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Hydro UC: Introduction

Production planning of hydro valley (short-term: from 1 day to 1
week).

Crucial problem in energy management: hydro valley
management.

Combinatorial elements leads to far tougher hydro valley
problems.

French Hydro valleys.
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Example
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Mathematical Model

Decision variables:
Activation of turbines/pumps: binary
Flow through turbines/pumps: continuous

Maximize profit: depends on produced power (non-linear function of
the flow and dependent variables)

Constraints:
Bounds and target on water volume in the reservoirs
Flow conservation
If turbine is active, minimum and maximum flow
Flow variation limit from one time period to the other
Either turbines or pumps on in the same period/unit
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Solution Approaches

Practically difficult: complicated constraints, and large size of real
instances.

Looking for provable high accuracy in a limited amount of time.

Efficient Modeling: formulation strengthening, cuts, decomposition
methods, and approximations to efficiently provide effective lower
bounds on the optimal value
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Decompositions

The subproblem might be itself decomposed into smaller
sub-subproblems.
For example, the only constraints that link the different hydro plants are
the
Flow conservation constraint (∀n ∈ N , t ∈ T ):

vnt = vn(t−1)

+
∑

m∈Fn:D(m,n)≤t

∑
u∈U :µu=(m,n)

xu(t−D(m,n))T

−
∑

m∈Fn

∑
u∈U :µu(n,m)

xutT

+
∑

m∈Dn:D(m,n)≤t

∑
p∈P:(n,m)

yp(t−D(m,n))T

−
∑

m∈Dn

∑
p∈P:µ′p=(m,n)

yptT + IntT
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Approximations

Real-world optimization problem can be often modeled as a
MINLP problem.
What makes MINLP problem difficult?

1 non-linear functions;
2 integer variables.

MILP solvers more efficient than MINLP ones and handle
large-scale instances.
Trying to get rid of the non-linear functions→ “linearize” and use
MILP solvers!!!!
Piecewise linear approximation: Beale & Tomlin, 1970 (Special
Ordered Sets).

For the moment, focus on MINLP with non-linear objective function
and linear constraints .
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Starting simple: univariate function

Consider a function f (x) and construct its piecewise linear
approximation.

Divide the domain of f in n − 1 intervals of coordinates x1, . . . , xn.
Sample f at each point xi with i = 1, . . . ,n.
The piecewise linear approximation of f is given by the convex
combination of the samples.

r1 r2 r3 r4

(a)

r1 r2 r3 r4

(b)
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Function of 2 variables: Method 1

1 Simply fix the value of one of the 2 variables and obtain a
univariate function: f (x , ỹ).

2 Apply methods for approximating univariate functions (previous
slide).

The quality of the approximation depends on the function at hand.

Choose to fix the “less non-linear” variable.
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Function of 2 variables: Method 2

In Conejo et al. (2002) the function f a = f (x , y) was approximated by
considering three prefixed water volumes, say ỹ1, ỹ2, ỹ3 and
interpolating, for each ỹ r , the resulting function

f a = f (x , ỹ r )

by piecewise linear approximation.

It can be generalized by approximating a prefixed number m of values
of y .
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Function of 2 variables: Method 3

Consider a function f (x , y) and construct its piecewise linear
approximation.

Divide the domain of f in a (n − 1)× (m − 1) grid of coordinates
x1, . . . , xn, y1, . . . , ym.
Divide the rectangles in the (x , y)-space in triangles .
Sample f at each point (xi , yj) with i = 1, . . . ,n and j = 1, . . . ,m.
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Function of 2 variables: Method 3 (cont.d)

Any point (x̃ , ỹ)

belongs to one of the triangles;
can be written as a convex combination of its vertices with weights
αij ; and
the value of function f at (x̃ , ỹ) is approximated as

f a =
n∑

i=1

m∑
j=1

αij f (xi , yj).

1 triangle↔ 1 binary variable→ O(n ×m) binaries.
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Method 3: Standard Triangulation

Given a rectangle identified by the four points v1, v2, v3, v4 we can
divide it in 2 triangles in 2 different ways by selecting:

1 diagonal [v1, v4]; or
2 diagonal [v2, v3].

v1

v2

v3

v4

x

Non-linear f (x , y)→ 2 different f a for choice 1 and 2 !
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Method 3: Standard Triangulation

Diagonal [v1, v4]:

αv1 ≤ β[v1,v2,v4] + β[v1,v3,v4]

αv2 ≤ β[v1,v2,v4]

αv3 ≤ β[v1,v3,v4]

αv4 ≤ β[v1,v2,v4] + β[v1,v3,v4]

β[v1,v2,v4] + β[v1,v3,v4] = 1

Diagonal [v2, v3]:

αv1 ≤ β[v1,v2,v3]

αv2 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv3 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv4 ≤ β[v2,v3,v4]

β[v1,v2,v3] + β[v2,v3,v4] = 1

C. D’Ambrosio (CNRS) April 10, 2014 14 / 33



Method 4: Optimistic Approximation

v1

v2

v3

v4

x

(c) (d)

Observation is simple:

Why do we need to decide the triangle “offline”?

