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What is Mixed-Integer Nonlinear Programming?

min cTx for c ∈ Rn,

s. t. gk(x) 6 0 for k = 1, . . . ,m, gk : [`, u]→ R ∈ C 1,

x ∈ [`, u],

xi ∈ Z for i ∈ I ⊆ {1, . . . , n}.
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Convex MINLP

Assumption g1, . . . , gm convex
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NLP-based
replace LP by NLP solver

branch on integer var.s with fractional NLP value

LP-based
underestimate by gradient cuts

gk(x̂) +∇gk(x̂)T(x − x̂) 6 0

bound by polyhedral relaxation
. at MIP/NLP/sub-NLP solutions

. at node LP solutions

Many algorithms, many solvers
α-ECP [Westerlund and Pettersson], BONMIN [Bonami et al.], DICOPT [Duran and

Grossmann], sBB [ARKI Software & Consulting], . . .

[see, e.g., Bonami, Biegler, Conn, Cornuéjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter 2008]
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5



Convex MINLP

Assumption g1, . . . , gm convex

−1

1
−1

1

5

10

NLP-based
replace LP by NLP solver

branch on integer var.s with fractional NLP value

LP-based
underestimate by gradient cuts

gk(x̂) +∇gk(x̂)T(x − x̂) 6 0

bound by polyhedral relaxation
. at MIP/NLP/sub-NLP solutions

. at node LP solutions

Many algorithms, many solvers
α-ECP [Westerlund and Pettersson], BONMIN [Bonami et al.], DICOPT [Duran and

Grossmann], sBB [ARKI Software & Consulting], . . .
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Applications, applications, applications

. industrial engineering: mining with stockpiling constraints

. manufacturing: sheet metal design

. chemical industry: design of synthesis processes

. networks: operation and design of water and gas networks

. energy production and distribution: plant design, power scheduling

. biological engineering: cell modeling

. . . .
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Open Pit Mine Production Scheduling with Stockpiles

Andreas Bley, Branch-and-bound techniques for a mine production scheduling problem

Variables:
block i fully mined by t
% of block i mined in t
% of block i processed in t

Constraints:
• material flow conservation
• mining & processing capacities
• mining precedences

}1,0{, �tix
]1,0[, �

m
tif

]1,0[, �
p
tif

Open Pit Mine Scheduling – Basic Version

Solution Approach:
Time-indexed MILP formulation

Given: 
• Blocks (or aggregates)

(rock, metal grade, precedences)

• Capacities, Costs
(Mining, Processing; per rock ton)

• Metal Prices

Decisions:
• When to mine which block?

• Which block to process?

Goal: 
max NPV
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Open Pit Mine Production Scheduling with Stockpiles

Andreas Bley, Branch-and-bound techniques for a mine production scheduling problem

Open Pit Mine Scheduling – With Stockpile

Practical extension:
Stockpile for interim storage

better use of capacities

Difficulty:
stockpile mixes material
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Open Pit Mine Production Scheduling with Stockpiles

Andreas Bley, Branch-and-bound techniques for a mine production scheduling problem

Open Pit Mine Scheduling – With Stockpile

Mathematical model:
Same rock / metal – mix 
held and taken out of stockpile

Nonlinear constraints 

Practical extension:
Stockpile for interim storage

better use of capacities

Difficulty:
stockpile mixes material

Aggregated stockpile model

% of block i into stockpiled

total rock / metal tons held 

total rock / metal tons out 

Mixing constraints:
rock
t

met
t

met
t

rock
t QPQP � �

]1,0[, �
I
tif

met
t

rock
t QQ ,

met
t

rock
t PP ,

rock
t

met
t

rock
t

met
t

Q

Q

P

P
 (grade out = grade held)

rock
t

rock
t

met
t

met
t

Q

P

Q

P
 

(metal fraction out 
= rock fraction out)

rock
tP

rock
tQ
met
tQ

met
tP

I
tf ,1

I
tf ,2
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Nonconvex MINLP

Now some g1, . . . , gm nonconvex

Relaxation
gradient cuts invalid

linear relaxation of convex hull

convexification gap

Spatial branch-and-bound
branch on int. variables with fractional LP value

branch on variables in violated nonlinear constraints

[McCormick 76, Smith and Pantelides 99, Tawarmalani and Sahinidis 02, Belotti et al. 09, Vigerske 13, . . . ]
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Convex Relaxation

Convex envelopes

. largest convex function that underestimates some gj(x)

. difficult to find in general

. known for many elementary cases: convex, univariate concave, bilinear, . . .

