a_{t_{2}^{\prime}}^{2}}{9 b_{t_{2}^{\prime}}} \quad \frac{a_{t_{2}}^{2}}{9 b_{t_{2}}}
$$

$\frac{a_{T}^{2}}{9 b_{T}}$ duopoly

```
\(\Pi^{2}\left(t_{1}, t_{2}\right) \geq \Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)\) and \(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \geq \Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Rightarrow \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \Rightarrow t_{2}^{R}\left(t_{1}\right)=t^{R_{2}}\left(t_{1}^{\prime}\right)=t_{2} \Rightarrow \mathrm{NE}:\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right) \Rightarrow t_{2}^{R}\left(t_{1}^{\prime}\right)=t^{R_{2}}\left(t_{1}\right)=t_{2}^{\prime}\)
```


T-Periods Lot Sizing Game with Fixed Costs: duopoly

Lemma (Property 3)

Let $\left(t_{1}, t_{2}\right),\left(t_{2}, t_{1}^{\prime}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ be arcs of G^{R} with $t_{2}, t_{2}^{\prime} \in R_{2}$ and $t_{1}, t_{1}^{\prime} \in R_{1}$. If $t_{1} \leq t_{1}^{\prime} \leq t_{2}^{\prime} \leq t_{2}$ then, $\left(t_{1}^{\prime}, t_{2}\right)$ is a NE.
(1)

(1) \cdots

$$
-F_{t_{2}^{\prime}}^{2}+\frac{a_{t_{2}^{\prime}}^{2}}{9 b_{t_{2}^{\prime}}} \quad \frac{a_{t_{2}}^{2}}{9 b_{t_{2}}}
$$

$\frac{a_{T}^{2}}{9 b_{T}}$ duopoly

```
\(\Pi^{2}\left(t_{1}, t_{2}\right) \geq \Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)\) and \(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \geq \Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Rightarrow \Pi^{2}\left(t_{1}, t_{2}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}^{\prime}, t_{2}\right) \Rightarrow t_{2}^{R}\left(t_{1}\right)=t^{R_{2}}\left(t_{1}^{\prime}\right)=t_{2} \Rightarrow \mathrm{NE}:\left(t_{1}^{\prime}, t_{2}\right)\)
\(\Pi^{2}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\Pi^{2}\left(t_{1}, t_{2}^{\prime}\right) \Rightarrow t_{2}^{R}\left(t_{1}^{\prime}\right)=t^{R_{2}}\left(t_{1}\right)=t_{2}^{\prime}\)
```


T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

三

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Corollary

A Nash equilibrium is found after following at most a path of length 5 in G^{R}. In particular, there is always a Nash equilibrium.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

T－Periods Lot Sizing Game with Fixed Costs：duopoly

Theorem
For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover，$\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria．

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Theorem
For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover, $\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Theorem

For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover, $\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria.

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Theorem

For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover, $\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria.

T－Periods Lot Sizing Game with Fixed Costs：duopoly

Theorem

For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover，$\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria．

T-Periods Lot Sizing Game with Fixed Costs: duopoly

Theorem

For $p=1,2$

$$
t^{R_{p}}(t) \in\left\{t^{R_{p}}(T+1), t^{R_{p}}(1)\right\} \quad \forall t \in\{1,2, \ldots, T, T+1\}
$$

Moreover, $\left(t^{R_{1}}(1), t^{R_{2}}(T+1)\right)$ and $\left(t^{R_{1}}(T+1), t^{R_{2}}(1)\right)$ are the only candidates to be Nash equilibria.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

- All pure Nash equilibria can be computed in polynomial time for a fixed number of players, more precisely, in $O\left(T^{m}\right)$ time. Idea: Each player only has to decide one period to produce.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

- All pure Nash equilibria can be computed in polynomial time for a fixed number of players, more precisely, in $O\left(T^{m}\right)$ time. Idea: Each player only has to decide one period to produce.
- All pure Nash equilibria can be computed in polynomial time for a fixed number of periods, more precisely, in $O\left(m^{T}\right)$ time. Idea:
- Define S_{i} as the set of players producing in period i.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

- All pure Nash equilibria can be computed in polynomial time for a fixed number of players, more precisely, in $O\left(T^{m}\right)$ time. Idea: Each player only has to decide one period to produce.
- All pure Nash equilibria can be computed in polynomial time for a fixed number of periods, more precisely, in $O\left(m^{T}\right)$ time. Idea:
- Define S_{i} as the set of players producing in period i.
- For the point of view of player k, only the fixed costs of k and the sizes of the sets S_{i} matter.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

