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The Capacitated Vehicle Routing Problem

0

1

2

3

45

6
7

Laurence A. Wolsey Vehicle Routing and MIP



Single Depot. Single Period

K vehicles can make tours beginning and ending at the
depot

Client i has a demand qi and is served by exactly one
vehicle

Each vehicle has capacity Q.

The objective is to find subtours for the K vehicles such
that the amount delivered by each vehicle does not exceed
Q, the demand of each client is satisfied and the total
travel cost/distance is minimized.
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Modelling Connectivity: Spanning Trees

Graph G = (V ,E) with edge costs ce for e ∈ E .
Let ye = 1 if e is in the tree.

min
∑

e∈E ceye
∑

e∈E(S) ye ≤ |S| − 1 ∀ S ⊂ V
∑

e∈E ye = |V | − 1

y ∈ R
E
+

where E(S) = {e = (i , j) ∈ E : i , j ∈ S}.
This linear program is tight. The subtour elimination constraints
(SECs) describe the convex hull of the spanning trees, but
there is an exponential number of constraints.
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Separation of SECs

Given a point ŷ ∈ R
E
+, when does it violate one of the SECs?

We formulate this question as an IP.
Let αi = 1 if i ∈ S. We have to check whether there exists
α ∈ {0,1}V such that

∑

e=(i ,j)∈E

ŷeαiαj −
∑

i∈V

αi > −1.

This is a quadratic 0-1 integer program of the form:

max
α∈{0,1}V

αT Qα− pα.

It is well known that such IPs can be solved as max flow/min
cut problems when Q ≥ 0.
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An Extended “Multicommodity" Formulation

How else can one ensure connectivity?
One way: Construct a graph in which there is a path (one can
send a flow) from one node (r = 1) to all the others.
f k
ij is the flow (commodity k) in arc (i , j) on the path from r to k .

∑

j

f k
ij −

∑

j

f k
ji = 0 i 6= k , r

∑

j

f k
ij −

∑

j

f k
ji = 1 i = k

f k
ij + f k

ji ≤ ye ∀ e ∈ E

f k
ij ≥ 0 ∀ i , j , k

This formulation is as strong as that with subtours, but it has O(V 3) variables.
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The Traveling Salesman Problem: Formulation 1

Symmetric Version cij = cji = ce

ye = 1 if edge e in the tour

min
∑

e∈E ceye
∑

e∈δ(v) ye = 2 ∀ i ∈ V
∑

e∈E(S) ye ≤ |S| − 1 ∀ S ⊂ V

y ∈ [0,1]E

SECS can be replaced by “cut" inequalities
∑

e∈δ(S)

ye ≥ 2 ∀∅ ⊂ S ⊂ V .
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The Traveling Salesman Problem: Formulation 2

Weak Extended Formulation (Directed):
ui is position of node i in the tour starting with node 1 in
position 0 (u1 = 0).

uj − ui ≥ xij − (n − 2)(1 − xij ) ∀ (i , j), j 6= 1
∑

j

xij = 1 ∀ i

∑

i

xij = 1 ∀ j

ye = xij + xji ∀ e

x ∈ Z
A
+, u ∈ Z

n
+

Useful if one wants a compact valid formulation.
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Formulations of CVRP

xk
ij = 1 if arc (i , j) in tour of vehicle k

zk
i = 1if client i visited by vehicle k

min
∑

k

∑

ij

ck
ij xk

ij

∑

i

xk
ij = zk

j ∀ k , j , j 6= 0,

∑

j

xk
ij = zk

i ∀ k , i , i 6= 0,

∑

j

xk
0j = zk

0 ∀ k

∑

i

diz
k
i ≤ Czk

0 ∀ k

∑

k

zk
i = 1 ∀ i

xk
ij , z

k
i ∈ {0, 1}
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Formulations of CVRP with 2 Indices

min
∑

ij

cijxij

∑

i

xij = 1 ∀ j 6= 0,

∑

j

xij = 1 ∀ i 6= 0,

∑

j

x0j = K

∑

ij∈δ(S̄,S)

xij ≥ ⌈

∑

i∈S di

C
⌉ ∀ S ⊆ V

xij ∈ {0,1}
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Valid Inequalities and Separation

1. Separation of
∑

ij∈δ(S̄,S) xij ≥ ⌈
∑

i∈S di
C ⌉?

