MINLP applications, part I: Hydro Unit Commitment and Pooling Problem

Claudia D'Ambrosio

CNRS & LIX, École Polytechnique

5th Porto Meeting on MATHEMATICS for INDUSTRY, April 10, 2014

April 10, 2014

1/33

- Production planning of hydro valley (short-term: from 1 day to 1 week).
- Crucial problem in energy management: hydro valley management.
- Combinatorial elements leads to far tougher hydro valley problems.
- French Hydro valleys.

Example

Decision variables:

- Activation of turbines/pumps: binary
- Flow through turbines/pumps: continuous

Maximize profit: depends on produced power (non-linear function of the flow and dependent variables)

Constraints:

- Bounds and target on water volume in the reservoirs
- Flow conservation
- If turbine is active, minimum and maximum flow
- Flow variation limit from one time period to the other
- Either turbines or pumps on in the same period/unit

Practically difficult: **complicated constraints**, and **large size of real instances**.

Looking for provable high accuracy in a limited amount of time.

Efficient Modeling: formulation strengthening, cuts, decomposition methods, and approximations to efficiently provide effective lower bounds on the optimal value

Decompositions

The subproblem might be itself decomposed into smaller sub-subproblems.

For example, the only constraints that link the different hydro plants are the

Flow conservation constraint ($\forall n \in \mathcal{N}, t \in \mathcal{T}$):

- Real-world optimization problem can be often modeled as a MINLP problem.
- What makes MINLP problem difficult?
 - non-linear functions;
 - Integer variables.
- MILP solvers more efficient than MINLP ones and handle large-scale instances.
- Trying to get rid of the non-linear functions → "linearize" and use MILP solvers!!!!
- **Piecewise linear approximation**: Beale & Tomlin, 1970 (*Special Ordered Sets*).

For the moment, focus on MINLP with non-linear objective function and linear constraints .

A (10) F (10)

Starting simple: univariate function

Consider a function f(x) and construct its piecewise linear approximation.

- Divide the domain of f in n-1 intervals of coordinates x_1, \ldots, x_n .
- Sample *f* at each point x_i with i = 1, ..., n.
- The piecewise linear approximation of *f* is given by the convex combination of the samples.

- Simply fix the value of one of the 2 variables and obtain a univariate function: $f(x, \tilde{y})$.
- Apply methods for approximating univariate functions (previous slide).

The quality of the approximation depends on the function at hand.

Choose to fix the "less non-linear" variable.

Function of 2 variables: Method 2

In Conejo et al. (2002) the function $f^a = f(x, y)$ was approximated by considering three prefixed water volumes, say \tilde{y}^1 , \tilde{y}^2 , \tilde{y}^3 and interpolating, for each \tilde{y}^r , the resulting function

$$f^a = f(x, \widetilde{y}^r)$$

by piecewise linear approximation.

It can be **generalized** by approximating a prefixed number m of values of y.

April 10, 2014

10/33

C. D'Ambrosio (CNRS)

Function of 2 variables: Method 3

Consider a function f(x, y) and construct its piecewise linear approximation.

- Divide the domain of f in a $(n-1) \times (m-1)$ grid of coordinates $x_1, \ldots, x_n, y_1, \ldots, y_m$.
- Divide the rectangles in the (x, y)-space in triangles.
- Sample *f* at each point (x_i, y_j) with i = 1, ..., n and j = 1, ..., m.

Function of 2 variables: Method 3 (cont.d)

Any point (\tilde{x}, \tilde{y})

- belongs to one of the triangles;
- can be written as a convex combination of its vertices with weights α_{ij} ; and
- the value of function f at (\tilde{x}, \tilde{y}) is approximated as

$$f^{a} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{ij} f(x_i, y_j).$$

1 triangle \leftrightarrow 1 binary variable $\rightarrow O(n \times m)$ binaries.

Method 3: Standard Triangulation

Given a rectangle identified by the four points v_1 , v_2 , v_3 , v_4 we can divide it in 2 triangles in 2 different ways by selecting:

- diagonal $[v_1, v_4]$; or
- **2** diagonal $[v_2, v_3]$.

