Solving Mixed-Integer Nonlinear Programs (with SCIP)

Ambros M. Gleixner
Zuse Institute Berlin • Matheon • Berlin Mathematical School

5th Porto Meeting on Mathematics for Industry, April 10-11, 2014, Porto

Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

What is Mixed-Integer Nonlinear Programming?

\min
$c^{\top} x$
s.t.

$$
\mathbf{g}_{\mathrm{k}}(\mathbf{x}) \leqslant \mathbf{0}
$$

for $c \in \mathbb{R}^{n}$,

$$
x \in[\ell, u]
$$

$$
x_{i} \in \mathbb{Z}
$$

for $k=1, \ldots, m, g_{k}:[\ell, u] \rightarrow \mathbb{R} \in C^{1}$,

$$
\text { for } i \in \mathcal{I} \subseteq\{1, \ldots, n\}
$$

for $i \in \mathcal{I} \subseteq\{1, \ldots, n\}$.
local $=$ global optimality

g_{k} convex

g_{k} nonconvex
suboptimal local optima

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value
LP-based
underestimate by gradient cuts

$$
g_{k}(\hat{x})+\nabla g_{k}(\hat{x})^{\top}(x-\hat{x}) \leqslant 0
$$

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value
LP-based
underestimate by gradient cuts

$$
g_{k}(\hat{x})+\nabla g_{k}(\hat{x})^{\top}(x-\hat{x}) \leqslant 0
$$

bound by polyhedral relaxation
\triangleright at MIP/NLP/sub-NLP solutions
\triangleright at node LP solutions

Convex MINLP

Assumption g_{1}, \ldots, g_{m} convex

NLP-based

replace LP by NLP solver
branch on integer var.s with fractional NLP value

LP-based

underestimate by gradient cuts

$$
g_{k}(\hat{x})+\nabla g_{k}(\hat{x})^{\top}(x-\hat{x}) \leqslant 0
$$

bound by polyhedral relaxation
\triangleright at MIP/NLP/sub-NLP solutions
\triangleright at node LP solutions

Many algorithms, many solvers

α-ECP [Westerlund and Pettersson], BONMIN [Bonami et al.], DICOPT [Duran and Grossmann], sBB [ARKI Software \& Consulting], ...
[see, e.g., Bonami, Biegler, Conn, Cornuéjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter 2008]

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Applications, applications, applications

\triangleright industrial engineering: mining with stockpiling constraints
\triangleright manufacturing: sheet metal design
\triangleright chemical industry: design of synthesis processes
\triangleright networks: operation and design of water and gas networks
\triangleright energy production and distribution: plant design, power scheduling
\triangleright biological engineering: cell modeling

- ...

Open Pit Mine Production Scheduling with Stockpiles

Variables:
$x_{i, t} \in\{0,1\}$ block i fully mined by t
$f_{i, t}^{m} \in[0,1]$ \% of block i mined in t
$f_{i, t}^{p} \in[0,1]$ \% of block i processed in t
Constraints:

- material flow conservation
- mining \& processing capacities
- mining precedences

Open Pit Mine Production Scheduling with Stockpiles

Open Pit Mine Production Scheduling with Stockpiles

Aggregated stockpile model
$f_{i, t}^{I} \in[0,1]$ \% of block i into stockpiled
$Q_{t}^{\text {rock }}, Q_{t}^{\text {met }}$ total rock / metal tons held
$P_{t}^{\text {rock }}, P_{t}^{\text {met }}$ total rock / metal tons out
Mixing constraints:

$$
\frac{P_{t}^{\text {met }}}{Q_{t}^{\text {met }}}=\frac{P_{t}^{\text {rock }}}{Q_{t}^{\text {rock }}} \quad \begin{aligned}
& \text { (metal fraction out } \\
& =\text { rock fraction out })
\end{aligned}
$$

Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid

[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid

[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid

linear relaxation of convex hull convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Nonconvex MINLP

Now some g_{1}, \ldots, g_{m} nonconvex

Relaxation

gradient cuts invalid
linear relaxation of convex hull
 convexification gap

Spatial branch-and-bound

branch on int. variables with fractional LP value branch on variables in violated nonlinear constraints
[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, ...]