- All pure Nash equilibria can be computed in polynomial time for a fixed number of players, more precisely, in $O\left(T^{m}\right)$ time. Idea: Each player only has to decide one period to produce.
- All pure Nash equilibria can be computed in polynomial time for a fixed number of periods, more precisely, in $O\left(m^{T}\right)$ time. Idea:
- Define S_{i} as the set of players producing in period i.
- For the point of view of player k, only the fixed costs of k and the sizes of the sets S_{i} matter.
- We can enumerate all possible sizes for these partitions: $O\left(m^{T}\right)$ time.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

It is easy to generalize the previous ideas for $m>2$.

- All pure Nash equilibria can be computed in polynomial time for a fixed number of players, more precisely, in $O\left(T^{m}\right)$ time. Idea: Each player only has to decide one period to produce.
- All pure Nash equilibria can be computed in polynomial time for a fixed number of periods, more precisely, in $O\left(m^{T}\right)$ time. Idea:
- Define S_{i} as the set of players producing in period i.
- For the point of view of player k, only the fixed costs of k and the sizes of the sets S_{i} matter.
- We can enumerate all possible sizes for these partitions: $O\left(m^{T}\right)$ time.
- Once these sizes are fixed, assigning the players to the sets S_{i} is easy - a transportation problem.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

Theorem

For $p=1,2, \ldots, m$ and for all feasible partitions
$S_{-p}=\left(\left|S_{1}\right|,\left|S_{2}\right|, \ldots,\left|S_{T}\right|\right)$ of the set of all players except p :
$t^{R_{p}}\left(S_{-p}\right) \in\left\{t^{R_{p}}(0,0, \ldots, 0), t^{R_{p}}(1,0, \ldots, 0), \ldots, t^{R_{p}}(m-1,0 \ldots, 0)\right\}$.

T-Periods Lot Sizing Game with Fixed Costs: oligopoly

Theorem

For $p=1,2, \ldots, m$ and for all feasible partitions
$S_{-p}=\left(\left|S_{1}\right|,\left|S_{2}\right|, \ldots,\left|S_{T}\right|\right)$ of the set of all players except p :
$t^{R_{p}}\left(S_{-p}\right) \in\left\{t^{R_{p}}(0,0, \ldots, 0), t^{R_{p}}(1,0, \ldots, 0), \ldots, t^{R_{p}}(m-1,0 \ldots, 0)\right\}$.

There are m^{m} candidates to be Nash equilibria...

Conclusion and Future work

1-Period Lot sizing game:

Conclusion and Future work

1-Period Lot sizing game:
 \star Existence of a pure Nash equilibrium.

Conclusion and Future work

1-Period Lot sizing game:

\star Existence of a pure Nash equilibrium.
\star A pure Nash equilibrium can be computed in polynomial time.

Conclusion and Future work

1-Period Lot sizing game:

\star Existence of a pure Nash equilibrium.
\star A pure Nash equilibrium can be computed in polynomial time.
\star Current work: Is it "NP-complete" to compute a Nash equilibrium optimizing a certain function? What is the economic meaning of $c^{k}+\sqrt{F^{k} b}$?

Conclusion and Future work

1-Period Lot sizing game:

\star Existence of a pure Nash equilibrium.
\star A pure Nash equilibrium can be computed in polynomial time.
\star Current work: Is it "NP-complete" to compute a Nash equilibrium optimizing a certain function? What is the economic meaning of $c^{k}+\sqrt{F^{k} b}$?

T-Period Lot sizing game with fixed costs:

\star Computation in polynomial time of all equilibria for the
2-players game.

Conclusion and Future work

1-Period Lot sizing game:

\star Existence of a pure Nash equilibrium.
\star A pure Nash equilibrium can be computed in polynomial time.
\star Current work: Is it "NP-complete" to compute a Nash equilibrium optimizing a certain function? What is the economic meaning of $c^{k}+\sqrt{F^{k} b}$?

T-Period Lot sizing game with fixed costs:

\star Computation in polynomial time of all equilibria for the 2-players game.

* Current work: Can we compute in polynomial time (on the number of players and number of periods) a Nash equilibrium?

Acknowledgments

I am grateful to GEMAC - Gabinete de Estatística, Modelação e Aplicações Computacionais - for supporting my participation in 5th Porto Meeting on MATHEMATICS for INDUSTRY.

