MINLP applications, part I: Hydro Unit Commitment and Pooling Problem

Claudia D'Ambrosio

CNRS \& LIX, École Polytechnique
5th Porto Meeting on MATHEMATICS for INDUSTRY, April 10, 2014

Hydro UC: Introduction

- Production planning of hydro valley (short-term: from 1 day to 1 week).
- Crucial problem in energy management: hydro valley management.
- Combinatorial elements leads to far tougher hydro valley problems.
- French Hydro valleys.

Example

Mathematical Model

Decision variables:

- Activation of turbines/pumps: binary
- Flow through turbines/pumps: continuous

Maximize profit: depends on produced power (non-linear function of the flow and dependent variables)

Constraints:

- Bounds and target on water volume in the reservoirs
- Flow conservation
- If turbine is active, minimum and maximum flow
- Flow variation limit from one time period to the other
- Either turbines or pumps on in the same period/unit

Solution Approaches

Practically difficult: complicated constraints, and large size of real instances.

Looking for provable high accuracy in a limited amount of time.
Efficient Modeling: formulation strengthening, cuts, decomposition methods, and approximations to efficiently provide effective lower bounds on the optimal value

Decompositions

The subproblem might be itself decomposed into smaller sub-subproblems.
For example, the only constraints that link the different hydro plants are the
Flow conservation constraint $(\forall n \in \mathcal{N}, t \in \mathcal{T})$:

$$
\begin{aligned}
v_{n t}= & v_{n(t-1)} \\
& +\sum_{m \in \mathcal{F}_{n}: D_{(m, n)} \leq t} \sum_{u \in \mathcal{U}: \mu_{u}=(m, n)} x_{u\left(t-D_{(m, n)}\right.} T \\
& -\sum_{m \in \mathcal{F}_{n}} \sum_{u \in \mathcal{U}: \mu_{u}(n, m)} x_{u t} T \\
& +\sum_{m \in \mathcal{D}_{n}: D_{(m, n)} \leq t} \sum_{p \in \mathcal{P}:(n, m)} y_{p\left(t-D_{(m, n)} T\right.} T \\
& -\sum_{m \in \mathcal{D}_{n}} \sum_{p \in \mathcal{P}: \mu_{p}^{\prime}=(m, n)} y_{p t} T+I_{n t} T
\end{aligned}
$$

Approximations

- Real-world optimization problem can be often modeled as a MINLP problem.
- What makes MINLP problem difficult?
(1) non-linear functions;
(2) integer variables.
- MILP solvers more efficient than MINLP ones and handle large-scale instances.
- Trying to get rid of the non-linear functions \rightarrow "linearize" and use MILP solvers!!!!
- Piecewise linear approximation: Beale \& Tomlin, 1970 (Special Ordered Sets).

For the moment, focus on MINLP with non-linear objective function and linear constraints .

Starting simple: univariate function

Consider a function $f(x)$ and construct its piecewise linear approximation.

- Divide the domain of f in $n-1$ intervals of coordinates x_{1}, \ldots, x_{n}.
- Sample f at each point x_{i} with $i=1, \ldots, n$.
- The piecewise linear approximation of f is given by the convex combination of the samples.

(a)

(b)

Function of 2 variables: Method 1

(1) Simply fix the value of one of the 2 variables and obtain a univariate function: $f(x, \tilde{y})$.
(2) Apply methods for approximating univariate functions (previous slide).

The quality of the approximation depends on the function at hand.
Choose to fix the "less non-linear" variable.

Function of 2 variables: Method 2

In Conejo et al. (2002) the function $f^{a}=f(x, y)$ was approximated by considering three prefixed water volumes, say $\widetilde{y}^{1}, \widetilde{y}^{2}, \widetilde{y}^{3}$ and interpolating, for each \widetilde{y}^{r}, the resulting function

$$
f^{a}=f\left(x, \widetilde{y}^{r}\right)
$$

by piecewise linear approximation.

It can be generalized by approximating a prefixed number m of values of y.

Function of 2 variables: Method 3

Consider a function $f(x, y)$ and construct its piecewise linear approximation.

- Divide the domain of f in a $(n-1) \times(m-1)$ grid of coordinates $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$.
- Divide the rectangles in the (x, y)-space in triangles .
- Sample f at each point $\left(x_{i}, y_{j}\right)$ with $i=1, \ldots, n$ and $j=1, \ldots, m$.

Function of 2 variables: Method 3 (cont.d)

Any point $(\widetilde{x}, \widetilde{y})$

- belongs to one of the triangles;
- can be written as a convex combination of its vertices with weights $\alpha_{i j}$; and
- the value of function f at $(\widetilde{x}, \widetilde{y})$ is approximated as

$$
f^{a}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} f\left(x_{i}, y_{j}\right)
$$

1 triangle $\leftrightarrow 1$ binary variable $\rightarrow O(n \times m)$ binaries.

