Solving Mixed-Integer Nonlinear Programs (with SCIP)

Ambros M. Gleixner

Zuse Institute Berlin · MATHEON · Berlin Mathematical School

5th Porto Meeting on Mathematics for Industry, April 10-11, 2014, Porto

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

What is Mixed-Integer Nonlinear Programming?

 $\begin{array}{ll} \min & c^{\mathsf{T}}x & \text{for } c \in \mathbb{R}^{n}, \\ \text{s. t.} & \mathbf{g_{k}(x) \leqslant 0} & \text{for } k = 1, \dots, m, \ g_{k} : [\ell, u] \to \mathbb{R} \in C^{1}, \\ & x \in [\ell, u], \\ & x_{i} \in \mathbb{Z} & \text{for } i \in \mathcal{I} \subseteq \{1, \dots, n\}. \end{array}$

 g_k convex local = global optimality

 g_k **nonconvex** suboptimal local optima

ZIB

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

ZIB

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

LP-based

underestimate by gradient cuts

$$g_k(\hat{x}) + \nabla g_k(\hat{x})^{\mathsf{T}}(x - \hat{x}) \leqslant 0$$

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

LP-based

underestimate by gradient cuts

$$g_k(\hat{x}) + \nabla g_k(\hat{x})^{\mathsf{T}}(x - \hat{x}) \leqslant 0$$

bound by polyhedral relaxation

- at MIP/NLP/sub-NLP solutions
- at node LP solutions

Assumption g_1, \ldots, g_m convex

NLP-based replace LP by NLP solver branch on integer var.s with fractional NLP value

LP-based

underestimate by gradient cuts

$$g_k(\hat{x}) + \nabla g_k(\hat{x})^{\mathsf{T}}(x - \hat{x}) \leqslant 0$$

bound by polyhedral relaxation

- at MIP/NLP/sub-NLP solutions
- at node LP solutions

Many algorithms, many solvers

 $\alpha\text{-}\mathsf{ECP}$ [Westerlund and Pettersson], BONMIN [Bonami et al.], DICOPT [Duran and Grossmann], sBB [ARKI Software & Consulting], . . .

[see, e.g., Bonami, Biegler, Conn, Cornuéjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter 2008]

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

- ▷ industrial engineering: mining with stockpiling constraints
- manufacturing: sheet metal design
- chemical industry: design of synthesis processes
- networks: operation and design of water and gas networks
- energy production and distribution: plant design, power scheduling
- ▷ biological engineering: cell modeling
- ▷ ...

Open Pit Mine Production Scheduling with Stockpiles

Variables:

 $x_{i,t} \in \{0,1\}$ block i fully mined by t

 $f_{i,t}^m \in [0,1]$ % of block i mined in t

 $f_{i,t}^{p} \in [0,1]$ % of block i processed in t

Constraints:

- material flow conservation
- mining & processing capacities
- mining precedences

Open Pit Mine Production Scheduling with Stockpiles

Open Pit Mine Production Scheduling with Stockpiles

Aggregated stockpile model

 $\begin{array}{l} f_{i,l}^{I} \in [0,1] \quad \ \ \, \mbox{ \% of block i into stockpiled} \\ Q_{l}^{rock}, Q_{l}^{met} \quad \ \ \, \mbox{ total rock / metal tons held} \\ P_{l}^{rock}, P_{l}^{met} \quad \ \ \, \mbox{ total rock / metal tons out} \end{array}$

Mixing constraints:

 $\frac{P_t^{met}}{Q_t^{met}} = \frac{P_t^{rock}}{Q_t^{rock}} \qquad (\text{metal fraction out} \\ = \text{rock fraction out})$

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

ZIB

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

ZIB

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Now some g_1, \ldots, g_m nonconvex

Relaxation gradient cuts invalid linear relaxation of convex hull convexification gap

Spatial branch-and-bound

branch on int. variables with fractional LP value branch on variables in violated nonlinear constraints

- ▷ largest convex function that underestimates some $g_j(x)$
- difficult to find in general
- ▷ known for many elementary cases: convex, univariate concave, bilinear, ...