Convex Relaxation

Convex envelopes

\triangleright largest convex function that underestimates some $g_{j}(x)$
\triangleright difficult to find in general
\triangleright known for many elementary cases: convex, univariate concave, bilinear, ...

Convex Relaxation

Convex envelopes

\triangleright largest convex function that underestimates some $g_{j}(x)$
\triangleright difficult to find in general
\triangleright known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for $x_{1} x_{2}$

$$
\left(x_{1}-\ell_{1}\right) \cdot\left(x_{2}-\ell_{2}\right) \geqslant 0
$$

Convex Relaxation

Convex envelopes

\triangleright largest convex function that underestimates some $g_{j}(x)$
\triangleright difficult to find in general
\triangleright known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for $x_{1} x_{2}$

$$
\begin{array}{r}
\left(x_{1}-\ell_{1}\right) \cdot\left(x_{2}-\ell_{2}\right) \geqslant 0 \\
x_{1} x_{2}-\ell_{1} x_{2}-\ell_{2} x_{1}+\ell_{1} \ell_{2} \geqslant 0
\end{array}
$$

Convex Relaxation

Convex envelopes

\triangleright largest convex function that underestimates some $g_{j}(x)$
\triangleright difficult to find in general
\triangleright known for many elementary cases: convex, univariate concave, bilinear, ...

Example

McCormick underestimators for $x_{1} x_{2}$

$$
\begin{aligned}
\left(x_{1}-\ell_{1}\right) \cdot\left(x_{2}-\ell_{2}\right) & \geqslant 0 \\
x_{1} x_{2}-\ell_{1} x_{2}-\ell_{2} x_{1}+\ell_{1} \ell_{2} & \geqslant 0 \\
x_{1} x_{2} & \geqslant \ell_{1} x_{2}+\ell_{2} x_{1}-\ell_{1} \ell_{2}
\end{aligned}
$$

Convex Relaxation

Factorable functions

\triangleright recursive sum of products of univariate functions)
\triangleright reformulate into simple cases by introducing new variables and equations

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2]
\end{aligned}
$$

Convex Relaxation

Factorable functions

\triangleright recursive sum of products of univariate functions)
\triangleright reformulate into simple cases by introducing new variables and equations

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2] \\
& g=\sqrt{y_{1}} \\
& y_{1}=y_{2} y_{3} \\
& y_{2}=\exp \left(y_{4}\right) \\
& y_{3}=\ln \left(x_{2}\right) \\
& y_{4}=x_{1}^{2}
\end{aligned}
$$

Convex Relaxation

Factorable functions

\triangleright recursive sum of products of univariate functions)
\triangleright reformulate into simple cases by introducing new variables and equations

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2] \\
& g=\sqrt{y_{1}} \\
& y_{1}=y_{2} y_{3} \\
& y_{2}=\exp \left(y_{4}\right) \\
& y_{3}=\ln \left(x_{2}\right) \\
& y_{4}=x_{1}^{2}
\end{aligned}
$$

Tighter relaxations
Reformulation-Linearization-Technique, SDP cuts, Disjunctive Programming, ...

General MINLP solving techniques

Presolving
Bound tightening

Primal heuristics

General MINLP solving techniques

Presolving
Bound tightening

Primal heuristics

Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Scaling

\triangleright ideally: nonzeros with absolute values in the range [0.01, 100]
\triangleright also intermediate expressions are important:

$$
\exp \left(-\frac{1}{x}\right) \in[0,0.4] \quad \text { for } \quad x \in\left[10^{-6}, 1\right] \text {, but } \frac{1}{x} \in\left[1,10^{6}\right]
$$

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Scaling

\triangleright ideally: nonzeros with absolute values in the range [0.01, 100]
\triangleright also intermediate expressions are important:

$$
\exp \left(-\frac{1}{x}\right) \in[0,0.4] \quad \text { for } \quad x \in\left[10^{-6}, 1\right] \text {, but } \quad \frac{1}{x} \in\left[1,10^{6}\right]
$$