Method 3: Standard Triangulation

Given a rectangle identified by the four points $v_{1}, v_{2}, v_{3}, v_{4}$ we can divide it in 2 triangles in 2 different ways by selecting:
(1) diagonal $\left[v_{1}, v_{4}\right]$; or
(2) diagonal $\left[v_{2}, v_{3}\right]$.

Non-linear $f(x, y) \rightarrow 2$ different f^{a} for choice 1 and 2 !

Method 3: Standard Triangulation

Diagonal $\left[v_{1}, v_{4}\right]$:

$$
\begin{aligned}
& \alpha_{v_{1}} \leq \beta_{\left[v_{1}, v_{2}, v_{4}\right]}+\beta_{\left[v_{1}, v_{3}, v_{4}\right]} \\
& \alpha_{v_{2}} \leq \beta_{\left[v_{1}, v_{2}, v_{4}\right]} \\
& \alpha_{v_{3}} \leq \beta_{\left[v_{1}, v_{3}, v_{4}\right]} \\
& \alpha_{v_{4}} \leq \beta_{\left[v_{1}, v_{2}, v_{4}\right]}+\beta_{\left[v_{1}, v_{3}, v_{4}\right]} \\
& \quad \beta_{\left[v_{1}, v_{2}, v_{4}\right]}+\beta_{\left[v_{1}, v_{3}, v_{4}\right]}=1
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{v_{1}} \leq \beta_{\left[v_{1}, v_{2}, v_{3}\right]} \\
& \alpha_{v_{2}} \leq \beta_{\left[v_{1}, v_{2}, v_{3}\right]}+\beta_{\left[v_{2}, v_{3}, v_{4}\right]} \\
& \alpha_{v_{3}} \leq \beta_{\left[v_{1}, v_{2}, v_{3}\right]}+\beta_{\left[v_{2}, v_{3}, v_{4}\right]} \\
& \alpha_{v_{4}} \leq \beta_{\left[v_{2}, v_{3}, v_{4}\right]} \\
& \quad \beta_{\left[v_{1}, v_{2}, v_{3}\right]}+\beta_{\left[v_{2}, v_{3}, v_{4}\right]}=1
\end{aligned}
$$

Method 4: Optimistic Approximation

(c)

(d)

Observation is simple:
Why do we need to decide the triangle "offline"?
Let the point (\tilde{x}, \tilde{y}) be a convex combination of all the 4 vertices of the rectangle and the MILP solver (optimistically) decide based on the objective function!

Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on the objective function!
In each region:

$$
\check{f}(x)=\min \sum_{j=1}^{\nu} \alpha_{j} f\left(v_{j}\right) \quad \text { or } \quad \hat{f}(x)=\max \sum_{j=1}^{\nu} \alpha_{j} f\left(v_{j}\right)
$$

subject to

$$
\begin{aligned}
\alpha_{j} & \geq 0 \\
\sum_{j=1}^{\nu} \alpha_{j} & =1 \\
\sum_{j=1}^{\nu} \alpha_{j} x\left(v_{j}\right) & =x \\
\sum_{j=1}^{\nu} \alpha_{j} y\left(v_{j}\right) & =y
\end{aligned}
$$

where ν is the number of vertices that characterize the region.

Method 4: Optimistic Approximation Properties

Theorem

The approximations \check{f} and \hat{f} are such that

- \check{f} (resp. \hat{f}) is piecewise convex (resp. concave).
- \check{f} and \hat{f} are continuous.
- if f is linear then $\check{f}=\hat{f}=f$.

Method 4: Optimistic Approximation Properties

Theorem

The approximations \check{f} and \hat{f} are such that

- $\Delta_{r}(f, \check{f}) \leq D_{\max }(r)$ and $\Delta_{r}(f, \hat{f}) \leq D_{\max }(r)(\forall r \in \mathcal{R})$.
- if f is convex (resp. concave) in any $r \in \mathcal{R}$, then \check{f} (resp. \hat{f}) is the best possible linear interpolation of the samples $f\left(v_{j}\right)$ in the sense of $\Delta_{r}(f, \cdot)$.
where
\mathcal{R} is the collection of rectangles,
$\Delta_{r}(f, g)=\max _{(x, y) \in r}|f(x, y)-g(x, y)|$, and
$D_{\max }(r)$ is the maximum $\Delta_{r}(f, \tilde{f})$ among all the possible linear interpolations \tilde{f}.