- ▷ largest convex function that underestimates some $g_j(x)$
- difficult to find in general
- ▷ known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for x_1x_2

$$(x_1-\ell_1)\cdot(x_2-\ell_2)\geqslant 0$$

- ▷ largest convex function that underestimates some $g_j(x)$
- difficult to find in general
- ▷ known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for x_1x_2

$$(x_1 - \ell_1) \cdot (x_2 - \ell_2) \ge 0$$

 $x_1 x_2 - \ell_1 x_2 - \ell_2 x_1 + \ell_1 \ell_2 \ge 0$

- ▷ largest convex function that underestimates some $g_j(x)$
- difficult to find in general
- ▷ known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for x_1x_2

$$(x_1 - \ell_1) \cdot (x_2 - \ell_2) \ge 0$$

 $x_1 x_2 - \ell_1 x_2 - \ell_2 x_1 + \ell_1 \ell_2 \ge 0$
 $x_1 x_2 \ge \ell_1 x_2 + \ell_2 x_1 - \ell_1 \ell_2$

Convex Relaxation

Factorable functions

- ▷ recursive sum of products of univariate functions)
- ▷ reformulate into simple cases by introducing new variables and equations

ZIB

Factorable functions

- ▷ recursive sum of products of univariate functions)
- ▷ reformulate into simple cases by introducing new variables and equations

$$g(x) = \sqrt{\exp(x_1^2) \ln(x_2)}$$

$$x_1 \in [0,2], \quad x_2 \in [1,2]$$

$$g = \sqrt{y_1}$$

$$y_1 = y_2 y_3$$

$$y_2 = \exp(y_4)$$

$$y_3 = \ln(x_2)$$

$$y_4 = x_1^2$$

Factorable functions

- ▷ recursive sum of products of univariate functions)
- ▷ reformulate into simple cases by introducing new variables and equations

$$g(x) = \sqrt{\exp(x_1^2) \ln(x_2)}$$

$$x_1 \in [0, 2], \quad x_2 \in [1, 2]$$

$$g = \sqrt{y_1}$$

$$y_1 = y_2 y_3$$

$$y_2 = \exp(y_4)$$

$$y_3 = \ln(x_2)$$

$$y_4 = x_1^2$$

Tighter relaxations

Reformulation-Linearization-Technique, SDP cuts, Disjunctive Programming, ...

General MINLP solving techniques

Presolving

Bound tightening

Primal heuristics

General MINLP solving techniques

Presolving

Bound tightening

Primal heuristics

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

ZIB

Provide bounds on variables (as tight as possible)

tighter relaxations

tighter relaxations

Scaling

- $\triangleright\,$ ideally: nonzeros with absolute values in the range [0.01, 100]
- also intermediate expressions are important:

$$\exp\left(-\frac{1}{x}\right) \in [0,0.4] \quad \text{for} \quad x \in [10^{-6},1], \qquad \text{but} \quad \frac{1}{x} \in [1,10^6]$$

tighter relaxations

Scaling

- $\triangleright\,$ ideally: nonzeros with absolute values in the range [0.01, 100]
- also intermediate expressions are important:

$$\exp\left(-\frac{1}{x}\right) \in [0,0.4] \quad \text{for} \quad x \in [10^{-6},1], \qquad \text{but} \quad \frac{1}{x} \in [1,10^6]$$

$$\frac{x}{y} = 1 \qquad \Rightarrow \text{ nonlinear and nonconvex}$$

tighter relaxations

Scaling

- $\triangleright\,$ ideally: nonzeros with absolute values in the range [0.01, 100]
- also intermediate expressions are important:

$$\exp\left(-\frac{1}{x}\right) \in [0,0.4] \quad \text{for} \quad x \in [10^{-6},1], \qquad \text{but} \quad \frac{1}{x} \in [1,10^6]$$

$$x = y \qquad \Rightarrow$$
 linear and thus convex

tighter relaxations

Scaling

- $\triangleright\,$ ideally: nonzeros with absolute values in the range [0.01, 100]
- also intermediate expressions are important:

$$\exp\left(-\frac{1}{x}\right) \in [0,0.4] \quad \text{for} \quad x \in [10^{-6},1], \qquad \text{but} \quad \frac{1}{x} \in [1,10^6]$$

$$xy \ge 1 \qquad \Rightarrow$$
nonconvex

tighter relaxations

Scaling

- $\triangleright\,$ ideally: nonzeros with absolute values in the range [0.01, 100]
- also intermediate expressions are important:

$$\exp\left(-\frac{1}{x}\right) \in [0,0.4] \quad \text{for} \quad x \in [10^{-6},1], \qquad \text{but} \quad \frac{1}{x} \in [1,10^6]$$

$$y \ge \frac{1}{x} \Rightarrow \text{convex}$$

A quadratic term

$$x \cdot \sum_{k=1}^{N} a_k y_k$$
 with $x \in \{0, 1\}$

can be linearly reformulated:

- auxiliary continuous variable w
- additional linear constraints

$$M^L x \leqslant w \leqslant M^U x,$$

 $\sum_{k=1}^N a_k y_k - M^U (1-x) \leqslant w \leqslant \sum_{k=1}^N a_k y_k - M^L (1-x),$

where M^L and M^U are bounds on $\sum_{k=1}^N a_k y_k$.

- A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:
 - convex if A is positive-semidefinite
 - check by computing its minimal eigenvalue with LAPACK
 - ▶ if yes: gradient cuts are valid
 - \Rightarrow enforcement by separation instead of branching

A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \le 1$$
 in $[-1, 1] \times [-1, 1]$

A quadratic constraint $x^{T}Ax + b^{T}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \iff (x+y)^2 \leq 1$$
 in $[-1,1] \times [-1,1]$

- A quadratic constraint $x^{T}Ax + b^{T}x \leq c$:
 - convex if A is positive-semidefinite
 - check by computing its minimal eigenvalue with LAPACK
 - ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \quad \Leftrightarrow \quad |x+y| \leq 1$$
 in $[-1,1] \times [-1,1]$

feasible region

A quadratic constraint $x^{T}Ax + b^{T}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \iff (x+y)^2 \leq 1$$
 in $[-1,1] \times [-1,1]$

using McCormick underestimators:

$$\begin{cases} x^2 + 2w + y^2 \leq 1\\ w \geq L^y x + L^x y - L^x L^y\\ w \geq U^y x + U^x y - U^x U^y \end{cases}$$

A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \iff (x+y)^2 \leq 1$$
 in $[-1,1] \times [-1,1]$

using McCormick underestimators:

$$\begin{cases} x^2 + 2w + y^2 \leq 1 \\ w \geq L^y x + L^x y - L^x L^y \\ w \geq U^y x + U^x y - U^x U^y \end{cases}$$

branched into 4 subproblems

A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \iff (x+y)^2 \leq 1$$
 in $[-1,1] \times [-1,1]$

using McCormick underestimators:

$$\begin{cases} x^2 + 2w + y^2 \leq 1 \\ w \geq L^y x + L^x y - L^x L^y \\ w \geq U^y x + U^x y - U^x U^y \end{cases}$$

branched into 16 subproblems

A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \leq 1 \iff (x+y)^2 \leq 1$$
 in $[-1,1] \times [-1,1]$

using McCormick underestimators:

$$\begin{cases} x^2 + 2w + y^2 \leq 1 \\ w \geq L^y x + L^x y - L^x L^y \\ w \geq U^y x + U^x y - U^x U^y \end{cases}$$

branched into 64 subproblems

A quadratic constraint $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x \leq c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- ▶ if yes: gradient cuts are valid

 \Rightarrow enforcement by separation instead of branching

Example
$$x^2 + 2xy + y^2 \le 1 \iff (x+y)^2 \le 1$$
 in $[-1,1] \times [-1,1]$

$$A = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$$
 positive-semidefinite

 \Rightarrow gradient cuts at 4 corners yield exact feasible region

Quadratic constraints of the form

$$\sum_{k=1}^{N} \alpha_k x_k^2 - \alpha_{N+1} x_{N+1}^2 \leq 0 \iff \sqrt{\sum_{k=1}^{N} \alpha_k x_k^2} \leq \sqrt{\alpha_{N+1}} x_{N+1}$$

with $\alpha_1, \ldots, \alpha_{N+1} \ge 0$, $L_{N+1} \ge 0$ describe a convex feasible region.