Example
McCormick underestimators for x1x2

(x1 − `1) · (x2 − `2) > 0

x1x2 − `1x2 − `2x1 + `1`2 > 0

x1x2 > `1x2 + `2x1 − `1`2
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Convex Relaxation

Factorable functions

. recursive sum of products of univariate functions)

. reformulate into simple cases by introducing new variables and equations

g(x) =
√

exp(x2
1 ) ln(x2)

x1 ∈ [0, 2], x2 ∈ [1, 2]

g =
√
y1

y1 = y2y3

y2 = exp(y4)

y3 = ln(x2)

y4 = x2
1

0.0

0.5
1.0

1.5
2.0

1.01.52.0 0

2

4

6

Tighter relaxations

Reformulation-Linearization-Technique, SDP cuts, Disjunctive Programming, . . .
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General MINLP solving techniques

Gradient cuts Underestimators

gHxL

gcHxL

-6 -4 -2 2 4

-15

-10

-5

5

10
Spatial branching

-6 -4 -2 2 4

-15

-10

-5

5

10

Presolving Bound tightening Primal heuristics
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Modeling Considerations

Provide bounds on variables (as tight as possible)

. tighter relaxations

Scaling

. ideally: nonzeros with absolute values in the range [0.01, 100]

. also intermediate expressions are important:

exp

(
−1

x

)
∈ [0, 0.4] for x ∈ [10−6, 1], but

1

x
∈ [1, 106]

Prefer Linearity and Convexity
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1
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⇒ convex
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Reformulation of products with binary variables

A quadratic term

x ·
N∑

k=1

akyk with x ∈ {0, 1}

can be linearly reformulated:

I auxiliary continuous variable w

I additional linear constraints

MLx 6 w 6 MUx ,

N∑
k=1

akyk −MU(1− x) 6 w 6
N∑

k=1

akyk −ML(1− x),

where ML and MU are bounds on
∑N

k=1 akyk .

18



Convexity check for quadratic constraints

A quadratic constraint xTAx + bTx 6 c :

I convex if A is positive-semidefinite

I check by computing its minimal eigenvalue with LAPACK

I if yes: gradient cuts are valid
⇒ enforcement by separation instead of branching

Example x2 + 2xy + y2 6 1 in [−1, 1]× [−1, 1]

19
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I convex if A is positive-semidefinite

I check by computing its minimal eigenvalue with LAPACK

I if yes: gradient cuts are valid
⇒ enforcement by separation instead of branching

Example x2 + 2xy + y2 6 1 ⇔ |x + y | 6 1 in [−1, 1]× [−1, 1]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

feasible region
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branched into 4 subproblems
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using McCormick underestimators: x2 + 2w + y2 6 1
w > Lyx + Lxy − LxLy

w > Uyx + Uxy − UxUy


branched into 16 subproblems

19



Convexity check for quadratic constraints

A quadratic constraint xTAx + bTx 6 c :

I convex if A is positive-semidefinite

I check by computing its minimal eigenvalue with LAPACK

I if yes: gradient cuts are valid
⇒ enforcement by separation instead of branching

Example x2 + 2xy + y2 6 1 ⇔ (x + y)2 6 1 in [−1, 1]× [−1, 1]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

using McCormick underestimators: x2 + 2w + y2 6 1
w > Lyx + Lxy − LxLy

w > Uyx + Uxy − UxUy


branched into 64 subproblems

19



Convexity check for quadratic constraints

A quadratic constraint xTAx + bTx 6 c :

I convex if A is positive-semidefinite

I check by computing its minimal eigenvalue with LAPACK

I if yes: gradient cuts are valid
⇒ enforcement by separation instead of branching

Example x2 + 2xy + y2 6 1 ⇔ (x + y)2 6 1 in [−1, 1]× [−1, 1]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

A =

(
1 1
1 1

)
positive-semidefinite

⇒ gradient cuts at 4 corners
yield exact feasible region
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Second-order cone upgrade

Quadratic constraints of the form

N∑
k=1

αkx
2
k − αN+1x

2
N+1 6 0 ⇔

√√√√ N∑
k=1

αkx2
k 6
√
αN+1xN+1

with α1, . . . , αN+1 > 0, LN+1 > 0 describe a convex feasible region.