Prefer Linearity and Convexity

$$
\frac{x}{y}=1 \quad \Rightarrow \text { nonlinear and nonconvex }
$$

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Scaling

\triangleright ideally: nonzeros with absolute values in the range [0.01, 100]
\triangleright also intermediate expressions are important:

$$
\exp \left(-\frac{1}{x}\right) \in[0,0.4] \quad \text { for } \quad x \in\left[10^{-6}, 1\right] \text {, but } \quad \frac{1}{x} \in\left[1,10^{6}\right]
$$

Prefer Linearity and Convexity

$$
x=y \quad \Rightarrow \text { linear and thus convex }
$$

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Scaling

\triangleright ideally: nonzeros with absolute values in the range [0.01, 100]
\triangleright also intermediate expressions are important:

$$
\exp \left(-\frac{1}{x}\right) \in[0,0.4] \quad \text { for } \quad x \in\left[10^{-6}, 1\right] \text {, but } \quad \frac{1}{x} \in\left[1,10^{6}\right]
$$

Prefer Linearity and Convexity

$$
x y \geqslant 1 \quad \Rightarrow \text { nonconvex }
$$

Modeling Considerations

Provide bounds on variables (as tight as possible)
\triangleright tighter relaxations

Scaling

\triangleright ideally: nonzeros with absolute values in the range [0.01, 100]
\triangleright also intermediate expressions are important:

$$
\exp \left(-\frac{1}{x}\right) \in[0,0.4] \quad \text { for } \quad x \in\left[10^{-6}, 1\right] \text {, but } \quad \frac{1}{x} \in\left[1,10^{6}\right]
$$

Prefer Linearity and Convexity

$$
y \geqslant \frac{1}{x} \quad \Rightarrow \text { convex }
$$

Reformulation of products with binary variables

A quadratic term

$$
x \cdot \sum_{k=1}^{N} a_{k} y_{k} \quad \text { with } \quad x \in\{0,1\}
$$

can be linearly reformulated:

- auxiliary continuous variable w
- additional linear constraints

$$
\begin{aligned}
& M^{L} x \leqslant w \leqslant M^{U}{ }_{x}, \\
& \sum_{k=1}^{N} a_{k} y_{k}-M^{U}(1-x) \leqslant w \leqslant \sum_{k=1}^{N} a_{k} y_{k}-M^{L}(1-x),
\end{aligned}
$$

where M^{L} and M^{U} are bounds on $\sum_{k=1}^{N} a_{k} y_{k}$.

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid
\Rightarrow enforcement by separation instead of branching

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1$
in $[-1,1] \times[-1,1]$

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid
\Rightarrow enforcement by separation instead of branching
Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow|x+y| \leqslant 1$
in $[-1,1] \times[-1,1]$

feasible region

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

using McCormick underestimators:

$$
\left\{\begin{array}{c}
x^{2}+2 w+y^{2} \leqslant 1 \\
w \geqslant L^{y} x+L^{x} y-L^{x} L^{y} \\
w \geqslant U^{y} x+U^{x} y-U^{x} U^{y}
\end{array}\right\}
$$

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

using McCormick underestimators:

$$
\left\{\begin{array}{c}
x^{2}+2 w+y^{2} \leqslant 1 \\
w \geqslant L^{y} x+L^{x} y-L^{x} L^{y} \\
w \geqslant U^{y} x+U^{x} y-U^{x} U^{y}
\end{array}\right\}
$$

branched into 4 subproblems

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

using McCormick underestimators:

$$
\left\{\begin{array}{c}
x^{2}+2 w+y^{2} \leqslant 1 \\
w \geqslant L^{y} x+L^{x} y-L^{x} L^{y} \\
w \geqslant U^{y} x+U^{x} y-U^{x} U^{y}
\end{array}\right\}
$$

branched into 16 subproblems

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

using McCormick underestimators:

$$
\left\{\begin{array}{c}
x^{2}+2 w+y^{2} \leqslant 1 \\
w \geqslant L^{y} x+L^{x} y-L^{x} L^{y} \\
w \geqslant U^{y} x+U^{x} y-U^{x} U^{y}
\end{array}\right\}
$$

branched into 64 subproblems

Convexity check for quadratic constraints

A quadratic constraint $x^{\top} A x+b^{\top} x \leqslant c$:

