
Recursive Circle Packing Algorithms Computational Results Conclusion

Tree Search for the
Recursive Circle Packing Problem

Rui Rei – rui.rei@dcc.fc.up.pt
João P. Pedroso – jpp@fc.up.pt

INESC TEC

5th Porto Meeting on Mathematics for Industry
April 10-11, 2014

Recursive Circle Packing Algorithms Computational Results Conclusion

Outline

Recursive Circle Packing
Origin of the RCPP
Informal description
MINLP formulation

Algorithms
Greedy construction
Generating positions
Semi-Greedy construction
Local Search
Depth-First Tree Search
Monte-Carlo Tree Search

Computational Results

Conclusion

Recursive Circle Packing Algorithms Computational Results Conclusion

Next up. . .

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting
• A company produces hollow tubes of various radii
• Orders are sent to customers in containers
• All tubes have the length of a container
• How should the containers be loaded?

Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting
• A company produces hollow tubes of various radii
• Orders are sent to customers in containers
• All tubes have the length of a container
• How should the containers be loaded?

Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting

• Currently: solution is constructed. . .

MANUALLY (what?!? O_o)
• Very tedious and error prone
• Production engineers’ time is expensive
• We can surely do better

Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting

• Currently: solution is constructed. . .MANUALLY (what?!? O_o)

• Very tedious and error prone
• Production engineers’ time is expensive
• We can surely do better

Recursive Circle Packing Algorithms Computational Results Conclusion

Origin of the problem: industrial setting

• Currently: solution is constructed. . .MANUALLY (what?!? O_o)
• Very tedious and error prone
• Production engineers’ time is expensive
• We can surely do better

Recursive Circle Packing Algorithms Computational Results Conclusion

Problem description (simplified)

Given:
• a set of tubes, where each tube is characterized by

• external radius
• internal radius
• value

• a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

• tubes may be inside other tubes, but they cannot overlap
• all packed tubes must be completely inside the container

Solution:
• a list of packed tubes and their positions

Recursive Circle Packing Algorithms Computational Results Conclusion

Problem description (simplified)

Given:
• a set of tubes, where each tube is characterized by

• external radius
• internal radius
• value

• a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

• tubes may be inside other tubes, but they cannot overlap
• all packed tubes must be completely inside the container

Solution:
• a list of packed tubes and their positions

Recursive Circle Packing Algorithms Computational Results Conclusion

Problem description (simplified)

Given:
• a set of tubes, where each tube is characterized by

• external radius
• internal radius
• value

• a container with given dimensions (width and height)

Maximize value of packed tubes, such that:

• tubes may be inside other tubes, but they cannot overlap
• all packed tubes must be completely inside the container

Solution:
• a list of packed tubes and their positions

Recursive Circle Packing Algorithms Computational Results Conclusion

A mathematical model: parameters and variables

Parameters for describing an instance

• width W and height H of the rectangular container;
• set of tubes N
• for each tube i ∈ N :

• external radius r ext
i

• internal radius r int
i

• value vi

Variables
• (xi , yi) ∈ R2, position of the center of each tube i

• pi ∈ {0, 1}, pi = 1 if tube i is placed directly in the container
• qij ∈ {0, 1}, qij = 1 if tube i is placed directly inside tube j

Recursive Circle Packing Algorithms Computational Results Conclusion

A mathematical model: objective function

maximize V =
∑
i∈N

vi ×

pi +
∑
j∈N

qij

Recursive Circle Packing Algorithms Computational Results Conclusion

A mathematical model: constraints

Tubes cannot be in multiple places

pi +
∑
j

qij ≤ 1, ∀i ∈ N

Tubes must stay inside the container

r ext
i ≤ xi ≤W − r ext

i , ∀i ∈ N
r ext
i ≤ yi ≤ H − r ext

i , ∀i ∈ N

Recursive Circle Packing Algorithms Computational Results Conclusion

A mathematical model: more constraints

Tubes i and j inside the container cannot overlap

‖xyi − xyj‖2 ≥ r ext
i + r ext

j −M × (2− pi − pj), ∀i , j ∈ N

Same goes for tubes i and j inside the same larger tube k

‖xyi − xyj‖2 ≥ r ext
i + r ext

j −M × (2− qik − qjk), ∀i , j , k ∈ N

Tube i inside j must stay within j

‖xyi − xyj‖2 ≤ r int
j − r ext

i +M × (1− qij), ∀i , j ∈ N

(M disables constraints when any variable inside parenthesis is zero)

Recursive Circle Packing Algorithms Computational Results Conclusion

A mathematical model: limitations

• Previous model is exact
• Non-linear
• Very hard to solve

• Quadratic number of variables
• Cubic number of constraints

• Let’s take a look at some practical solutions

Recursive Circle Packing Algorithms Computational Results Conclusion

Next up. . .