Separation of
∑

ij∈δ(S̄,S) xij ≥
∑

i∈S di

C is polynomial.

2. Generalized Large Multistar

∑

e∈δ(S)

ye ≥
2
C

(

d(S) +
∑

j /∈S

dj(
∑

e∈δ(S:{j})

ye)
)

0

j

S

0

j
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Column Generation

A natural idea is to have columns corresponding to feasible
subtours for a vehicle.

The problem is then just to select a set of K subtours such
that each client is visited once.

The trouble with this is that the column generation
subproblem is a prize-collecting traveling salesman
problem that is almost as hard as the original problem.

So the typical approach is to look at a larger set of columns
that includes all the feasible subtours, but for which the
column generation problem is more tractable.
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q-routes

A q-route is a walk starting and ending at the depot visiting the
clients 0,1, or more times but with total demand at most C.
Note that each time a client i is visited, his demand di is
counted again.

Suppose n = 4, C = 13 and d = (2,4,5,7).
A feasible subtour is for example 0 − 3 − 2 − 0 with

∑

i di = 9.
A q-route, that is not a feasible subtour, is 0− 1− 2− 1− 0 with
∑

i di = 8.
0 − 1 − 2 − 3 − 1 − 0 is a q-route without a 2-cycle as
∑

i di = 13 ≤ C.
A minimum cost q-route without 2-cycles can be found by
dynamic programming.
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Naive DP for q-routes

f (i , j , k) is the min cost of a walk starting at the depot and
ending with visits to i , then j in which k units are delivered.

f (i , j , k) = min
p:p 6=j

[f (p, i , k − dj) + c̄ij ]

Min Cost q-route is

min
i ,j ,k≤C

[f (i , j , k) + c̄0j ].
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Column Generation with q-routes without 2-cycles

Let qe
j be the coefficient of edge e in q-route j with variable λj .

One has
∑p

j=1 qe
j λj −xe = 0 e ∈ E

∑p
j=1 λj = K

∑

e∈δ(i) xe = 2 i ∈ V
xe ≥ 0 e ∈ E

λj ≥ 0 j = 1, . . . ,p
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The Master Problem

∑

e∈δ(i) xe = 2 i ∈ V
∑

e∈δ(0) xe = 2K
∑

e∈δ(S) xe ≥ 2k(S) S ⊆ V
xe ≤ 1 e ∈ E \ δ(0)

∑p
j=1 qe

j λj −xe = 0 e ∈ E
∑p

j=1 λj = K
xe ≥ 0 e ∈ E

λj ≥ 0 j = 1, . . . ,p

Laurence A. Wolsey Vehicle Routing and MIP



The Master Problem

min
p∑

j=1

∑

e∈E

leqe
j λj

µ

p∑

j=1

∑

e∈δ(i)

qe
j λj = 2 i ∈ V

ν

p∑

j=1

∑

e∈δ(0)

qe
j λj = 2K

π

p∑

j=1

∑

e∈δ(S)

qe
j λj ≥ 2k(S) S ⊆ V

ω

p∑

j=1

qe
j λj ≤ 1 e ∈ E \ δ(0)

λj ≥ 0 j = 1, . . . , p

Reduced cost of xe: le − µi − µj −
∑

e∈δ(S) πS − ωe e ∈ E \ δ(0)

le − µj − ν −
∑

e∈δ(S) πS e ∈ δ(0)
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d = (2, 4, 5),C = 10

w1 w2 w3 w12 u
cw = 22 24 20 39 59
v = 1 2 2 2 = 2 11
v = 2 2 2 = 2 8.5
v = 3 2 = 2 10
v = 0 2 2 2 2 = 4
1, 2 2 2 2 ≥ 2
1, 3 2 2 2 ≥ 2
2, 3 2 2 2 ≥ 2