- convex if A is positive-semidefinite
- check by computing its minimal eigenvalue with LAPACK
- if yes: gradient cuts are valid \Rightarrow enforcement by separation instead of branching

Example $x^{2}+2 x y+y^{2} \leqslant 1 \Leftrightarrow(x+y)^{2} \leqslant 1$ in $[-1,1] \times[-1,1]$

$$
\begin{aligned}
A= & \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \text { positive-semidefinite } \\
& \Rightarrow \text { gradient cuts at } 4 \text { corners } \\
& \text { yield exact feasible region }
\end{aligned}
$$

Second-order cone upgrade

Quadratic constraints of the form

$$
\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}-\alpha_{N+1} x_{N+1}^{2} \leqslant 0 \Leftrightarrow \sqrt{\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}} \leqslant \sqrt{\alpha_{N+1}} x_{N+1}
$$

with $\alpha_{1}, \ldots, \alpha_{N+1} \geqslant 0, L_{N+1} \geqslant 0$ describe a convex feasible region.
Example $x^{2}+y^{2}-z^{2} \leqslant 0$ in $[-1,1] \times[-1,1] \times[0,1]$

> feasible region
> "ice cream cone"

Second-order cone upgrade

Quadratic constraints of the form

$$
\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}-\alpha_{N+1} x_{N+1}^{2} \leqslant 0 \Leftrightarrow \sqrt{\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}} \leqslant \sqrt{\alpha_{N+1}} x_{N+1}
$$

with $\alpha_{1}, \ldots, \alpha_{N+1} \geqslant 0, L_{N+1} \geqslant 0$ describe a convex feasible region.
Example $x^{2}+y^{2}-z^{2} \leqslant 0$ in $[-1,1] \times[-1,1] \times[0,1]$

using secant underestimator:

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+w \leqslant 1 \\
w \geqslant \frac{\left(L^{2}\right)^{2}-\left(U^{2}\right)^{2}}{U^{2}-L^{2}}\left(z-L^{z}\right)-\left(L^{z}\right)^{2}
\end{array}\right\}
$$

Second-order cone upgrade

Quadratic constraints of the form

$$
\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}-\alpha_{N+1} x_{N+1}^{2} \leqslant 0 \Leftrightarrow \sqrt{\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}} \leqslant \sqrt{\alpha_{N+1}} x_{N+1}
$$

with $\alpha_{1}, \ldots, \alpha_{N+1} \geqslant 0, L_{N+1} \geqslant 0$ describe a convex feasible region.
Example $x^{2}+y^{2}-z^{2} \leqslant 0$ in $[-1,1] \times[-1,1] \times[0,1]$

using secant underestimator:
$\left\{\begin{array}{c}x^{2}+y^{2}+w \leqslant 1 \\ w \geqslant \frac{\left(L^{2}\right)^{2}-\left(U^{2}\right)^{2}}{U^{2}-L^{2}}\left(z-L^{z}\right)-\left(L^{z}\right)^{2}\end{array}\right\}$

Second-order cone upgrade

Quadratic constraints of the form

$$
\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}-\alpha_{N+1} x_{N+1}^{2} \leqslant 0 \Leftrightarrow \sqrt{\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}} \leqslant \sqrt{\alpha_{N+1}} x_{N+1}
$$

with $\alpha_{1}, \ldots, \alpha_{N+1} \geqslant 0, L_{N+1} \geqslant 0$ describe a convex feasible region.
Example $x^{2}+y^{2}-z^{2} \leqslant 0$ in $[-1,1] \times[-1,1] \times[0,1]$

using secant underestimator:

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+w \leqslant 1 \\
w \geqslant \frac{\left(L^{2}\right)^{2}-\left(U^{2}\right)^{2}}{U^{2}-L^{2}}\left(z-L^{z}\right)-\left(L^{z}\right)^{2}
\end{array}\right\}
$$

after branching on $z=0.25,0.5,0.75$

Second-order cone upgrade

Quadratic constraints of the form

$$
\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}-\alpha_{N+1} x_{N+1}^{2} \leqslant 0 \Leftrightarrow \sqrt{\sum_{k=1}^{N} \alpha_{k} x_{k}^{2}} \leqslant \sqrt{\alpha_{N+1}} x_{N+1}
$$

with $\alpha_{1}, \ldots, \alpha_{N+1} \geqslant 0, L_{N+1} \geqslant 0$ describe a convex feasible region.
Example $x^{2}+y^{2}-z^{2} \leqslant 0$ in $[-1,1] \times[-1,1] \times[0,1]$
using gradient cuts at 8 corners

General MINLP solving techniques

Presolving
Bound tightening

Primal heuristics

General MINLP solving techniques

Presolving
Bound tightening

Primal heuristics

Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic

Primal Solutions

Feasible LP solutions...
Standard MIP heuristics applied to MIP relaxation
NLP local search
MINLP heuristics
\triangleright nonlinear feasibility pumps
[Bonami et al. 2009, D'Ambrosio et al. 2010]

\triangleright RENS [Berthold 2013]
\triangleright Undercover [Berthold and G. 2013]

The Motivation

- Large $N_{\text {eighborthood }} S_{\text {earch }}$: common paradigm in MIP heuristics
fix a subset of variables \rightsquigarrow easy subproblem \rightsquigarrow solve
MIP: "easy" $=$ few integralities
MINLP: "easy" = few nonlinearities
- observation: any MINLP can be reduced to a MIP by fixing (sufficiently many) variables.

Experience: Often, few fixings are sufficient!

- idea: fix variables in minimum cover
- solution of LP/NLP relaxation as fixing values

The Structure

Definition Let us be given

- a domain box $[L, U]=X_{i}\left[L_{i}, U_{i}\right]$,
- a function $g_{j}:[L, U] \rightarrow \mathbb{R}, x \mapsto g_{j}(x)$ on $[L, U]$, and
- a set $\mathcal{C} \subseteq \mathcal{N}:=\{1, \ldots, n\}$ of variable indices.

We call \mathcal{C} a cover of g if and only if for all $\bar{x} \in[L, U]$ the set

$$
\left\{\left(x, g_{j}(x)\right) \mid x \in[L, U], x_{k}=\bar{x}_{k} \text { for all } k \in \mathcal{C}\right\}
$$

is an affine set intersected with $[L, U] \times \mathbb{R}$.
We call \mathcal{C} a cover of P if and only if \mathcal{C} is a cover for g_{1}, \ldots, g_{m}.

Covers of an MINLP

Definition Let P be an MINLP with g_{1}, \ldots, g_{m} twice continuously differentiable on the interior of $[L, U]$.
We call $G_{P}=\left(V_{P}, E_{P}\right)$ the co-occurrence graph of P with

- node set $V_{P}=\{1, \ldots, n\}$ and
- edge set $E_{P}=\left\{i j \mid i, j \in V, \exists k \in\{1, \ldots, m\}: \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{k}(x) \not \equiv 0\right\}$,

Covers of an MINLP

Definition Let P be an MINLP with g_{1}, \ldots, g_{m} twice continuously differentiable on the interior of $[L, U]$.
We call $G_{P}=\left(V_{P}, E_{P}\right)$ the co-occurrence graph of P with

- node set $V_{P}=\{1, \ldots, n\}$ and
- edge set $E_{P}=\left\{i j \mid i, j \in V, \exists k \in\{1, \ldots, m\}: \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{k}(x) \not \equiv 0\right\}$,