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

Recursive Circle Packing Algorithms Computational Results Conclusion

A possible greedy construction

def g r e ed y_so l u t i o n (C , T) :
O = {C}
whi le O != {} :

o = argmin (O, key=f r ee_space)
repeat :

i f o has no p o s i t i o n s :
O. remove (o)
break

t = argmax (T, key=(erad , va lue , i r a d))
P = o . p o s i t i o n s_ f o r (t)
p = argmin (P , key=(y_coord , x_coord))

o . i n s e r t (t , p)
O. add (t)
T. remove (t)
o = t

re tu rn C

Recursive Circle Packing Algorithms Computational Results Conclusion

Generating positions

What is the set of positions for a tube?
In reality, this is an usually an infinite set.

Reduce this to a finite set of possible positions

• the corners of the container
• positions touching another tube and a wall of the container
• positions touching (at least) two other tubes
• the bottom of the outer tube (telescoping; initial tube)

Recursive Circle Packing Algorithms Computational Results Conclusion

Generating positions

What is the set of positions for a tube?
In reality, this is an usually an infinite set.

Reduce this to a finite set of possible positions

• the corners of the container
• positions touching another tube and a wall of the container
• positions touching (at least) two other tubes
• the bottom of the outer tube (telescoping; initial tube)

Recursive Circle Packing Algorithms Computational Results Conclusion

Generating positions

Recursive Circle Packing Algorithms Computational Results Conclusion

Generating positions

Recursive Circle Packing Algorithms Computational Results Conclusion

Generating positions

Recursive Circle Packing Algorithms Computational Results Conclusion

Does this lead to the optimal solution?

NO

Recursive Circle Packing Algorithms Computational Results Conclusion

Does this lead to the optimal solution?

NO

Recursive Circle Packing Algorithms Computational Results Conclusion

Does this lead to the optimal solution?

NO

Recursive Circle Packing Algorithms Computational Results Conclusion

Semi-Greedy construction

• SG = greedy construction + probabilistic choice + repetition

• Probabilistic choice: position of tube
• Optimization by repetition with different RNG seeds
• Could hardly be simpler

Recursive Circle Packing Algorithms Computational Results Conclusion

Semi-Greedy construction

• SG = greedy construction + probabilistic choice + repetition
• Probabilistic choice: position of tube

• Optimization by repetition with different RNG seeds
• Could hardly be simpler

Recursive Circle Packing Algorithms Computational Results Conclusion

Semi-Greedy construction

• SG = greedy construction + probabilistic choice + repetition
• Probabilistic choice: position of tube
• Optimization by repetition with different RNG seeds

• Could hardly be simpler

Recursive Circle Packing Algorithms Computational Results Conclusion

Semi-Greedy construction

• SG = greedy construction + probabilistic choice + repetition
• Probabilistic choice: position of tube
• Optimization by repetition with different RNG seeds
• Could hardly be simpler

Recursive Circle Packing Algorithms Computational Results Conclusion

Local Search

• Not easy to define a proper (finite) neighborhood
• Moving one tube will likely cause overlaps
• May not be trivial to restore feasibility

Recursive Circle Packing Algorithms Computational Results Conclusion

Depth-First Tree Search

• Complete enumeration of the search space
(if enough time is allowed)

• Avoids repeated solutions
• Very fast
• Low memory requirements

• First decisions are (in most cases) never
changed

• Performance extremely dependent on a
branch ordering heuristic

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand
Expansion create one (or more) children of the selected node
Simulation make a simulation from each new node

Backpropagation using the results of the simulations, update the
statistics on each node in the path up to the root

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand

Expansion create one (or more) children of the selected node
Simulation make a simulation from each new node

Backpropagation using the results of the simulations, update the
statistics on each node in the path up to the root

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand
Expansion create one (or more) children of the selected node

Simulation make a simulation from each new node
Backpropagation using the results of the simulations, update the

statistics on each node in the path up to the root

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand
Expansion create one (or more) children of the selected node
Simulation make a simulation from each new node

Backpropagation using the results of the simulations, update the
statistics on each node in the path up to the root

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Some facts
• Tree search algorithm mostly employed in game playing
• Asymmetrically constructs a game tree
• Focuses on most promising∗ branches
• Uses Monte-Carlo simulations to estimate value of nodes
• Each node maintains basic statistics (# of sims and # of wins)
• Requires little/no domain-specific knowledge, but benefits from it
• An iteration consists of. . .

