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Introduction

Water Distribution Network (WDN)

design: choice of a diameter for each pipe, with other fixed design
properties (e.g., the topology and pipe lengths). “Worse case”
water demand.
operation: decide how to distribute the water at each time period.
For each time period, different water demand.
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Introduction

Water Distribution Network (WDN) optimal design:
choice of a diameter for each pipe, with other fixed design properties
(e.g., the topology and pipe lengths).

MINLP problem:

discrete variables: set of commercially-available diameters;
hydraulic constraints on water flows and pressures;
minimize the cost (function of the selected diameters).
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History of this Work

2002-2005: from Cristiana Bragalli’s PhD thesis to my Master
thesis, linearization.
2005-2012: mixed integer nonlinear programming techniques.
2013-????: understand why in this context MINLP approaches
outperform the MILP ones while in the gas distribution context the
linearization is an option.

Let’s start with the detailed problem description...

C. D’Ambrosio (CNRS) April 11, 2014 4 / 34



Notation

Sets:
E = set of pipes;
N = set of junctions;
S = set of source junctions (S ⊂ N);
δ+(i) = set of pipes with tail juction i (i ∈ N);
δ−(i) = set of pipes with head juction i (i ∈ N).

Parameters for each pipe e ∈ E :
len(e) = length of pipe e;
k(e) = roughness coefficient of pipe e;
dmin(e),dmax(e) = min and max diam. of pipe e;
vmax(e) = max speed of water in pipe e;
D(e, r),C(e, r) = value and cost of the r th discrete diameter for

pipe e (r = 1, . . . , re).
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Notation

Parameters for each junction i ∈ N \ S:
dem(i) = demand at junction i ;
elev(i) = physical elevation of junction i ;
phmin(i),phmax(i) = min and max pressure head at junction i .

Parameters for each source junction i ∈ S:
hs(i) = fixed hydraulic head of source junction i ;
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Variables

Q(e) = flow in pipe e (e ∈ E);
H(i) = hydraulic head of junction i (i ∈ N);
D(e) = diameter of pipe e (e ∈ E).
X(e, r) = 1 is r -th diameter is selected for pipe e,

0 otherwise (e ∈ E).
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The simplified model

min
∑
e∈E

len(e)

re∑
r=1

C(e, r) · X(e, r)

∑
e∈δ−(i)

Q(e)−
∑

e∈δ+(i)

Q(e) = dem(i) (∀ i ∈ N \ S)

−vmax (e)

re∑
r=1

π

4
D

2(e, r)X(e, r) ≤ Q(e) ≤ vmax (e)

re∑
r=1

π

4
D

2(e, r)X(e, r) (∀ e ∈ E)

H(i)− H(j) =
sgn(Q(e))|Q(e)|1.852 · 10.7 · len(e)

k(e)1.852 · D(e)4.87
(∀ e = (i, j) ∈ E)

D(e) =

re∑
r=1

D(e, r)X(e, r) (∀e ∈ E)

re∑
r=1

X(e, r) = 1 (∀e ∈ E)

dmin(e) ≤ D(e) ≤ dmax (e) (∀e ∈ E)

phmin(i) + elev(i) ≤ H(i) ≤ phmax (i) + elev(i) (∀ i ∈ N \ S)

H(i) = hs(i) (∀ i ∈ S)

X(e, r) ∈ {0, 1} (∀e ∈ E, r ∈ {1, . . . , re})
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Hazen-Williams Equation

For each discrete diameter, a univariate nonlinear curve.
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Hazen-Williams Equation

Outer approximation cannot work – feasible region cut!
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Modeling Tricks

Continuous objective function Ce(D(e))?
Nondifferentiability! See sgn(Q(e))|Q(e)|1.852

Reformulate with A(e) instead of D(e)!
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Continuous objective function

Continuous fitted polynomial might give a better bound wrt the
continuous relaxation of the discrete defined cost function.
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Nondifferentiability
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Algorithmic Tricks

Bonmin:
Open-source code for solving general MINLP problems
(https://projects.coin-or.org/Bonmin);
Several algorithmic choices: a NLP-based Branch-and-Bound
algorithm, an outer-approximation decomposition algorithm, a
Quesada and Grossmann’s Branch-and-Cut algorithm, and a
hybrid outer-approximation based Branch-and-Cut algorithm;
Exact for convex MINLPs;
Heuristic for nonconvex MINLPs.
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Algorithmic Tricks

Bonmin branch-and-bound algorithm: : solve NLP relaxation at each
node of the search tree and branch on variables.
NLP solver used:
Ipopt (open-source https://projects.coin-or.org/Ipopt).
It founds a local optima: no valid bound for nonconvex MINLPs.