Example

$$
\begin{array}{llll}
\min \ldots & \text { s.t. } & s_{1} t_{i} \leqslant a_{i} \text { for all } i=1, \ldots \\
& s_{j} t_{1} \leqslant b_{j} \text { for all } j=1, \ldots
\end{array}
$$

Covers of an MINLP

Definition Let P be an MINLP with g_{1}, \ldots, g_{m} twice continuously differentiable on the interior of $[L, U]$.
We call $G_{P}=\left(V_{P}, E_{P}\right)$ the co-occurrence graph of P with

- node set $V_{P}=\{1, \ldots, n\}$ and
- edge set $E_{P}=\left\{i j \mid i, j \in V, \exists k \in\{1, \ldots, m\}: \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{k}(x) \not \equiv 0\right\}$,

Theorem [Berthold and G. 2010, 2013]
$\mathcal{C} \subseteq\{1, \ldots, n\}$ is a cover of P if and only if it is a vertex cover of the co-occurrence graph G_{P}.

Covers of an MINLP

Definition Let P be an MINLP with g_{1}, \ldots, g_{m} twice continuously differentiable on the interior of $[L, U]$.
We call $G_{P}=\left(V_{P}, E_{P}\right)$ the co-occurrence graph of P with

- node set $V_{P}=\{1, \ldots, n\}$ and
- edge set $E_{P}=\left\{i j \mid i, j \in V, \exists k \in\{1, \ldots, m\}: \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{k}(x) \not \equiv 0\right\}$,

Theorem [Berthold and G. 2010, 2013]
$\mathcal{C} \subseteq\{1, \ldots, n\}$ is a cover of P if and only if it is a vertex cover of the co-occurrence graph G_{P}.

Corollary Computing a minimum cover of an MINLP is $\mathcal{N} \mathcal{P}$-hard.

Computing a minimum cover

Auxiliary binary variables

$$
\alpha_{k}=1: \Leftrightarrow x_{k} \text { is fixed in } P
$$

$\mathcal{C}(\alpha):=\left\{k \mid \alpha_{k}=1\right\}$ is a cover of P if and only if

$$
\begin{align*}
\alpha_{k} & =1 & \text { for all loops } k k \in E_{P}, \tag{1}\\
\alpha_{k}+\alpha_{j} \geqslant 1 & & \text { for all edges } k j \in E_{p}, k>j . \tag{2}
\end{align*}
$$

\rightsquigarrow Covering problem

$$
\begin{equation*}
\min \left\{\sum_{k=1}^{n} \alpha_{k}:(1),(2), \alpha \in\{0,1\}^{n}\right\} . \tag{3}
\end{equation*}
$$

Computing a minimum cover

Auxiliary binary variables

$$
\alpha_{k}=1: \Leftrightarrow x_{k} \text { is fixed in } P
$$

$\mathcal{C}(\alpha):=\left\{k \mid \alpha_{k}=1\right\}$ is a cover of P if and only if

$$
\begin{align*}
\alpha_{k} & =1 & \text { for all loops } k k \in E_{P}, \tag{1}\\
\alpha_{k}+\alpha_{j} \geqslant 1 & & \text { for all edges } k j \in E_{p}, k>j . \tag{2}
\end{align*}
$$

\rightsquigarrow Covering problem

$$
\begin{equation*}
\min \left\{\sum_{k=1}^{n} \alpha_{k}:(1),(2), \alpha \in\{0,1\}^{n}\right\} . \tag{3}
\end{equation*}
$$

Computing a minimum cover

Auxiliary binary variables

$$
\alpha_{k}=1: \Leftrightarrow x_{k} \text { is fixed in } P
$$

$\mathcal{C}(\alpha):=\left\{k \mid \alpha_{k}=1\right\}$ is a cover of P if and only if

$$
\begin{align*}
\alpha_{k} & =1 & \text { for all loops } k k \in E_{P}, \tag{1}\\
\alpha_{k}+\alpha_{j} \geqslant 1 & & \text { for all edges } k j \in E_{p}, k>j . \tag{2}
\end{align*}
$$