Example $x^2 + y^2 - z^2 \leq 0$ in $[-1, 1] \times [-1, 1] \times [0, 1]$

feasible region "ice cream cone"

Quadratic constraints of the form

$$\sum_{k=1}^{N} \alpha_k x_k^2 - \alpha_{N+1} x_{N+1}^2 \leq 0 \iff \sqrt{\sum_{k=1}^{N} \alpha_k x_k^2} \leq \sqrt{\alpha_{N+1}} x_{N+1}$$

with $\alpha_1, \ldots, \alpha_{N+1} \ge 0$, $L_{N+1} \ge 0$ describe a convex feasible region.

Example $x^2 + y^2 - z^2 \leq 0$ in $[-1, 1] \times [-1, 1] \times [0, 1]$

using secant underestimator:

$$\begin{cases} x^2 + y^2 + w \leqslant 1 \\ w \geqslant \frac{(L^z)^2 - (U^z)^2}{U^z - L^z} (z - L^z) - (L^z)^2 \end{cases}$$

Quadratic constraints of the form

$$\sum_{k=1}^{N} \alpha_k x_k^2 - \alpha_{N+1} x_{N+1}^2 \leq 0 \iff \sqrt{\sum_{k=1}^{N} \alpha_k x_k^2} \leq \sqrt{\alpha_{N+1}} x_{N+1}$$

with $\alpha_1, \ldots, \alpha_{N+1} \ge 0$, $L_{N+1} \ge 0$ describe a convex feasible region.

Example $x^2 + y^2 - z^2 \leq 0$ in $[-1, 1] \times [-1, 1] \times [0, 1]$

using secant underestimator:

$$\begin{cases} x^2 + y^2 + w \leqslant 1 \\ w \geqslant \frac{(L^z)^2 - (U^z)^2}{U^z - L^z} (z - L^z) - (L^z)^2 \end{cases}$$

Quadratic constraints of the form

$$\sum_{k=1}^{N} \alpha_k x_k^2 - \alpha_{N+1} x_{N+1}^2 \leq 0 \iff \sqrt{\sum_{k=1}^{N} \alpha_k x_k^2} \leq \sqrt{\alpha_{N+1}} x_{N+1}$$

with $\alpha_1, \ldots, \alpha_{N+1} \ge 0$, $L_{N+1} \ge 0$ describe a convex feasible region.

Example $x^2 + y^2 - z^2 \leq 0$ in $[-1, 1] \times [-1, 1] \times [0, 1]$

using secant underestimator:

$$\begin{cases} x^2 + y^2 + w \leq 1 \\ w \geq \frac{(L^z)^2 - (U^z)^2}{U^z - L^z} (z - L^z) - (L^z)^2 \end{cases}$$

after branching on z = 0.25, 0.5, 0.75

Quadratic constraints of the form

$$\sum_{k=1}^{N} \alpha_k x_k^2 - \alpha_{N+1} x_{N+1}^2 \leq 0 \iff \sqrt{\sum_{k=1}^{N} \alpha_k x_k^2} \leq \sqrt{\alpha_{N+1}} x_{N+1}$$

with $\alpha_1, \ldots, \alpha_{N+1} \ge 0$, $L_{N+1} \ge 0$ describe a convex feasible region.

Example $x^2 + y^2 - z^2 \leq 0$ in $[-1, 1] \times [-1, 1] \times [0, 1]$

General MINLP solving techniques

Presolving

Bound tightening

Primal heuristics

General MINLP solving techniques

Presolving

Bound tightening

Primal heuristics

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Feasible LP solutions . . .

Standard MIP heuristics applied to MIP relaxation

- NLP local search
- MINLP heuristics
- nonlinear feasibility pumps
 [Bonami et al. 2009, D'Ambrosio et al. 2010]
- RENS [Berthold 2013]
- Undercover [Berthold and G. 2013]

► Large Neighborhood Search: common paradigm in MIP heuristics fix a subset of variables → easy subproblem → solve MIP: "easy" = few integralities MINLP: "easy" = few nonlinearities

 observation: any MINLP can be reduced to a MIP by fixing (sufficiently many) variables.

Experience: Often, few fixings are sufficient!

- idea: fix variables in minimum cover
- solution of LP/NLP relaxation as fixing values

Definition Let us be given

- a domain box $[L, U] = \bigotimes_i [L_i, U_i]$,
- ▶ a function $g_j : [L, U] \to \mathbb{R}$, $x \mapsto g_j(x)$ on [L, U], and
- ▶ a set $C \subseteq N := \{1, ..., n\}$ of variable indices.