Different starting points for root/each node.
Still not a valid LB!

Fathom only if z ≤ LB + ∆z with ∆z < 0, i.e., continue branching
even if the solution value to the current node is worse than the
best-known solution.
If |∆z| is too big, few nodes are fathomed, extreme case: complete
enumeration!
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Algorithmic Tricks

Bonmin modifications:
I.1 Ad-hoc definition of the cutoff decr option value (∆z).
I.2 Properly evaluating the objective value of integer feasible

solutions through the definition of 2 objective functions: LB and
UB objective function;
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Computational results

Instances.

number of . . . unit
name junctions reservoirs pipes duplicates diameters cost
shamir 7 1 8 – 14 $
hanoi 32 1 34 – 6 $
blacksburg 31 1 35 – 11 $
New York 20 1 21 21 12 $
foss poly 0 37 1 58 – 7 lira
foss iron 37 1 58 – 13 e
foss poly 1 37 1 58 – 22 e
pescara 71 3 99 – 13 e
modena 272 4 317 – 13 e
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Computational results

Characteristics of the 50 continuous solutions at the root node.

% dev. % dev. % dev.
mean first min max std dev coeff var

shamir 401,889.00 -4.880 -4.880 59.707 37,854.70 0.0941920
hanoi 6,134,520.00 -0.335 -1.989 2.516 91,833.70 0.0149700

blacksburg 114,163.00 1.205 -0.653 2.377 861.92 0.0075499
New York 82,646,700.00 0.605 -47.928 31.301 16,682,600.00 0.2018540

foss poly 0 68,601,200.00 -1.607 -1.748 15.794 2,973,570.00 0.0433457
foss iron 182,695.00 -2.686 -2.686 61.359 16,933.80 0.0926891

foss poly 1 32,195.40 26.186 -17.193 42.108 4,592.63 0.1426490
pescara 1,937,180.00 -6.311 -6.596 54.368 274,956.00 0.1419370
modena 2,559,350.00 -0.254 -0.396 9.191 38,505.80 0.0150452
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Computational results

Computational results for the MINLP model. Time limit 7200 seconds.

% dev.
vdisc(x̄best ) time vdisc(x̄first )

shamir 419,000.00 1 0.000
hanoi 6,109,620.90 191 0.000

blacksburg 118,251.09 2,018 0.178
New York 39,307,799.72 5 0.000

foss poly 0 70,680,507.90 41 0.000
foss iron 178,494.14 464 0.000

foss poly 1 29,117.04 2,589 0.119
pescara 1,820,263.72 2,084 0.724
modena 2,576,589.00 3,935 0.055
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Practical use of MINLP solutions

C. D’Ambrosio (CNRS) April 11, 2014 20 / 34



Computing valid lower bounds with Baron

Baron: considered one of the best solver for global optimization.
It uses:

under and over estimators to compute valid LB for nonconvex
MINLPs;
spatial Branch-and-Bound to improve estimation quality and
enforce integrality.

It provides (possibly) the global solution of nonconvex MINLPs (a lower
bound otherwise).
Used to measure the quality of the proposed solutions.
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Computing valid lower bounds with Baron

Computational results for the MINLP model comparing Baron and
Bonmin

Baron Bonmin
UB (2h) LB (2h) UB (12h) LB (12h) % gap

shamir 419,000.00 419,000.00 419,000.00 419,000.00 0.00
hanoi 6,309,727.80 5,643,490.00 6,219,567.80 5,783,950.00 5.63

blacksburg n.a. 55,791.90 n.a. 105,464.00 12.12
New York 43,821,000.00 29,174,000.00 43,821,000.00 29,174,000.00 34.74

foss poly 0 n.a. 64,787,300.00 n.a. 64,787,300.00 9.10
foss iron n.a. 170,580.00 n.a. 170,580.00 4.64

foss poly 1 n.a. 25,308.20 n.a. 25,308.20 15.05
pescara n.a. 1,512,640.00 n.a. 1,512,640.00 20.34
modena n.a. 2,073,050.00 n.a. 2,073,050.00 24.29

C. D’Ambrosio (CNRS) April 11, 2014 22 / 34



Literature comparison

Dandy et al. (1996): genetic algorithm;
Savic and Walters (1997): meta-heuristic approaches for the
optimization, and they work with the constraints by numerical
simulation;
Cunha and Sousa (1999): similar to Savic and Walters.