Example x2 + y2 − z2 6 0 in [−1, 1]× [−1, 1]× [0, 1]

feasible region

“ice cream cone”
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Uz−Lz (z − Lz)− (Lz)2

}

after branching on z = 0.5
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using secant underestimator:{
x2 + y2 + w 6 1

w > (Lz )2−(Uz )2

Uz−Lz (z − Lz)− (Lz)2

}

after branching on z = 0.25, 0.5, 0.75
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Second-order cone upgrade

Quadratic constraints of the form

N∑
k=1

αkx
2
k − αN+1x

2
N+1 6 0 ⇔

√√√√ N∑
k=1

αkx2
k 6
√
αN+1xN+1

with α1, . . . , αN+1 > 0, LN+1 > 0 describe a convex feasible region.

Example x2 + y2 − z2 6 0 in [−1, 1]× [−1, 1]× [0, 1]

using gradient cuts at 8 corners
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General MINLP solving techniques

Gradient cuts Underestimators

gHxL

gcHxL
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Presolving Bound tightening Primal heuristics
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Outline

Solving MINLPs (with SCIP)

Solving convex MINLPs

Solving nonconvex MINLPs

Modeling, Reformulation, Presolving

Primal Solutions: The Undercover Heuristic
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Primal Solutions

Feasible LP solutions . . .

Standard MIP heuristics applied to MIP relaxation

NLP local search

MINLP heuristics

. nonlinear feasibility pumps
[Bonami et al. 2009, D’Ambrosio et al. 2010]

. RENS [Berthold 2013]

. Undercover [Berthold and G. 2013]

min
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The Motivation

I Large Neighborhood Search: common paradigm in MIP heuristics

fix a subset of variables  easy subproblem  solve

MIP: “easy” = few integralities
MINLP: “easy” = few nonlinearities

I observation: any MINLP can be reduced to a MIP by fixing (sufficiently
many) variables.

Experience: Often, few fixings are sufficient!

I idea: fix variables in minimum cover

I solution of LP/NLP relaxation as fixing values

24



The Structure

Definition Let us be given

I a domain box [L,U] =×i
[Li ,Ui ],

I a function gj : [L,U]→ R, x 7→ gj(x) on [L,U], and

I a set C ⊆ N := {1, . . . , n} of variable indices.

We call C a cover of g if and only if for all x̄ ∈ [L,U] the set

{(x , gj(x)) | x ∈ [L,U], xk = x̄k for all k ∈ C}

is an affine set intersected with [L,U]× R.

We call C a cover of P if and only if C is a cover for g1, . . . , gm.

25



Covers of an MINLP

Definition Let P be an MINLP with g1, . . . , gm twice continuously differentiable
on the interior of [L,U].

We call GP = (VP ,EP) the co-occurrence graph of P with

I node set VP = {1, . . . , n} and

I edge set EP =
{
ij | i , j ∈ V ,∃k ∈ {1, . . . ,m} :

∂2

∂xi∂xj
gk(x) 6≡ 0

}
,
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S
s1

T
t1

· · ·

· · ·
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∂xi∂xj
gk(x) 6≡ 0

}
,

Theorem [Berthold and G. 2010, 2013]
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Covers of an MINLP

Definition Let P be an MINLP with g1, . . . , gm twice continuously differentiable
on the interior of [L,U].

We call GP = (VP ,EP) the co-occurrence graph of P with

I node set VP = {1, . . . , n} and

I edge set EP =
{
ij | i , j ∈ V ,∃k ∈ {1, . . . ,m} :

∂2

∂xi∂xj
gk(x) 6≡ 0

}
,

Theorem [Berthold and G. 2010, 2013]

C ⊆ {1, . . . , n} is a cover of P if and only if it is a vertex cover of the
co-occurrence graph GP .