Standard vs Optimistic Approach: MILP size

Besides the nice properties, the optimistic approximation provides huge advantages when modeled with a MILP.

- Standard triangulation: 1 binary variable for each triangle $O(n \times m)$.
- Optimistic approximation: 1 binary variable for each rectangle.
- Note: Each axis treated separately, i.e.,
n binaries for the x axis, and
m binaries for the y axis. $\rightarrow O(n+m)$.
- For example, 3×3 grid $\rightarrow 6$ vs 18 binaries 10×10 grid $\rightarrow 20$ vs 200 binaries!

Hydro UC: $f^{a}=f(x, y)$: MILP size

$n \mathrm{~m}$	optimistic approximation			standard approximation			
	\# var.s	\# con.s	\# nzs	\# var.s		\# con.s	\# nzs
	all binary			all	binary		
99	17,471 3,192	5,208	107,515	41,999	27,720	15,624	185,803
1717	55,103 5,880	7,896	360,187	146,831	97,608	50,568	666,955
3333	194,879 11,256	13,272 1	1,317,115	550,031	366,408	184,968	2,532,427
6565	732,479 22,008	24,024 5	5,037,307	2,130,575	1,420,104	711,816 9	9,876,043

For $n=m=65$:

- Number of binary variables: 22,008 vs 1,420,104.
- Number of constraints: 24,024 vs 711,816.

Hydro UC: $f^{a}=f(x, y)$: Solving the MILP

Single processor of an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of RAM under Linux.

Cplex 10.0.1.
Time limit of 1 hour.

$n \mathrm{~m}$	optimistic approximation				standard approximation				
	solution value		CPU time	$\begin{array}{r} \# \\ \text { nodes } \end{array}$	solution value	$\begin{aligned} & \text { \% } \\ & \text { error } \end{aligned}$	final \%gap	CPU time	$\begin{array}{r} \# \\ \text { nodes } \end{array}$
9	31,565.40	-2.34	14.71	1,507	31,565.40	2.34		169.30	9,837
1717	31,577.20	-2.31	755.96	36,507	31,577.20	2.31	0.19	3,600.00	73,401
3333	31,626.20	-2.35	277.13	2,567	n/a	n/a	n/a	3,600.00	5,500
6565	31,640.30	233	2,003.18	2,088	n/a	n / a	n/a	failure	failure

- Number of solved instances: 4 vs 2.

Hydro UC: $f^{a}=f(x, y)$: Going Logarithmic

Vielma \& Nemhauser, 2011 : MILP model for the standard triangulations with a logarithmic number of variables (binary tree structure).
Doable also for the Optimistic approximation.

n m	optimistic approximation			ic standard approximation			
	\# var.s		\# nzs				
	all binary			binary			
	17,471 3,192	5,208	107,51	16,127	1,848	4,368	142,963
1717	55,103 5,880	7,896	360,187	51,407	2,184	5,040	578,419
3333	194,879 11,256	13,272	1,317,115	186,143	2,520	5,712	2,501,683
6565	732,479 22,008	24,02	5,037,307	713,327	2,856	6,384	11,056,243

m	optimistic approximation				logarithmic standard approximation			
	solution value		CPU time	$\begin{array}{r} \# \\ \text { nodes } \end{array}$	solution value	\% error	CPU time	$\begin{array}{r} \# \\ \text { nodes } \end{array}$
	31,565.40	-2.34	14.71	1,507	31,538.7	2.26	18.69	1,723
1717	31,577.20	-2.31	755.96	36,507	31,577.20	-2.31	20.84	369
3333	31,626.20	-2.35	277.13	2,567	31,624.10	-2.35	231.99	1,531
6565	31,640.30	2.33	2,003.18	2,088	31,640.30	2.34	530.56	435

Hydro UC: $f^{a}=f(x, y)$: Going Logarithmic (cont.d)

$n \mathrm{~m}$	I			logarithmic standard approximation		
			\# nzs	\# var.s		
	all binary			all binary		
9	16,127	4,032		16,127	-	
1717	51,407 2,184	4,704	553,891	51,407 2,184	5,040	578,419
3333	186,143 2,520	5,376	2,409,955	186,143 2,520	5,712	2,501,683
65	713,327 2,856	6,048	10,701	713,327 2,856	6,384	11,056,243

Why? $\log (n m)=\log (n)+\log (m)$
Advantages of the optimistic approximation: MILP model of limited size (tractable) and easy to implement .

- Several methods for approximating MINLPs through piecewise linear approximation
- From univariate to general functions
- Trade-off between tractability and approximation quality
- Best choice depends on the problem at hand
- What if we know the characteristics of the non-linear functions?

