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Origin of the problem: industrial setting
• A company produces hollow tubes of various radii
• Orders are sent to customers in containers
• All tubes have the length of a container
• How should the containers be loaded?
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• We can surely do better



Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting

• Currently: solution is constructed. . .MANUALLY (what?!? O_o)

• Very tedious and error prone
• Production engineers’ time is expensive
• We can surely do better



Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting

• Currently: solution is constructed. . .MANUALLY (what?!? O_o)
• Very tedious and error prone
• Production engineers’ time is expensive
• We can surely do better



Recursive Circle Packing Algorithms Computational Results Conclusion

Problem description (simplified)

Given:
• a set of tubes, where each tube is characterized by

• external radius
• internal radius
• value

• a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

• tubes may be inside other tubes, but they cannot overlap
• all packed tubes must be completely inside the container

Solution:
• a list of packed tubes and their positions
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A mathematical model: parameters and variables

Parameters for describing an instance

• width W and height H of the rectangular container;
• set of tubes N
• for each tube i ∈ N :

• external radius r ext
i

• internal radius r int
i

• value vi

Variables
• (xi , yi ) ∈ R2, position of the center of each tube i

• pi ∈ {0, 1}, pi = 1 if tube i is placed directly in the container
• qij ∈ {0, 1}, qij = 1 if tube i is placed directly inside tube j
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A mathematical model: objective function

maximize V =
∑
i∈N

vi ×

pi +
∑
j∈N

qij
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A mathematical model: constraints

Tubes cannot be in multiple places

pi +
∑
j

qij ≤ 1, ∀i ∈ N

Tubes must stay inside the container

r ext
i ≤ xi ≤W − r ext

i , ∀i ∈ N
r ext
i ≤ yi ≤ H − r ext

i , ∀i ∈ N
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A mathematical model: more constraints

Tubes i and j inside the container cannot overlap

‖xyi − xyj‖2 ≥ r ext
i + r ext

j −M × (2− pi − pj), ∀i , j ∈ N

Same goes for tubes i and j inside the same larger tube k

‖xyi − xyj‖2 ≥ r ext
i + r ext

j −M × (2− qik − qjk), ∀i , j , k ∈ N

Tube i inside j must stay within j

‖xyi − xyj‖2 ≤ r int
j − r ext

i +M × (1− qij), ∀i , j ∈ N

(M disables constraints when any variable inside parenthesis is zero)
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A mathematical model: limitations

• Previous model is exact
• Non-linear
• Very hard to solve

• Quadratic number of variables
• Cubic number of constraints

• Let’s take a look at some practical solutions
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A possible greedy construction

def g r e ed y_so l u t i o n (C , T) :
O = {C}
whi le O != {} :

o = argmin (O, key=f r ee_space )
repeat :

i f o has no p o s i t i o n s :
O. remove ( o )
break

t = argmax (T, key=(erad , va lue , i r a d ) )
P = o . p o s i t i o n s_ f o r ( t )
p = argmin (P , key=(y_coord , x_coord ) )

o . i n s e r t ( t , p )
O. add ( t )
T. remove ( t )
o = t

re tu rn C
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Generating positions

What is the set of positions for a tube?
In reality, this is an usually an infinite set.

Reduce this to a finite set of possible positions

• the corners of the container
• positions touching another tube and a wall of the container
• positions touching (at least) two other tubes
• the bottom of the outer tube (telescoping; initial tube)
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Does this lead to the optimal solution?

NO
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Semi-Greedy construction

• SG = greedy construction + probabilistic choice + repetition

• Probabilistic choice: position of tube
• Optimization by repetition with different RNG seeds
• Could hardly be simpler
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Local Search

• Not easy to define a proper (finite) neighborhood
• Moving one tube will likely cause overlaps
• May not be trivial to restore feasibility
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Depth-First Tree Search

• Complete enumeration of the search space
(if enough time is allowed)

• Avoids repeated solutions
• Very fast
• Low memory requirements

• First decisions are (in most cases) never
changed

• Performance extremely dependent on a
branch ordering heuristic
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Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand
Expansion create one (or more) children of the selected node
Simulation make a simulation from each new node

Backpropagation using the results of the simulations, update the
statistics on each node in the path up to the root
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UCT: Upper Confidence Bound 1 applied to Trees

UCTn = Xn + c .

√
lnNPn

Nn

• Formula for selecting the “best” child (selection step)
• Most popular variant of MCTS
• UCT formula consists of two components:

Exploitation prefers nodes with best known values
Exploration prefers nodes that have few simulations

• Xn is assumed to be in [0, 1]
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Adapting UCT for optimization

Normalization

Xn =
e1− z∗n −z∗

w∗−z∗ − 1
e − 1

• Xn ∈ [0, 1] X UCT-approved
• uses both z∗ and w∗ to assess
how good a value is

• avoids scale issues with
objective function values

Weighting exploration with Xn

En = Xn.c .

√
lnNPn

Nn

• use mean to help guide the
search

• assign less time to branches
with worse mean score
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Experiment

• 6 instances
• 3, 5, and 16 different types of tubes
• 2 container sizes: large and small (= large/2)

• Competing algorithms
DFS Depth-First Tree Search
SG repeated Semi-Greedy construction

MCTS Monte Carlo Tree Search
• Software implemented in Python 2.X, run in PyPy
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Results: large instances

large03 large05 large16
DFS∗ 3570033 3720124 18492283

SG∗∗
min 3660028 3810114 22381890
avg 3660029.3 3822105.7 22548874.4
max 3660030 3840093 22851844

MCTS∗∗
min 3660029 4050053 24241737
avg 3660031.3 4098052.3 24842685.8
max 3660034 4140048 25451624

∗ result of 1 run of 600s
∗∗ results of 10 independent runs of 600s
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Results: small instances

small03 small05 small16
DFS∗ 900000 1090000 9540056

SG∗∗
min 940000 1090000 9790035
avg 940000.0 1090000.0 9820032.6
max 940000 1090000 9840031

MCTS∗∗
min 940000 1120000 10470034
avg 956000.1 1120000.0 10643039.3
max 960000 1120000 10700041

∗ result of 1 run of 600s
∗∗ results of 10 independent runs of 600s
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Conclusion

Contributions
• Definition of the RCPP
• Non-linear formulation: not usable in practice
• Adaptation of MCTS/UCT

• make Xn independent of problem scale
• use mean performance to guide exploration

• Interesting results

Future work
• Compare with more challenging opponents
• Apply MCTS to other problems, e.g., MIP
• Add some mechanism to discard nodes when the tree grows too
large (beam search)
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Thank you!

Solution #8: tvalue = 3660028.000 Solution #11: tvalue = 3990072.000 Solution #7: tvalue = 22731882.000
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