Let the point (x̃ , ỹ) be a convex combination of all the 4 vertices of the
rectangle and the MILP solver (optimistically) decide based on the
objective function!

αv ≤ β[v1,v2,v3,v4] ∀v ∈ {v1, v2, v3, v4}
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Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on the objective
function!

In each region:

f̌ (x) = min
ν∑

j=1

αj f (vj ) or f̂ (x) = max
ν∑

j=1

αj f (vj )

subject to

αj ≥ 0
ν∑

j=1

αj = 1

ν∑
j=1

αjx(vj ) = x

ν∑
j=1

αjy(vj ) = y

where ν is the number of vertices that characterize the region.
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Method 4: Optimistic Approximation Properties

Theorem

The approximations f̌ and f̂ are such that

f̌ (resp. f̂ ) is piecewise convex (resp. concave).

f̌ and f̂ are continuous.
if f is linear then f̌ = f̂ = f .
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Method 4: Optimistic Approximation Properties

Theorem

The approximations f̌ and f̂ are such that

∆r

(
f , f̌
)
≤ Dmax(r) and ∆r

(
f , f̂
)
≤ Dmax(r) (∀r ∈ R).

if f is convex (resp. concave) in any r ∈ R, then f̌ (resp. f̂ ) is the
best possible linear interpolation of the samples f (vj) in the sense
of ∆r (f , ·).

where
R is the collection of rectangles,
∆r (f ,g) = max(x ,y)∈r |f (x , y)− g(x , y)|, and

Dmax(r) is the maximum ∆r

(
f , f̃
)

among all the possible linear

interpolations f̃ .
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Standard vs Optimistic Approach: MILP size

Besides the nice properties, the optimistic approximation provides
huge advantages when modeled with a MILP.

Standard triangulation: 1 binary variable for each triangle
O(n ×m).
Optimistic approximation: 1 binary variable for each rectangle.
Note: Each axis treated separately, i.e.,
n binaries for the x axis, and
m binaries for the y axis. → O(n + m).
For example, 3 × 3 grid→ 6 vs 18 binaries
10 × 10 grid→ 20 vs 200 binaries!
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Hydro UC: f a = f (x , y): MILP size

optimistic approximation standard approximation
# var.s # con.s # nzs # var.s # con.s # nzs

n m all binary all binary
9 9 17,471 3,192 5,208 107,515 41,999 27,720 15,624 185,803

17 17 55,103 5,880 7,896 360,187 146,831 97,608 50,568 666,955
33 33 194,879 11,256 13,272 1,317,115 550,031 366,408 184,968 2,532,427
65 65 732,479 22,008 24,024 5,037,307 2,130,575 1,420,104 711,816 9,876,043

For n = m =65:
Number of binary variables: 22,008 vs 1,420,104.
Number of constraints: 24,024 vs 711,816.
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Hydro UC: f a = f (x , y): Solving the MILP

Single processor of an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of
RAM under Linux.

Cplex 10.0.1.

Time limit of 1 hour.

optimistic approximation standard approximation
solution % CPU # solution % final CPU #

n m value error time nodes value error %gap time nodes
9 9 31,565.40 -2.34 14.71 1,507 31,565.40 -2.34 — 169.30 9,837

17 17 31,577.20 -2.31 755.96 36,507 31,577.20 -2.31 0.19 3,600.00 73,401
33 33 31,626.20 -2.35 277.13 2,567 n/a n/a n/a 3,600.00 5,500
65 65 31,640.30 -2.33 2,003.18 2,088 n/a n/a n/a failure failure

Number of solved instances: 4 vs 2.
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Hydro UC: f a = f (x , y): Going Logarithmic

Vielma & Nemhauser, 2011 : MILP model for the standard
triangulations with a logarithmic number of variables (binary tree
structure).

Doable also for the Optimistic approximation.
optimistic approximation logarithmic standard approximation

# var.s # con.s # nzs # var.s # con.s # nzs
n m all binary all binary
9 9 17,471 3,192 5,208 107,515 16,127 1,848 4,368 142,963

17 17 55,103 5,880 7,896 360,187 51,407 2,184 5,040 578,419
33 33 194,879 11,256 13,272 1,317,115 186,143 2,520 5,712 2,501,683
65 65 732,479 22,008 24,024 5,037,307 713,327 2,856 6,384 11,056,243

optimistic approximation logarithmic standard approximation
solution % CPU # solution % CPU #

n m value error time nodes value error time nodes
9 9 31,565.40 -2.34 14.71 1,507 31,538.70 -2.26 18.69 1,723

17 17 31,577.20 -2.31 755.96 36,507 31,577.20 -2.31 20.84 369
33 33 31,626.20 -2.35 277.13 2,567 31,624.10 -2.35 231.99 1,531
65 65 31,640.30 -2.33 2,003.18 2,088 31,640.30 -2.34 530.56 435
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Hydro UC: f a = f (x , y): Going Logarithmic (cont.d)

logarithmic optimistic approximation logarithmic standard approximation
# var.s # con.s # nzs # var.s # con.s # nzs

n m all binary all binary
9 9 16,127 1,848 4,032 135,907 16,127 1,848 4,368 142,963