Non-linear $f(x, y) \rightarrow 2$ different f^a for choice 1 and 2.1

C. D'Ambrosio (CNRS)

Method 3: Standard Triangulation

Diagonal [v_1 , v_4]:

$$\begin{split} &\alpha_{v_{1}} \leq \beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} \\ &\alpha_{v_{2}} \leq \beta_{[v_{1},v_{2},v_{4}]} \\ &\alpha_{v_{3}} \leq \beta_{[v_{1},v_{3},v_{4}]} \\ &\alpha_{v_{4}} \leq \beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} \\ &\beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} = 1 \end{split}$$

Diagonal $[v_2, v_3]$:

$$\begin{aligned} \alpha_{v_{1}} &\leq \beta_{[v_{1}, v_{2}, v_{3}]} \\ \alpha_{v_{2}} &\leq \beta_{[v_{1}, v_{2}, v_{3}]} + \beta_{[v_{2}, v_{3}, v_{4}]} \\ \alpha_{v_{3}} &\leq \beta_{[v_{1}, v_{2}, v_{3}]} + \beta_{[v_{2}, v_{3}, v_{4}]} \\ \alpha_{v_{4}} &\leq \beta_{[v_{2}, v_{3}, v_{4}]} \\ \beta_{[v_{1}, v_{2}, v_{3}]} + \beta_{[v_{2}, v_{3}, v_{4}]} = 1 \end{aligned}$$

Method 4: Optimistic Approximation

Observation is simple:

Why do we need to decide the triangle "offline"?

Let the point (\tilde{x}, \tilde{y}) be a convex combination of all the 4 vertices of the rectangle and the MILP solver (optimistically) decide based on the objective function!

April 10, 2014

15/33

C. D'Ambrosio (CNRS)

Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on the objective function!

In each region:

$$\check{f}(x) = \min \sum_{j=1}^{\nu} \alpha_j f(v_j)$$
 or

$$\hat{f}(x) = \max \sum_{j=1}^{\nu} \alpha_j f(v_j)$$

subject to

$$\alpha_j \geq \mathbf{0}$$

$$\sum_{j=1}^{\nu} \alpha_j = \mathbf{1}$$

$$\sum_{j=1}^{\nu} \alpha_j \mathbf{x}(\mathbf{v}_j) = \mathbf{x}$$

$$\sum_{j=1}^{\nu} \alpha_j \mathbf{y}(\mathbf{v}_j) = \mathbf{y}$$

where ν is the number of vertices that characterize the region.

C. D'Ambrosio (CNRS)

April 10, 2014 16 / 33

Theorem

The approximations \check{f} and \hat{f} are such that

- *t* (resp. *f*) is piecewise convex (resp. concave).
- *f* and *f* are continuous.
- if f is linear then $\check{f} = \hat{f} = f$.

Theorem

The approximations \check{f} and \hat{f} are such that

•
$$\Delta_r(f,\check{f}) \leq D_{\max}(r)$$
 and $\Delta_r(f,\hat{f}) \leq D_{\max}(r)$ ($\forall r \in \mathcal{R}$).

 if f is convex (resp. concave) in any r ∈ R, then f (resp. f) is the best possible linear interpolation of the samples f(v_j) in the sense of Δ_r (f, ·).

where

 \mathcal{R} is the collection of rectangles, $\Delta_r(f,g) = \max_{(x,y)\in r} |f(x,y) - g(x,y)|$, and $D_{\max}(r)$ is the maximum $\Delta_r(f,\tilde{f})$ among all the possible linear interpolations \tilde{f} . Besides the nice properties, the optimistic approximation provides huge advantages when modeled with a MILP.

- Standard triangulation: 1 binary variable for each triangle $O(n \times m)$.
- Optimistic approximation: 1 binary variable for each rectangle.
- Note: Each axis treated separately, i.e., *n* binaries for the *x* axis, and *m* binaries for the *y* axis. → O(n + m).
- For example, 3×3 grid $\rightarrow 6$ vs 18 binaries 10×10 grid $\rightarrow 20$ vs 200 binaries!

	opt	imistic a	pproxim	nation	standard approximation				
	# var.s		# con.s	# nzs	# var.s		# con.s	# nzs	
n m	all	binary			all	binary			
99	17,471	3,192	5,208	107,515	41,999	27,720	15,624	185,803	
17 17	55,103	5,880	7,896	360,187	146,831	97,608	50,568	666,955	
33 33	194,879	11,256	13,272	1,317,115	550,031	366,408	184,968	2,532,427	
65 65	732,479	22,008	24,024	5,037,307	2,130,575	1,420,104	711,816	9,876,043	

For n = m = 65:

- Number of binary variables: 22,008 vs 1,420,104.
- Number of constraints: 24,024 vs 711,816.