The Pooling Problem

The Pooling Problem

Sources S Pools P Sinks T

- Nodes $N=S \cup P \cup T$
- Arcs A
$(i, j) \in(S \times P) \cup(P \times T) \cup(S \times T)$
on which materials flow
- Material attributes: K
- Arc capacities: $u_{i j}$
- Pool capacities: b_{i}
- Quality requirements $\beta_{k t} \forall k \in K, t \in T$

Quality Blending

- Product quality: weighted average of the quality of its inputs
- $y_{k i}$: Quality of attribute k at node $i \in N$

$$
\begin{aligned}
& y_{k i}=\lambda_{k i} \quad \forall i \in S \\
& y_{k i}=\frac{\sum_{j \in \delta^{+}(i)} y_{k j} x_{j i}}{\sum_{j \in \delta^{+}(i)} x_{j i}} \quad \forall i \in N \backslash S
\end{aligned}
$$

- Upper bound on product quality

$$
\sum_{i \in \delta^{+}(t)} y_{k i} x_{i t} \leq \beta_{k t} \sum_{i \in \delta^{+}(t)} x_{i t} \quad \forall k \in K, \forall t \in T
$$

Bilinear inequalities!

Different Pooling Formulations

- P-formulation: Variables $x_{i j}$ for flows on arcs
- Q-formulation (Ben-Tal et al. 94): Variables for proportion of flow coming from source:

$$
q_{s i}=\frac{x_{s i}}{\sum_{t \in \delta^{-}(i)} x_{i t}}
$$

$\left(x_{s i}=q_{s i} \sum_{t \in \delta^{-}(i)} x_{i t}\right)$

- PQ-formulation : stronger! (Sahinidis and Tawarmalani (2005)). RLT technique to Q formulation.

$$
\begin{aligned}
& \sum_{s \in S} q_{s i} x_{i t}=x_{i t} \quad \forall i \in P, \forall t \in T \\
& \sum_{t \in T} q_{s i} x_{i t} \leq q_{s i} u_{i} \quad \forall s \in S, \forall i \in P
\end{aligned}
$$

Relaxation

- Some notation:

$$
\begin{aligned}
H & =\{(s \in S, i \in P, t \in T):(s, i) \in A,(i, t) \in A\} \\
A_{1} & =\{(s \in S, i \in P):(s, i) \in A\}
\end{aligned}
$$

- Reformulate bilinear terms $q_{s i} x_{i t}$ in the "standard" way introducing auxiliary variables $w_{s i t}=q_{s i} x_{i t} \forall(s, i, t) \in H$
- Relax nonconvex equality using McCormick relaxation. Additional constraints $\forall(s, i, t) \in H$

$$
\begin{aligned}
& w_{s i t} \leq \min \left(b_{t}, u_{i t}\right) q_{s i} \\
& w_{s i t} \leq x_{i t} \\
& w_{s i t} \geq 0 \\
& w_{s i t} \geq \min \left(b_{t}, u_{i t}\right) q_{s i}+x_{i t}-\min \left(b_{t}, u_{i t}\right)
\end{aligned}
$$

$x y$ when x, y continuous

- Get bilinear term $x y$ where $x \in\left[x^{L}, x^{U}\right], y \in\left[y^{L}, y^{U}\right]$
- We can construct a relaxation:
- Replace each term $x y$ by an added variable w
- Adjoin following constraints:

$$
\begin{aligned}
& w \geq x^{L} y+y^{L} x-x^{L} y^{L} \\
& w \geq x^{U} y+y^{U} x-x^{U} y^{U} \\
& w \leq x^{U} y+y^{L} x-x^{U} y^{L} \\
& w \leq x^{L} y+y^{U} x-x^{L} y^{U}
\end{aligned}
$$

- These are called McCormick's envelopes
- Get an LP relaxation (solvable in polynomial time)

$x y$ when x is binary

- If \exists bilinear term $x y$ where $x \in\{0,1\}, y \in[0,1]$
- We can construct an exact reformulation:
- Replace each term $x y$ by an added variable w
- Adjoin Fortet's reformulation constraints:

$$
\begin{aligned}
& w \geq 0 \\
& w \geq x+y-1 \\
& w \leq x \\
& w \leq y
\end{aligned}
$$

- Get a MILP reformulation
- Solve reformulation using CPLEX: more effective than solving MINLP

"Proof"

Summarizing...

Linearizing non-linear function might be a way. Two possibilities:

- Approximation: no guarantee, several possibilities
- Relaxation: guaranteee a bound, exploit characteristics of the non-linear function
For bilinear terms:
- If binary variable: Fortet refomulation (exact)
- If continuous variables: Mc Cormick relaxation

Important: formulation strengthening (RLT: reformulation-linearization technique, cuts, etc).

