Tree Search for the Recursive Circle Packing Problem

Rui Rei - rui.rei@dcc.fc.up.pt João P. Pedroso - jpp@fc.up.pt

U. PORTO
 FACULDADE DE CIÊNCIAS
 INESC TEC

$5^{\text {th }}$ Porto Meeting on Mathematics for Industry
April 10-11, 2014

Outline

Recursive Circle Packing Origin of the RCPP Informal description MINLP formulation

Algorithms
Greedy construction
Generating positions
Semi-Greedy construction
Local Search
Depth-First Tree Search Monte-Carlo Tree Search

Computational Results
Conclusion

Next up...

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

Origin of the problem: industrial setting

- A company produces hollow tubes of various radii
- Orders are sent to customers in containers
- All tubes have the length of a container
- How should the containers be loaded?

Origin of the problem: industrial setting

- A company produces hollow tubes of various radii
- Orders are sent to customers in containers
- All tubes have the length of a container
- How should the containers be loaded?

Origin of the problem: industrial setting

- Currently: solution is constructed. . .

Origin of the problem: industrial setting

- Currently: solution is constructed... MANUALLY (what?!? O_o)

Origin of the problem: industrial setting

- Currently: solution is constructed...MANUALLY (what?!? O_o)
- Very tedious and error prone
- Production engineers' time is expensive
- We can surely do better

Problem description (simplified)

Given:

- a set of tubes, where each tube is characterized by
- external radius
- internal radius
- value
- a container with given dimensions (width and height)

Problem description (simplified)

Given:

- a set of tubes, where each tube is characterized by
- external radius
- internal radius
- value
- a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

- tubes may be inside other tubes, but they cannot overlap
- all packed tubes must be completely inside the container

Problem description (simplified)

Given:

- a set of tubes, where each tube is characterized by
- external radius
- internal radius
- value
- a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

- tubes may be inside other tubes, but they cannot overlap
- all packed tubes must be completely inside the container

Solution:

- a list of packed tubes and their positions

A mathematical model: parameters and variables

Parameters for describing an instance

- width W and height H of the rectangular container;
- set of tubes \mathcal{N}
- for each tube $i \in \mathcal{N}$:
- external radius $r_{i}^{\text {ext }}$
- internal radius $r_{i}^{\text {int }}$
- value v_{i}

Variables

- $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$, position of the center of each tube i
- $p_{i} \in\{0,1\}, p_{i}=1$ if tube i is placed directly in the container
- $q_{i j} \in\{0,1\}, q_{i j}=1$ if tube i is placed directly inside tube j

A mathematical model: objective function

$$
\operatorname{maximize} V=\sum_{i \in \mathcal{N}} v_{i} \times\left(p_{i}+\sum_{j \in \mathcal{N}} q_{i j}\right)
$$

A mathematical model: constraints

Tubes cannot be in multiple places

$$
p_{i}+\sum_{j} q_{i j} \leq 1, \quad \forall i \in \mathcal{N}
$$

Tubes must stay inside the container

$$
\begin{array}{ll}
r_{i}^{\text {ext }} \leq x_{i} \leq W-r_{i}^{\text {ext }}, \quad \forall i \in \mathcal{N} \\
r_{i}^{\text {ext }} \leq y_{i} \leq H-r_{i}^{\text {ext }}, \quad \forall i \in \mathcal{N}
\end{array}
$$

A mathematical model: more constraints
Tubes i and j inside the container cannot overlap

$$
\left\|x y_{i}-x y_{j}\right\|_{2} \geq r_{i}^{\text {ext }}+r_{j}^{\text {ext }}-M \times\left(2-p_{i}-p_{j}\right), \quad \forall i, j \in \mathcal{N}
$$

Same goes for tubes i and j inside the same larger tube k

$$
\left\|x y_{i}-x y_{j}\right\|_{2} \geq r_{i}^{\text {ext }}+r_{j}^{\text {ext }}-M \times\left(2-q_{i k}-q_{j k}\right), \quad \forall i, j, k \in \mathcal{N}
$$

Tube i inside j must stay within j

$$
\left\|x y_{i}-x y_{j}\right\|_{2} \leq r_{j}^{\text {int }}-r_{i}^{\text {ext }}+M \times\left(1-q_{i j}\right), \quad \forall i, j \in \mathcal{N}
$$

(M disables constraints when any variable inside parenthesis is zero)

A mathematical model: limitations

- Previous model is exact
- Non-linear
- Very hard to solve
- Quadratic number of variables
- Cubic number of constraints
- Let's take a look at some practical solutions

Next up...