Single processor of an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of RAM under Linux.

Cplex 10.0.1.

Time limit of 1 hour.

		optimi	stic a	oproximat	on	standard approximation						
		solution	%	CPU	#	solution	%	final	CPU	#		
п	т	value	error	time	nodes	value	error	%gap	time	nodes		
9	9	31,565.40	-2.34	14.71	1,507	31,565.40	-2.34	_	169.30	9,837		
17	17	31,577.20	-2.31	755.96	36,507	31,577.20	-2.31	0.19	3,600.00	73,401		
33	33	31,626.20	-2.35	277.13	2,567	n/a	n/a	n/a	3,600.00	5,500		
65	65	31,640.30	-2.33	2,003.18	2,088	n/a	n/a	n/a	failure	failure		

• Number of solved instances: 4 vs 2.

Hydro UC: $f^a = f(x, y)$: Going Logarithmic

Vielma & Nemhauser, 2011 : MILP model for the standard triangulations with a logarithmic number of variables (binary tree structure).

Doable also for the Optimistic approximation.

		opt	imistic a	pproxim	ation	logarithmic standard approximation				
		# var.s		# con.s	# nzs	# var.s		# con.s	# nzs	
п	т	all binary				all binary				
9	9	17,471	3,192	5,208	107,515	16,127	1,848	4,368	142,963	
17	17	55,103	5,880	7,896	360,187	51,407	2,184	5,040	578,419	
33	33	194,879	11,256	13,272	1,317,115	186,143	2,520	5,712	2,501,683	
65	65	732,479	22,008	24,024	5,037,307	713,327	2,856	6,384	11,056,243	

		optimi	istic a	oproximat	ion	logarithmic standard approximation				
		solution	%	CPU	#	solution	%	CPU	#	
п	т	value	error	time	nodes	value	error	time	nodes	
9	9	31,565.40	-2.34	14.71	1,507	31,538.70	-2.26	18.69	1,723	
17	17	31,577.20	-2.31	755.96	36,507	31,577.20	-2.31	20.84	369	
33	33	31,626.20	-2.35	277.13	2,567	31,624.10	-2.35	231.99	1,531	
65	65	31,640.30	-2.33	2,003.18	2,088	31,640.30	-2.34	530.56	435	

イロン イ理 とくほとく ほ

April 10, 2014

Hydro UC: $f^a = f(x, y)$: Going Logarithmic (cont.d)

	logarithm	nic opti	mistic ap	proximation	logarithm	nic star	ndard ap	proximation
	# va	r.s	# con.s	# nzs	# va	r.s	# con.s	# nzs
n m	all	binary			all	binary		
99	16,127	1,848	4,032	135,907	16,127	1,848	4,368	142,963
17 17	51,407	2,184	4,704	553,891	51,407	2,184	5,040	578,419
33 33	186,143	2,520	5,376	2,409,955	186,143	2,520	5,712	2,501,683
65 65	713,327	2,856	6,048	10,701,091	713,327	2,856	6,384	11,056,243

		log op	timisti	ic appr	oximatio	on	log standard approximation					
		solution	%	initial	CPU	#	solution	%	initial	CPU	#	
п	m	value	error	%gap	time	nodes	value	error	%gap	time	nodes	
9	9	31,565.40	-2.34	1.13	17.87	1,734	31,538.70	-2.26	1.14	18.69	1,723	
17	17	31,577.20	-2.31	1.35	21.08	450	31,577.20	-2.31	1.35	20.84	369	
33	33	31,626.20	-2.35	1.24	263.88	2,195	31,624.10	-2.35	1.25	231.99	1,531	
65	65	31,640.30	-2.33	1.20	664.15	796	31,640.30	-2.34	1.20	530.56	435	

Why? $\log(nm) = \log(n) + \log(m)$

Advantages of the optimistic approximation: MILP model of limited size (tractable) and easy to implement .

- Several methods for approximating MINLPs through piecewise linear approximation
- From univariate to general functions
- Trade-off between tractability and approximation quality
- Best choice depends on the problem at hand
- What if we know the characteristics of the non-linear functions?