1, 2, 3 2 2 2 2 ≥ 4
e = 12 1 ≤ 1
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min cost q-route: 0 − 2 − 3 − 0 with reduced cost of -10
alternative q-route: 0 − 1 − 2 − 1 − 0 with reduced cost of -7

w1 w2 w3 w12 w23 u
cw = 22 24 20 39 27 49
v = 1 2 2 2 = 2 7.5
v = 2 2 2 2 = 2 8.5
v = 3 2 2 = 2 6.5
v = 0 2 2 2 2 2 = 4 3.5
1, 2 2 2 2 2 ≥ 2
1, 3 2 2 2 2 ≥ 2
2, 3 2 2 2 2 ≥ 2

1, 2, 3 2 2 2 2 2 ≥ 4
e = 12 1 ≤ 1
e = 23 1 ≤ 1 −10
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Recent Developments

Recently q-routes replaced by ng-routes
Note that can add constraints αexe ≤ α0 and approach still
works.
Robust branch-and-cut-and-price.
If cuts on the q-route variables - column generation becomes
more difficult

What about time-windows?
Similar BCP approach.
Column generation may be easier - less choice.
Cut generation more difficult - cuts based on infeasibility.
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The Inventory Routing Problem: One Period
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The Inventory Routing Problem
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Model 1: Single Period Inventory Routing Problem

∑

i∈I

x i ≤ Cz0
, x i ≤ W i z i

, z0 ≥ z i
, i ∈ I

∑

j∈I0

y ij
=

∑

j∈I0

y ij
= z i

, j ∈ I0,

∑

i∈S∪{0}

∑

j∈I\S

y ij ≥ z i
, S ⊆ I,

Capacitated Subtours

x ,∈ RT
+, z

i ∈ {0, 1} i ∈ I, z0 ∈ {0, 1, . . . ,K}, y ij ∈ {0, 1}A
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First Observations

Where do the capacities come from?

W i
t = min{C,d i

t + S̄i}

What about the capacitated subtours?

C
∑ ∑

i∈I0\S

∑

j∈S

y ij ≥
∑

i∈S

x i

where S ⊆ I and I0 = I ∪ {0}.
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3-index formulation

Direct a flow of xk from the origin to each client k ∈ I:
f ijk is the flow i (i , j) with destination k ∈ I

∑

i∈I0

f ijk −
∑

i∈I

f jik = 0 ∀ j 6= k ,∀ k

∑

i∈I0

f ijk = xk k = j ,∀ k

∑

k∈I

f ijk ≤ Cy ij ∀ (i , j)

f ijk ≤ W k y ij∀ i , j , k
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Metric Inequalities

Suppose µij ≥ 0 for all (i , j) ∈ A and S ⊆ I, then
∑

(i ,j)∈A

µijy ij ≥
∑

i∈S

x i

is a valid inequality if
∑

(i ,j)∈P

µij ≥ min(C,
∑

i∈v(P)∩S

W i)

for every subtour P beginning and ending at the depot, where
v(P) ⊆ I are the clients on subtour P.
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A Particular Metric Inequality

C

W
j

C-W
i

min(C-W , W )
i j

I0\S

S1

S2

S1,S2 is a partition of S
∑

(I0\S,S1)

Cy ij +
∑

(I0\S,S2)

W jy ij +
∑

(S2,S1)

(C − W i)y ij

+
∑

(S2,S2)

min(C − W i ,W j)y ij ≥
∑

i∈S

x i
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Example of a Particular Metric Inequality

∑

(I0\S,S1)

Cy ij +
∑

(I0\S,S2)

W jy ij +
∑

(S2,S1)