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

A possible greedy construction

```
def greedy solution(C, T):
    O = {C}
    while O != {}:
        o = argmin(O, key=free_space)
        repeat:
                if o has no positions:
                O.remove(o)
                break
            t = argmax(T, key=(erad, value, irad))
            P = o.positions_for(t)
            p = argmin(P, key=(y_coord, x_coord))
            o.insert(t, p)
            O.add(t)
            T.remove(t)
            o = t
return C
```


Generating positions

What is the set of positions for a tube?
In reality, this is an usually an infinite set.

Generating positions

What is the set of positions for a tube?
In reality, this is an usually an infinite set.
Reduce this to a finite set of possible positions

- the corners of the container
- positions touching another tube and a wall of the container
- positions touching (at least) two other tubes
- the bottom of the outer tube (telescoping; initial tube)

Generating positions

Generating positions

Generating positions

Does this lead to the optimal solution?

Does this lead to the optimal solution?

Does this lead to the optimal solution?

Semi-Greedy construction

- $\mathrm{SG}=$ greedy construction + probabilistic choice + repetition

Semi-Greedy construction

- $\mathrm{SG}=$ greedy construction + probabilistic choice + repetition
- Probabilistic choice: position of tube

Semi-Greedy construction

- $\mathrm{SG}=$ greedy construction + probabilistic choice + repetition
- Probabilistic choice: position of tube
- Optimization by repetition with different RNG seeds

Semi-Greedy construction

- $\mathrm{SG}=$ greedy construction + probabilistic choice + repetition
- Probabilistic choice: position of tube
- Optimization by repetition with different RNG seeds
- Could hardly be simpler

Local Search

- Not easy to define a proper (finite) neighborhood
- Moving one tube will likely cause overlaps
- May not be trivial to restore feasibility

Depth-First Tree Search

- Complete enumeration of the search space (if enough time is allowed)
- Avoids repeated solutions
- Very fast
- Low memory requirements
- First decisions are (in most cases) never changed
- Performance extremely dependent on a branch ordering heuristic

Monte-Carlo Tree Search

Some facts

- Tree search algorithm mostly employed in game playing
- Asymmetrically constructs a game tree
- Focuses on most promising* branches
- Uses Monte-Carlo simulations to estimate value of nodes
- Each node maintains basic statistics (\# of sims and \# of wins)
- Requires little/no domain-specific knowledge, but benefits from it
- An iteration consists of...

Monte-Carlo Tree Search

Some facts

- Tree search algorithm mostly employed in game playing
- Asymmetrically constructs a game tree
- Focuses on most promising* branches
- Uses Monte-Carlo simulations to estimate value of nodes
- Each node maintains basic statistics (\# of sims and \# of wins)
- Requires little/no domain-specific knowledge, but benefits from it
- An iteration consists of...

Selection starting from the root, pick a node to expand

Monte-Carlo Tree Search

Some facts

- Tree search algorithm mostly employed in game playing
- Asymmetrically constructs a game tree
- Focuses on most promising* branches
- Uses Monte-Carlo simulations to estimate value of nodes
- Each node maintains basic statistics (\# of sims and \# of wins)
- Requires little/no domain-specific knowledge, but benefits from it
- An iteration consists of...

Selection starting from the root, pick a node to expand Expansion create one (or more) children of the selected node

Monte-Carlo Tree Search

Some facts

- Tree search algorithm mostly employed in game playing
- Asymmetrically constructs a game tree
- Focuses on most promising* branches
- Uses Monte-Carlo simulations to estimate value of nodes
- Each node maintains basic statistics (\# of sims and \# of wins)
- Requires little/no domain-specific knowledge, but benefits from it
- An iteration consists of...

Selection starting from the root, pick a node to expand Expansion create one (or more) children of the selected node Simulation make a simulation from each new node

Monte-Carlo Tree Search

Some facts

- Tree search algorithm mostly employed in game playing
- Asymmetrically constructs a game tree
- Focuses on most promising* branches
- Uses Monte-Carlo simulations to estimate value of nodes
- Each node maintains basic statistics (\# of sims and \# of wins)
- Requires little/no domain-specific knowledge, but benefits from it
- An iteration consists of...