Savic and Walters (1997) Savic and Walters (1997) Cunha et Sousa (1999)
SW99 rel. MINLPa SW99 res. MINLPa CS99 MINLPa

hanoi 6.073 e+06 6.066 e+06 6.195 e+06 6.183 e+06 6.056 e+06 6.056 e+06

Savic and Walters (1997) Savic and Walters (1997) Dandy et al. (1996)
SW99 rel. MINLPa SW99 res. MINLPa DSM96 MINLPa

New York 37.13 e+06 36.38 e+06 40.42 e+06 40.47 e+06 38.8 e+06 38.8 e+06
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MILP approach

The nonlinear parts of the models: Hazen-Williams equations.

Linearize the Hazen-Williams equations (for each Diameter→
piecewise linear approximation of univariate functions).

Additional continuous and binary variables and additional constraints
(proportional to the quality of the approximation).
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MILP approach: results

shamir: the same solution found with the MINLP approarch.
hanoi: a worse and slightly infeasible solution in 40 CPU minutes.
blacksburg and New York: a worse solution in 48 CPU hours!!!
Real-world instances: even worse results.

Feasibility test: on the rather small instance hanoi (32 junctions, 1
source, 34 pipes and 6 diameter types), the MILP solver fed with the
optimal diameter choices needs 180 linearization points before
certifying feasibility.

When all the diameters/areas have been selected, the objective
function is a constant and we need complete enumeration to find the
values of the other variables!

Collins et al. 1977; Raghunathan 2013 proved that original feasibility
testing of a set of diameter sizes can be reformulated as a convex
(continuous) optimization problem!
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Gas Distribution Network and linearization

Huge project on gas distribution network in Germany.
Among all, the people from ZIB and the group of Alexander Martin
(Erlangen) are involved.
Different kind of piecewise linear approximation were employed
successfully.

Actually Martin et al. also employed successfully piecewise linear
approximation to water distribution network.

What’s wrong with our
piecewise linear approximation???
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A possible improved piecewise linear approximation
(relaxation)
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Water Distribution Network: design vs. operation

WDN design:

H(i)− H(j) = Ψ(e, r)
sgn(Q(e))|Q(e)|1.852

D(e)4.87

WDN operation (with pumps):

H(i)− H(j) =
Ψ(e, r)

D(e)4.87 sgn(Q(e))|Q(e)|1.852 + β(e)y(e)

where β(e) is the efficiency of a pump operating on pipe e and y(e) is
the variable associated with the decision of activating the pump or not.

β(e)y(e) plays the role of “slack variable”.

Design: if the diameters are fixed, a unique solution exists (if any).
Operation: potentially multiple feasible solution (more expensive
if the pump is used).
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Water Distribution Network: design vs. operation

Shamir example:

Pumps are somehow able to compensate for the approximation error
made by MILP approximations

H(i)− H(j) =
Ψ(e, r)

D(e)4.87 sgn(Q(e))|Q(e)|1.852 + β(e)y(e)
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Last but not least

Black-box Optimization
A.K.A.

What if we do not have an explicit form of
the involved functions, first, and second derivatives?
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Black-box Optimization: applications

Smart buildings design

Decision variables
Building orientation
Material choice for different building layers
Windows size

Objective
minimize energy consumption to garantee a given temperature in
each parts of the building within one year

Simulator: EnergyPlus
http://apps1.eere.energy.gov/buildings/energyplus/

C. D’Ambrosio (CNRS) April 11, 2014 31 / 34

http://apps1.eere.energy.gov/buildings/energyplus/


Black-box Optimization: applications

Oil reservoir engineering

Decision variables
Wells to construct
Wells type (injector/producer)
Wells coordinates

Objective
maximize cumulative oil production or net present value

Open-source software: NOMAD
http://www.gerad.ca/nomad/Project/Home.html
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Black-box Optimization: applications

Oil reservoir engineering
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Black-box Optimization

Direct/Pattern Search methods
Trust Region methods
Radial Basis Function methods
Surrogate models

“Introduction to Derivative Free Optimization” by Andrew R. Conn,
Katya Scheinberg, Luis N. Vicente
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