We call C a cover of g if and only if for all $\bar{x} \in [L, U]$ the set

$$\{(x,g_j(x)) \mid x \in [L,U], x_k = \bar{x}_k \text{ for all } k \in \mathcal{C}\}$$

is an affine set intersected with $[L, U] \times \mathbb{R}$.

We call C a cover of P if and only if C is a cover for g_1, \ldots, g_m .

Definition Let P be an MINLP with g_1, \ldots, g_m twice continuously differentiable on the interior of [L, U].

We call $G_P = (V_P, E_P)$ the co-occurrence graph of P with

- node set $V_P = \{1, \ldots, n\}$ and
- ▶ edge set $E_P = \{ij \mid i, j \in V, \exists k \in \{1, ..., m\} : \frac{\partial^2}{\partial x_i \partial x_j} g_k(x) \neq 0\},$

Definition Let P be an MINLP with g_1, \ldots, g_m twice continuously differentiable on the interior of [L, U].

We call $G_P = (V_P, E_P)$ the co-occurrence graph of P with

- node set $V_P = \{1, \ldots, n\}$ and
- edge set $E_P = \{ij \mid i, j \in V, \exists k \in \{1, \dots, m\} : \frac{\partial^2}{\partial x_i \partial x_j} g_k(x) \neq 0\},$

Example

min \dots s.t. $s_1 t_i \leqslant a_i$ for all $i = 1, \dots$ $s_j t_1 \leqslant b_j$ for all $j = 1, \dots$

Definition Let P be an MINLP with g_1, \ldots, g_m twice continuously differentiable on the interior of [L, U].

We call $G_P = (V_P, E_P)$ the co-occurrence graph of P with

- node set $V_P = \{1, \ldots, n\}$ and
- edge set $E_P = \{ij \mid i, j \in V, \exists k \in \{1, \dots, m\} : \frac{\partial^2}{\partial x_i \partial x_j} g_k(x) \neq 0\},$

Theorem [Berthold and G. 2010, 2013] $C \subseteq \{1, ..., n\}$ is a cover of P if and only if it is a vertex cover of the co-occurrence graph G_P .

Definition Let P be an MINLP with g_1, \ldots, g_m twice continuously differentiable on the interior of [L, U].

We call $G_P = (V_P, E_P)$ the co-occurrence graph of P with

- node set $V_P = \{1, \ldots, n\}$ and
- edge set $E_P = \{ij \mid i, j \in V, \exists k \in \{1, \dots, m\} : \frac{\partial^2}{\partial x_i \partial x_j} g_k(x) \neq 0\},$

Theorem [Berthold and G. 2010, 2013] $C \subseteq \{1, ..., n\}$ is a cover of P if and only if it is a vertex cover of the co-occurrence graph G_P .

Corollary Computing a minimum cover of an MINLP is \mathcal{NP} -hard.

Auxiliary binary variables

 $\alpha_k = 1 :\Leftrightarrow x_k$ is fixed in P

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

$$\alpha_{k} = 1 \qquad \text{for all loops } kk \in E_{P}, \tag{1}$$

$$\alpha_{k} + \alpha_{j} \ge 1 \qquad \text{for all edges } kj \in E_{\rho}, k > j. \tag{2}$$

→ Covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_k : (1), (2), \alpha \in \{0, 1\}^n\Big\}.$$
(3)

Auxiliary binary variables

 $\alpha_k = 1 :\Leftrightarrow x_k \text{ is fixed in } P$

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

 $\begin{array}{ll} \alpha_k = 1 & \quad \text{for all loops } kk \in E_P, \\ \alpha_k + \alpha_j \geqslant 1 & \quad \text{for all edges } kj \in E_p, k > j. \end{array} \tag{2}$

→ Covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_k : (1), (2), \alpha \in \{0, 1\}^n\Big\}.$$
(3)

Auxiliary binary variables

 $\alpha_k = 1 :\Leftrightarrow x_k \text{ is fixed in } P$

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

 $\begin{aligned} \alpha_k &= 1 & \text{for all loops } kk \in E_P, \\ \alpha_k + \alpha_j &\ge 1 & \text{for all edges } kj \in E_p, k > j. \end{aligned}$

→ Covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_{k} : (1), (2), \alpha \in \{0, 1\}^{n}\Big\}.$$
(3)

The co-occurence graph of the bilinear program

I

min ... s.t.
$$s_1 t_i \leq a_i$$
 for all $i = 1, ...,$
 $s_j t_1 \leq b_j$ for all $j = 1, ...,$

is

The cover S of complicating variables may be arbitrarily large compared to the minimum cover $\{s_1, t_1\}$.