Selection starting from the root, pick a node to expand
Expansion create one (or more) children of the selected node
Simulation make a simulation from each new node

Backpropagation using the results of the simulations, update the
statistics on each node in the path up to the root

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Recursive Circle Packing Algorithms Computational Results Conclusion

Monte-Carlo Tree Search

Recursive Circle Packing Algorithms Computational Results Conclusion

UCT: Upper Confidence Bound 1 applied to Trees

UCTn = Xn + c .

√
lnNPn

Nn

• Formula for selecting the “best” child (selection step)
• Most popular variant of MCTS
• UCT formula consists of two components:

Exploitation prefers nodes with best known values
Exploration prefers nodes that have few simulations

• Xn is assumed to be in [0, 1]

Recursive Circle Packing Algorithms Computational Results Conclusion

Adapting UCT for optimization

Normalization

Xn =
e1− z∗n −z∗

w∗−z∗ − 1
e − 1

• Xn ∈ [0, 1] X UCT-approved
• uses both z∗ and w∗ to assess
how good a value is

• avoids scale issues with
objective function values

Weighting exploration with Xn

En = Xn.c .

√
lnNPn

Nn

• use mean to help guide the
search

• assign less time to branches
with worse mean score

Recursive Circle Packing Algorithms Computational Results Conclusion

Adapting UCT for optimization

Normalization

Xn =
e1− z∗n −z∗

w∗−z∗ − 1
e − 1

• Xn ∈ [0, 1] X UCT-approved
• uses both z∗ and w∗ to assess
how good a value is

• avoids scale issues with
objective function values

Weighting exploration with Xn

En = Xn.c .

√
lnNPn

Nn

• use mean to help guide the
search

• assign less time to branches
with worse mean score

Recursive Circle Packing Algorithms Computational Results Conclusion

Next up. . .

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

Recursive Circle Packing Algorithms Computational Results Conclusion

Experiment

• 6 instances
• 3, 5, and 16 different types of tubes
• 2 container sizes: large and small (= large/2)

• Competing algorithms
DFS Depth-First Tree Search
SG repeated Semi-Greedy construction

MCTS Monte Carlo Tree Search
• Software implemented in Python 2.X, run in PyPy

Recursive Circle Packing Algorithms Computational Results Conclusion

Results: large instances

large03 large05 large16
DFS∗ 3570033 3720124 18492283

SG∗∗
min 3660028 3810114 22381890
avg 3660029.3 3822105.7 22548874.4
max 3660030 3840093 22851844

MCTS∗∗
min 3660029 4050053 24241737
avg 3660031.3 4098052.3 24842685.8
max 3660034 4140048 25451624

∗ result of 1 run of 600s
∗∗ results of 10 independent runs of 600s

Recursive Circle Packing Algorithms Computational Results Conclusion

Results: small instances

small03 small05 small16
DFS∗ 900000 1090000 9540056

SG∗∗
min 940000 1090000 9790035
avg 940000.0 1090000.0 9820032.6
max 940000 1090000 9840031

MCTS∗∗
min 940000 1120000 10470034
avg 956000.1 1120000.0 10643039.3
max 960000 1120000 10700041

∗ result of 1 run of 600s
∗∗ results of 10 independent runs of 600s

Recursive Circle Packing Algorithms Computational Results Conclusion

Next up. . .

Recursive Circle Packing

Algorithms

Computational Results

Conclusion

Recursive Circle Packing Algorithms Computational Results Conclusion

Conclusion

Contributions
• Definition of the RCPP
• Non-linear formulation: not usable in practice
• Adaptation of MCTS/UCT

• make Xn independent of problem scale
• use mean performance to guide exploration

• Interesting results

Future work
• Compare with more challenging opponents
• Apply MCTS to other problems, e.g., MIP
• Add some mechanism to discard nodes when the tree grows too
large (beam search)

Recursive Circle Packing Algorithms Computational Results Conclusion

Conclusion

Contributions
• Definition of the RCPP
• Non-linear formulation: not usable in practice
• Adaptation of MCTS/UCT

• make Xn independent of problem scale
• use mean performance to guide exploration

• Interesting results

Future work
• Compare with more challenging opponents
• Apply MCTS to other problems, e.g., MIP
• Add some mechanism to discard nodes when the tree grows too
large (beam search)

Recursive Circle Packing Algorithms Computational Results Conclusion

Thank you!

Solution #8: tvalue = 3660028.000 Solution #11: tvalue = 3990072.000 Solution #7: tvalue = 22731882.000

	Recursive Circle Packing
	Origin of the RCPP
	Informal description
	MINLP formulation

	Algorithms
	Greedy construction
	Generating positions
	Semi-Greedy construction
	Local Search
	Depth-First Tree Search
	Monte-Carlo Tree Search

	Computational Results
	Conclusion