(C − W i)y ij

+
∑

(S2,S2)

min(C − W i ,W j)y ij ≥
∑

i∈S

x i

|I| = 3, C = 300, W = (289,123,76), S = {1,2,3},
S1 = {1},S2 = {2,3}

300y01 + 123y02 + 76y03 + (300 − 123)y21 + (300 − 76)y31

+min(76,300 − 123)y23 + min(123,300 − 76)y32 ≥ x1 + x2 + x3
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Multi-Period Metric Inequalities with Stock Upper
Bounds: An Example

Add si
t−1 + x i

t = Di
t + si

t and IRP model for periods 1, . . . ,T .

C
t

∑

u=k

∑

(i ,j)∈(I0\S,S)

y ij
u ≥

t
∑

u=k

∑

i∈S

x i
t =

∑

i∈S

t
∑

u=k

x i
u

≥
∑

i∈S

(Di
kt − si

k−1)

With si
k−1 ≤ U i , above is of the form:

σ + Cv ≥ b,0 ≤ σ ≤ h, v ∈ Z .

This gives the inequalities:

v ≥ ⌈
b − h

C
⌉ and σ + ρv ≥ ρ⌈

b
C
⌉.

Laurence A. Wolsey Vehicle Routing and MIP



Table: VMIRP-SUB: computational results for the instances with
n = 50 and Tmax = 6

BC C&L
No LBIni LBLS LBCut BUB Nodes Time BLB BUB Time
l1 8375 9754 9754 9966 15123 1485 9901 9976 86400
l2 8952 10516 10523 10632 65 334 10632 10632 2536
l3 8725 10376 10391 10511 3972 1876 10511 10511 1355
l4 8628 10243 10243 10513 166667 18016 10513 10513 60289
l5 8386 9860 9899 10113 2500 2327 10113 10113 2416
l6 8417 9945 9948 10148 1900 2318 10114 1014x 86400
l7 8355 9776 9776 9982 284288 28195 9982 9982 14698
l8 8385 10015 10066 10299 878 1360 10253 10229 86400
l9 8484 9897 9904 10010 819 801 10010 10010 6326
l10 8014 9546 9546 9659 2425 2081 9659 9659 3523
h1 29508 29862 29906 30189 1235 645 30189 30189 3036
h2 27983 29601 29615 29790 133 357 29790 29790 3334
h3 27830 29634 29657 29791 219 809 29791 29791 4020
h4 29517 31241 31241 31518 1424 1618 31518 31518 5737
h5 27413 28993 29021 29240 199 565 29240 29240 684
h6 30008 31621 31630 31903 367 1048 31903 31903 28320
h7 27933 29397 29397 29734 7988 1703 29734 29734 13561
h8 23923 25692 25692 25954 328 1202 25954 25954 21552
h9 28467 29863 29884 30193 390 822 30193 30193 20581
h10 29508 31101 31101 31338 83 488 31338 31338 1879
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Table: Computational results for the instances 1n15T6 with n = 15
and Tmax = 6

BC C&L
k Subtour LS Prop1 Gen Cover BLB BUB

l1 2 4880.7 5581.1 5681.8 5732.8 5803.6 5987.4 5987.4
l1 3 5640.7 6222.0 6541.4 6580.9 6684.5 6861.07 6861.07
l1 4 6527.8 7049.5 7484.6 7525.6 7622.3 7320.32 7767.75
l1 5 7466.0 7697.3 8377.4 8480.9 8512.7 7574.4 8975.61
h1 2 11388.5 12196.1 12305.6 12367.0 12369.2 12624.7 12624.7
h1 3 12150.2 12820.6 13165.7 13248.6 13310.4 13517.6 13517.6
h1 4 13039.4 13642.5 14111.8 14217.6 14240.1 13999.8 14515.3
h1 5 13975.3 14540.1 15006.9 15109.4 15156.1 14262.2 15470.7
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Moral

The MIP systems are amazing, but sometimes one can still
help.

Thank you for your attention
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