\rightsquigarrow Covering problem

$$
\begin{equation*}
\min \left\{\sum_{k=1}^{n} \alpha_{k}:(1),(2), \alpha \in\{0,1\}^{n}\right\} . \tag{3}
\end{equation*}
$$

Optimization matters

The co-occurence graph of the bilinear program

$$
\begin{array}{llll}
\min \ldots & \text { s.t. } & s_{1} t_{i} \leqslant a_{i} \text { for all } i=1, \ldots \\
& s_{j} t_{1} \leqslant b_{j} \text { for all } j=1, \ldots
\end{array}
$$

is

The cover \mathcal{S} of complicating variables may be arbitrarily large compared to the minimum cover $\left\{s_{1}, t_{1}\right\}$.

A simple example

Fixing x_{3} to any value within its bounds yields a linear subproblem.

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a
cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a
cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution \bar{x} of an approximation of P;
round \bar{x}_{k} for all $k \in \mathcal{I}$;
determine a
cover \mathcal{C} of P;
solve the sub-MIP of P given by fixing $x_{k}=\bar{x}_{k}$ for all $k \in \mathcal{C}$;

Remark:

- MIP heuristics: trade-off fixing many vs. few variables
here: eliminate nonlinearities by fixing as few as possible variables
\rightarrow minimum cover!

NLP postprocessing

NLP postprocessing

- All sub-MIP solutions are fully feasible for the original MINLP.
- Still, sub-MIP solution \tilde{x} could be improved by NLP local search:
- fix all integer variables of the original MINLP to their values in \tilde{x}
- solve the resulting NLP to local optimality

Fix-and-propagate \& Backtracking

Fix-and-propagate

- Do not fix variables in \mathcal{C} simultaneously, but sequentially and propagate after each fixing.
- If x_{k}^{\star} falls out of bounds then
- fix to the closest bound (similar to [FischettiSalvagnino9])
- recompute the approximation

Backtracking

- If fix-and-propagate deduces infeasibility, apply a one-level backtracking: undo last fixing and try another value

Avoiding/exploiting Infeasibility

If the sub-MIP is infeasible, this is typically detected

- during fix-and-propagate, or
- via infeasible root LP.
\rightsquigarrow Generate conflict clauses for the original MINLP
- Add them to the original MINLP.
- Use them to revise fixing values and/or fixing order
- Start another fix-and-propagate run

If the sub-MIP remains infeasible, at least this gives us valid conflicts to prune the search tree in the original problem.

Computational experiments

Test set

- 149 MIQCPs from GloMIQO test set

Comparison to other heuristics

- Undercover: solution for 76 instances (typically less than 0.1 sec)
- root heuristics: Baron 65, Couenne 55, SCIP 98
- lower success rate on general MINLPs

Undercover components

Take-away messages

- SCIP can solve nonconvex MINLPs to global optimality
- like other solvers: Antigone/GloMIQO, BARON, Couenne, ...

Take-away messages

- SCIP can solve nonconvex MINLPs to global optimality
- like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)

Take-away messages

- SCIP can solve nonconvex MINLPs to global optimality
- like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)
- convex MINLPs can be solved much more efficiently
- convex modelling/reformulation/detection crucial
- convex solvers can be used heuristically for nonconvex MINLPs

Take-away messages

- SCIP can solve nonconvex MINLPs to global optimality
- like other solvers: Antigone/GloMIQO, BARON, Couenne, ...
- sometimes problem-specific algorithms can be efficiently generalized to structure-specific algorithms (Undercover)
- convex MINLPs can be solved much more efficiently
- convex modelling/reformulation/detection crucial
- convex solvers can be used heuristically for nonconvex MINLPs

Thank you very much for your attention!
 Muito obrigado!

Solving Mixed-Integer Nonlinear Programs (with SCIP)

Ambros M. Gleixner
Zuse Institute Berlin • Matheon • Berlin Mathematical School

5th Porto Meeting on Mathematics for Industry, April 10-11, 2014, Porto