17 17 51,407 2,184 4,704 553,891 51,407 2,184 5,040 578,419
33 33 186,143 2,520 5,376 2,409,955 186,143 2,520 5,712 2,501,683
65 65 713,327 2,856 6,048 10,701,091 713,327 2,856 6,384 11,056,243

log optimistic approximation log standard approximation
solution % initial CPU # solution % initial CPU #

n m value error %gap time nodes value error %gap time nodes
9 9 31,565.40 -2.34 1.13 17.87 1,734 31,538.70 -2.26 1.14 18.69 1,723

17 17 31,577.20 -2.31 1.35 21.08 450 31,577.20 -2.31 1.35 20.84 369
33 33 31,626.20 -2.35 1.24 263.88 2,195 31,624.10 -2.35 1.25 231.99 1,531
65 65 31,640.30 -2.33 1.20 664.15 796 31,640.30 -2.34 1.20 530.56 435

Why? log(nm) = log(n) + log(m)
Advantages of the optimistic approximation: MILP model of limited size
(tractable ) and easy to implement .
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Hydro UC: Summarizing...

Several methods for approximating MINLPs through piecewise
linear approximation
From univariate to general functions
Trade-off between tractability and approximation quality
Best choice depends on the problem at hand
What if we know the characteristics of the non-linear functions?
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The Pooling Problem
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The Pooling Problem

Sources S Pools P Sinks T

Nodes N = S ∪ P ∪ T
Arcs A
(i , j) ∈ (S×P)∪(P×T )∪(S×T )
on which materials flow
Material attributes: K

Arc capacities: uij

Pool capacities: bi

Quality requirements
βkt∀k ∈ K , t ∈ T
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Quality Blending

Product quality : weighted average of the quality of its inputs
yki : Quality of attribute k at node i ∈ N

yki = λki ∀i ∈ S

yki =

∑
j∈δ+(i) ykjxji∑

j∈δ+(i) xji
∀i ∈ N \ S

Upper bound on product quality∑
i∈δ+(t)

ykixit ≤ βkt

∑
i∈δ+(t)

xit ∀k ∈ K , ∀t ∈ T

Bilinear inequalities!
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Different Pooling Formulations

P-formulation : Variables xij for flows on arcs
Q-formulation (Ben-Tal et al. 94): Variables for proportion of flow
coming from source:

qsi =
xsi∑

t∈δ−(i) xit

(xsi = qsi
∑

t∈δ−(i) xit )
PQ-formulation : stronger! (Sahinidis and Tawarmalani (2005)).
RLT technique to Q formulation.

∑
s∈S

qsixit = xit ∀i ∈ P, ∀t ∈ T

∑
t∈T

qsixit ≤ qsiui ∀s ∈ S, ∀i ∈ P
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Relaxation

Some notation:

H = {(s ∈ S, i ∈ P, t ∈ T ) : (s, i) ∈ A, (i , t) ∈ A}
A1 = {(s ∈ S, i ∈ P) : (s, i) ∈ A}

Reformulate bilinear terms qsixit in the “standard” way introducing
auxiliary variables wsit = qsixit ∀(s, i , t) ∈ H
Relax nonconvex equality using McCormick relaxation . Additional
constraints ∀(s, i , t) ∈ H

wsit ≤ min(bt ,uit )qsi

wsit ≤ xit

wsit ≥ 0
wsit ≥ min(bt ,uit )qsi + xit −min(bt ,uit )
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xy when x , y continuous

Get bilinear term xy where x ∈ [xL, xU ], y ∈ [yL, yU ]

We can construct a relaxation:
Replace each term xy by an added variable w
Adjoin following constraints:

w ≥ xLy + yLx − xLyL

w ≥ xUy + yUx − xUyU

w ≤ xUy + yLx − xUyL

w ≤ xLy + yUx − xLyU

These are called McCormick’s envelopes
Get an LP relaxation (solvable in polynomial time)
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xy when x is binary

If ∃ bilinear term xy where x ∈ {0,1}, y ∈ [0,1]

We can construct an exact reformulation:
Replace each term xy by an added variable w
Adjoin Fortet’s reformulation constraints:

w ≥ 0
w ≥ x + y − 1
w ≤ x
w ≤ y

Get a MILP reformulation
Solve reformulation using CPLEX: more effective than solving
MINLP
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“Proof”
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Summarizing...

Linearizing non-linear function might be a way. Two possibilities:
Approximation: no guarantee, several possibilities
Relaxation: guaranteee a bound, exploit characteristics of the
non-linear function

For bilinear terms:
If binary variable: Fortet refomulation (exact)
If continuous variables: Mc Cormick relaxation

Important: formulation strengthening (RLT: reformulation-linearization
technique, cuts, etc).
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