Corollary Computing a minimum cover of an MINLP is NP-hard.
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Computing a minimum cover

Auxiliary binary variables

αk = 1 :⇔ xk is fixed in P

C(α) := {k | αk = 1} is a cover of P if and only if

αk = 1 for all loops kk ∈ EP , (1)

αk + αj > 1 for all edges kj ∈ Ep, k > j . (2)

 Covering problem

min
{ n∑

k=1

αk : (1), (2), α ∈ {0, 1}n
}
. (3)

27



Computing a minimum cover

Auxiliary binary variables

αk = 1 :⇔ xk is fixed in P

C(α) := {k | αk = 1} is a cover of P if and only if

αk = 1 for all loops kk ∈ EP , (1)

αk + αj > 1 for all edges kj ∈ Ep, k > j . (2)

 Covering problem

min
{ n∑

k=1

αk : (1), (2), α ∈ {0, 1}n
}
. (3)

27



Computing a minimum cover

Auxiliary binary variables

αk = 1 :⇔ xk is fixed in P
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}
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Optimization matters

The co-occurence graph of the bilinear program

min . . . s.t. s1ti 6 ai for all i = 1, . . . ,

sj t1 6 bj for all j = 1, . . . ,

is

S
s1

T
t1

· · ·

· · ·

The cover S of complicating variables may be arbitrarily large compared to the
minimum cover {s1, t1}.
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A simple example

max x2 + x3

s.t. x1 + x2 + x2
3 6 4,

x1, x2, x3 > 0,

x1, x2 ∈ Z.

Fixing x3 to any value within its bounds yields a linear subproblem.
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The Undercover Heuristic

1 Input: MINLP P
2 begin
3 compute a solution x̄ of an

approximation of P;

4 round x̄k for all k ∈ I;

5 determine a
cover C of P;

6 solve the sub-MIP of P
given by fixing xk = x̄k for
all k ∈ C;

Remark:

I MIP heuristics: trade-off fixing
many vs. few variables

here: eliminate nonlinearities by
fixing as few as possible variables

→ minimum cover!
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NLP postprocessing

NLP postprocessing

I All sub-MIP solutions are fully feasible for the original MINLP.

I Still, sub-MIP solution x̃ could be improved by NLP local search:
I fix all integer variables of the original MINLP to their values in x̃
I solve the resulting NLP to local optimality
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Fix-and-propagate & Backtracking

Fix-and-propagate

I Do not fix variables in C simultaneously,
but sequentially and propagate after each fixing.

I If x?k falls out of bounds then
I fix to the closest bound (similar to [FischettiSalvagnin09])
I recompute the approximation

Backtracking

I If fix-and-propagate deduces infeasibility, apply a one-level backtracking:
undo last fixing and try another value
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Avoiding/exploiting Infeasibility

If the sub-MIP is infeasible, this is typically detected

I during fix-and-propagate, or

I via infeasible root LP.

 Generate conflict clauses for the original MINLP

I Add them to the original MINLP.

I Use them to revise fixing values and/or fixing order

I Start another fix-and-propagate run

If the sub-MIP remains infeasible, at least this gives us valid conflicts to prune the
search tree in the original problem.
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Computational experiments

Test set

I 149 MIQCPs from GloMIQO test set

Comparison to other heuristics

I Undercover: solution for 76 instances (typically less than 0.1 sec)

I root heuristics: Baron 65, Couenne 55, SCIP 98

I lower success rate on general MINLPs

Undercover components
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Take-away messages

I SCIP can solve nonconvex MINLPs to global optimality

I like other solvers: Antigone/GloMIQO, BARON, Couenne, . . .

I sometimes problem-specific algorithms can be efficiently generalized to
structure-specific algorithms (Undercover)

I convex MINLPs can be solved much more efficiently

I convex modelling/reformulation/detection crucial

I convex solvers can be used heuristically for nonconvex MINLPs

Thank you very much for your attention!

Muito obrigado!
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