A simple example

Fixing x_3 to any value within its bounds yields a linear subproblem.

1 Input: MINLP P

- 3 compute a solution \bar{x} of an approximation of P;
- 4 round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;

```
6 solve the sub-MIP of P
given by fixing x_k = \bar{x}_k for
all k \in C;
```


1 Input: MINLP P

- 3 compute a solution \bar{x} of an approximation of P;
- 4 round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;
- 6 solve the sub-MIP of P given by fixing $x_k = \bar{x}_k$ for all $k \in C$;

1 Input: MINLP P

- 3 compute a solution \bar{x} of an approximation of P;
- 4 round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;

```
6 solve the sub-MIP of P
given by fixing x_k = \bar{x}_k for
all k \in C;
```


1 Input: MINLP P

2 begin

6

- 3 compute a solution \bar{x} of an approximation of P;
- 4 round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;

```
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k for
all k \in C;
```


1 Input: MINLP P

- 3 compute a solution \bar{x} of an approximation of P;
- 4 round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;

```
6 solve the sub-MIP of P
given by fixing x_k = \bar{x}_k for
all k \in C;
```


1 Input: MINLP P

2 begin

6

- 3 compute a solution \bar{x} of an approximation of P;
- 4 | round \bar{x}_k for all $k \in \mathcal{I}$;
- 5 determine a cover C of P;

```
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k for
all k \in C;
```


Remark:

 MIP heuristics: trade-off fixing many vs. few variables

here: eliminate nonlinearities by fixing as few as possible variables

 \rightarrow minimum cover!

NLP postprocessing

- ► All sub-MIP solutions are fully feasible for the original MINLP.
- > Still, sub-MIP solution \tilde{x} could be improved by NLP local search:
 - fix all integer variables of the original MINLP to their values in \tilde{x}
 - solve the resulting NLP to local optimality

Fix-and-propagate

- Do not fix variables in C simultaneously, but sequentially and propagate after each fixing.
- If x_k^{\star} falls out of bounds then
 - fix to the closest bound (similar to [FischettiSalvagnin09])
 - recompute the approximation

Backtracking

If fix-and-propagate deduces infeasibility, apply a one-level backtracking: undo last fixing and try another value

If the sub-MIP is infeasible, this is typically detected

- during fix-and-propagate, or
- via infeasible root LP.

 \rightsquigarrow Generate conflict clauses for the original MINLP

- Add them to the original MINLP.
- Use them to revise fixing values and/or fixing order
- Start another fix-and-propagate run

If the sub-MIP remains infeasible, at least this gives us valid conflicts to prune the search tree in the original problem.

Test set

149 MIQCPs from GloMIQO test set

Comparison to other heuristics

- ▶ Undercover: solution for 76 instances (typically less than 0.1 sec)
- root heuristics: Baron 65, Couenne 55, SCIP 98
- Iower success rate on general MINLPs

Undercover components

- SCIP can solve nonconvex MINLPs to global optimality
- ▶ like other solvers: Antigone/GloMIQO, BARON, Couenne, ...

- SCIP can solve nonconvex MINLPs to global optimality
- ▶ like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)

- SCIP can solve nonconvex MINLPs to global optimality
- ▶ like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)
- convex MINLPs can be solved much more efficiently
- convex modelling/reformulation/detection crucial
- convex solvers can be used heuristically for nonconvex MINLPs

- SCIP can solve nonconvex MINLPs to global optimality
- ▶ like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)
- convex MINLPs can be solved much more efficiently
- convex modelling/reformulation/detection crucial
- convex solvers can be used heuristically for nonconvex MINLPs

Thank you very much for your attention! Muito obrigado!

Solving Mixed-Integer Nonlinear Programs (with SCIP)

Ambros M. Gleixner

Zuse Institute Berlin · MATHEON · Berlin Mathematical School

5th Porto Meeting on Mathematics for Industry, April 10-11, 2014, Porto