The Pooling Problem

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Pooling Problem

- Nodes $N = S \cup P \cup T$
- Arcs A $(i, j) \in (S \times P) \cup (P \times T) \cup (S \times T)$ on which materials flow
- Material attributes: K

- Arc capacities: *u_{ij}*
- Pool capacities: b_i
- Quality requirements $\beta_{kt} \forall k \in K, t \in T$

Quality Blending

Product quality : weighted average of the quality of its inputs *y_{ki}*: Quality of attribute *k* at node *i* ∈ *N*

$$egin{aligned} & \mathbf{y}_{ki} = \lambda_{ki} \quad orall i \in \mathcal{S} \ & \mathbf{y}_{ki} = rac{\sum_{j \in \delta^+(i)} \mathbf{y}_{kj} \mathbf{x}_{ji}}{\sum_{j \in \delta^+(i)} \mathbf{x}_{ji}} \quad orall i \in \mathbf{N} \setminus \mathbf{S} \end{aligned}$$

Upper bound on product quality

$$\sum_{i\in\delta^+(t)} \mathbf{y}_{ki} \mathbf{x}_{it} \leq \beta_{kt} \sum_{i\in\delta^+(t)} \mathbf{x}_{it} \quad \forall k \in K, \forall t \in T$$

Bilinear inequalities!

Different Pooling Formulations

• P-formulation : Variables x_{ij} for flows on arcs

1

 Q-formulation (Ben-Tal et al. 94): Variables for proportion of flow coming from source:

$$q_{si} = \frac{x_{si}}{\sum_{t \in \delta^-(i)} x_{it}}$$

 $(x_{si} = q_{si} \sum_{t \in \delta^-(i)} x_{it})$

• PQ-formulation : stronger! (Sahinidis and Tawarmalani (2005)). RLT technique to Q formulation.

$$\sum_{s \in S} q_{si} x_{it} = x_{it} \quad \forall i \in P, \forall t \in T$$
$$\sum_{t \in T} q_{si} x_{it} \le q_{si} u_i \quad \forall s \in S, \forall i \in P$$

Some notation:

$$H = \{ (s \in S, i \in P, t \in T) : (s, i) \in A, (i, t) \in A \}$$
$$A_1 = \{ (s \in S, i \in P) : (s, i) \in A \}$$

- Reformulate bilinear terms q_{si}x_{it} in the "standard" way introducing auxiliary variables w_{sit} = q_{si}x_{it} ∀(s, i, t) ∈ H
- Relax nonconvex equality using McCormick relaxation . Additional constraints ∀(s, i, t) ∈ H

$$egin{aligned} &w_{sit} \leq \min(b_t, u_{it}) q_{si} \ &w_{sit} \leq x_{it} \ &w_{sit} \geq 0 \ &w_{sit} \geq \min(b_t, u_{it}) q_{si} + x_{it} - \min(b_t, u_{it}) \end{aligned}$$

xy when x, y continuous

- Get bilinear term *xy* where $x \in [x^L, x^U]$, $y \in [y^L, y^U]$
- We can construct a relaxation:
 - Replace each term xy by an added variable w
 - Adjoin following constraints:

$$w \geq x^{L}y + y^{L}x - x^{L}y^{L}$$

$$w \geq x^{U}y + y^{U}x - x^{U}y^{U}$$

$$w \leq x^{U}y + y^{L}x - x^{U}y^{L}$$

$$w \leq x^{L}y + y^{U}x - x^{L}y^{U}$$

- These are called McCormick's envelopes
- Get an LP relaxation (solvable in polynomial time)

xy when x is binary

- If \exists bilinear term *xy* where $x \in \{0, 1\}, y \in [0, 1]$
- We can construct an exact reformulation:
 - Replace each term xy by an added variable w
 - Adjoin Fortet's reformulation constraints:

$$w \geq 0$$

$$w \geq x + y - 1$$

$$w \leq x$$

$$w \leq y$$

- Get a MILP reformulation
- Solve reformulation using CPLEX: more effective than solving MINLP

"Proof"

C. D'Ambrosio (CNRS)

・ロト ・聞ト ・ヨト ・ヨト

Linearizing non-linear function might be a way. Two possibilities:

- Approximation: no guarantee, several possibilities
- Relaxation: guaranteee a bound, exploit characteristics of the non-linear function
- For bilinear terms:
 - If binary variable: Fortet refomulation (exact)
 - If continuous variables: Mc Cormick relaxation

Important: formulation strengthening (RLT: reformulation-linearization technique, cuts, etc).