Selection starting from the root, pick a node to expand Expansion create one (or more) children of the selected node Simulation make a simulation from each new node Backpropagation using the results of the simulations, update the statistics on each node in the path up to the root

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Backpropagation

UCT: Upper Confidence Bound 1 applied to Trees

$$
U C T_{n}=X_{n}+c \cdot \sqrt{\frac{\ln N_{P_{n}}}{N_{n}}}
$$

- Formula for selecting the "best" child (selection step)
- Most popular variant of MCTS
- UCT formula consists of two components:

Exploitation prefers nodes with best known values
Exploration prefers nodes that have few simulations

- X_{n} is assumed to be in $[0,1]$

Adapting UCT for optimization

Normalization

$$
X_{n}=\frac{e^{1-\frac{z_{n}^{*}-z^{*}}{w^{*}}-2^{*}}-1}{e-1}
$$

- $X_{n} \in[0,1] \checkmark$ UCT-approved
- uses both z^{*} and w^{*} to assess how good a value is
- avoids scale issues with objective function values

Adapting UCT for optimization

Normalization

$$
X_{n}=\frac{e^{1-\frac{z_{0}^{*}-2^{*}}{w^{*}}-z^{*}}-1}{e-1}
$$

- $X_{n} \in[0,1] \checkmark$ UCT-approved
- uses both z^{*} and w^{*} to assess how good a value is
- avoids scale issues with objective function values

Weighting exploration with $\overline{X_{n}}$

$$
E_{n}=\overline{X_{n}} \cdot c \cdot \sqrt{\frac{\ln N_{P_{n}}}{N_{n}}}
$$

- use mean to help guide the search
- assign less time to branches with worse mean score

Next up...

Recursive Circle Packing

Algorithms

Computational Results

Experiment

- 6 instances
- 3,5 , and 16 different types of tubes
- 2 container sizes: large and small (= large/2)
- Competing algorithms

> DFS Depth-First Tree Search
> SG repeated Semi-Greedy construction MCTS Monte Carlo Tree Search

- Software implemented in Python 2.X, run in PyPy

Results: large instances

		large03	large05	large16
DFS* *		3570033	3720124	18492283
	\min	3660028	3810114	22381890
SG** $^{* *}$	avg	3660029.3	3822105.7	22548874.4
	\max	3660030	3840093	22851844
	\min	3660029	4050053	24241737
MCTS** $^{* *}$	avg	$\mathbf{3 6 6 0 0 3 1 . 3}$	$\mathbf{4 0 9 8 0 5 2 . 3}$	$\mathbf{2 4 8 4 2 6 8 5 . 8}$
	\max	3660034	4140048	25451624

* result of 1 run of 600 s
** results of 10 independent runs of 600s

Results: small instances

		small03	small05	small16
DFS* *		900000	1090000	9540056
SG** $^{* *}$	\min	940000	1090000	9790035
	avg	940000.0	1090000.0	9820032.6
	\max	940000	1090000	9840031
		Min	940000	1120000
MCTS** $^{* *}$	avg	$\mathbf{9 5 6 0 0 0 . 1}$	$\mathbf{1 1 2 0 0 0 0 . 0}$	$\mathbf{1 0 6 4 3 0 0 3 4}$
	\max	960000	1120000	10700041

* result of 1 run of 600 s
** results of 10 independent runs of 600s

Next up...

Recursive Circle Packing
 Algorithms
 Computational Results

Conclusion

Conclusion

Contributions

- Definition of the RCPP
- Non-linear formulation: not usable in practice
- Adaptation of MCTS/UCT
- make X_{n} independent of problem scale
- use mean performance to guide exploration
- Interesting results

Conclusion

Contributions

- Definition of the RCPP
- Non-linear formulation: not usable in practice
- Adaptation of MCTS/UCT
- make X_{n} independent of problem scale
- use mean performance to guide exploration
- Interesting results

Future work

- Compare with more challenging opponents
- Apply MCTS to other problems, e.g., MIP
- Add some mechanism to discard nodes when the tree grows too large (beam search)

Thank you!

