Vehicle Routing and MIP

Laurence A. Wolsey

CORE, Université Catholique de Louvain

5th Porto Meeting on Mathematics for Industry, 11th April 2014

Contents:

- The Capacitated Vehicle Routing Problem
- Subproblems: Trees and the TSP
- CVRP
- Cutting Planes
- Column Generation
- Robust Branch-and-Price-and Cut
- An Inventory Routing Problem

The Capacitated Vehicle Routing Problem

- Single Depot. Single Period
- K vehicles can make tours beginning and ending at the depot
- Client i has a demand q_{i} and is served by exactly one vehicle
- Each vehicle has capacity Q.
- The objective is to find subtours for the K vehicles such that the amount delivered by each vehicle does not exceed Q, the demand of each client is satisfied and the total travel cost/distance is minimized.

Modelling Connectivity: Spanning Trees

Graph $G=(V, E)$ with edge costs c_{e} for $e \in E$.
Let $y_{e}=1$ if e is in the tree.

$$
\begin{gathered}
\min \sum_{e \in E} C_{e} y_{e} \\
\sum_{e \in E(S)} y_{e} \leq|S|-1 \forall S \subset V \\
\sum_{e \in E} y_{e}=|V|-1 \\
y \in \mathbb{R}_{+}^{E}
\end{gathered}
$$

where $E(S)=\{e=(i, j) \in E: i, j \in S\}$.
This linear program is tight. The subtour elimination constraints (SECs) describe the convex hull of the spanning trees, but there is an exponential number of constraints.

Separation of SECs

Given a point $\hat{y} \in \mathbb{R}_{+}^{E}$, when does it violate one of the SECs?
We formulate this question as an IP.
Let $\alpha_{i}=1$ if $i \in S$. We have to check whether there exists $\alpha \in\{0,1\}^{V}$ such that

$$
\sum_{e=(i, j) \in E} \hat{y}_{e} \alpha_{i} \alpha_{j}-\sum_{i \in V} \alpha_{i}>-1
$$

This is a quadratic 0-1 integer program of the form:

$$
\max _{\alpha \in\{0,1\}^{V}} \alpha^{T} Q \alpha-p \alpha
$$

It is well known that such IPs can be solved as max flow/min cut problems when $Q \geq 0$.

An Extended "Multicommodity" Formulation

How else can one ensure connectivity?
One way: Construct a graph in which there is a path (one can send a flow) from one node ($r=1$) to all the others.
$f_{i j}^{k}$ is the flow (commodity k) in arc (i, j) on the path from r to k.

$$
\begin{aligned}
\sum_{j} f_{i j}^{k}-\sum_{j} f_{j i}^{k} & =0 i \neq k, r \\
\sum_{j} f_{i j}^{k}-\sum_{j} f_{j i}^{k} & =1 i=k \\
f_{i j}^{k}+f_{j i}^{k} & \leq y_{e} \quad \forall e \in E \\
f_{i j}^{k} & \geq 0 \forall i, j, k
\end{aligned}
$$

This formulation is as strong as that with subtours, but it has $\mathrm{O}\left(V^{3}\right)$ variables.

The Traveling Salesman Problem: Formulation 1

Symmetric Version $c_{i j}=c_{j i}=c_{e}$
$y_{e}=1$ if edge e in the tour

$$
\begin{gathered}
\min \sum_{e \in E} c_{e} y_{e} \\
\sum_{e \in \delta(v)} y_{e}=2 \forall i \in V \\
\sum_{e \in E(S)} y_{e} \leq|S|-1 \forall S \subset V \\
y \in[0,1]^{E}
\end{gathered}
$$

SECS can be replaced by "cut" inequalities

$$
\sum_{e \in \delta(S)} y_{e} \geq 2 \forall \emptyset \subset S \subset V
$$

The Traveling Salesman Problem: Formulation 2

Weak Extended Formulation (Directed):
u_{i} is position of node i in the tour starting with node 1 in position $0\left(u_{1}=0\right)$.

$$
\begin{array}{r}
u_{j}-u_{i} \geq x_{i j}-(n-2)\left(1-x_{i j}\right) \forall(i, j), j \neq 1 \\
\sum_{j} x_{i j}=1 \forall i \\
\sum_{i} x_{i j}=1 \forall j \\
y_{e}=x_{i j}+x_{j i} \forall e \\
x \in \mathbb{Z}_{+}^{A}, u \in \mathbb{Z}_{+}^{n}
\end{array}
$$

Useful if one wants a compact valid formulation.

Formulations of CVRP

$x_{i j}^{k}=1$ if $\operatorname{arc}(i, j)$ in tour of vehicle k
$z_{i}^{k}=1$ if client i visited by vehicle k

$$
\begin{array}{r}
\min \sum_{k} \sum_{i j} c_{i j}^{k} x_{i j}^{k} \\
\sum_{i} x_{i j}^{k}=z_{j}^{k} \forall k, j, j \neq 0, \\
\sum_{j} x_{i j}^{k}=z_{i}^{k} \forall k, i, i \neq 0, \\
\sum_{j} x_{0 j}^{k}=z_{0}^{k} \forall k \\
\sum_{i} d_{i} z_{i}^{k} \leq C z_{0}^{k} \forall k \\
\sum_{k} z_{i}^{k}=1 \forall i \\
x_{i j}^{k}, z_{i}^{k} \in\{0,1\}
\end{array}
$$

$$
\begin{array}{r}
\min \sum_{i j} c_{i j} x_{i j} \\
\sum_{i} x_{i j}=1 \forall j \neq 0, \\
\sum_{j} x_{i j}=1 \forall i \neq 0, \\
\sum_{j} x_{0 j}=K \\
\sum_{i \in \delta \bar{S}, S)} x_{i j} \geq\left\lceil\frac{\sum_{i \in S} d_{i}}{C}\right\rceil \forall S \subseteq V \\
x_{i j} \in\{0,1\}
\end{array}
$$

Valid Inequalities and Separation

1. Separation of $\sum_{i j \in \delta(\bar{S}, S)} x_{i j} \geq\left\lceil\frac{\sum_{i \in S} d_{i}}{C}\right\rceil$?

Separation of $\sum_{i j \in \delta(\bar{S}, S)} x_{i j} \geq \frac{\sum_{i \in S} d_{i}}{C}$ is polynomial.
2. Generalized Large Multistar

$$
\sum_{e \in \delta(S)} y_{e} \geq \frac{2}{C}\left(d(S)+\sum_{j \neq S} d_{j}\left(\sum_{e \in \delta(S:\{j\})} y_{e}\right)\right)
$$

Column Generation

- A natural idea is to have columns corresponding to feasible subtours for a vehicle.
- The problem is then just to select a set of K subtours such that each client is visited once.
- The trouble with this is that the column generation subproblem is a prize-collecting traveling salesman problem that is almost as hard as the original problem.
- So the typical approach is to look at a larger set of columns that includes all the feasible subtours, but for which the column generation problem is more tractable.

q-routes

A q-route is a walk starting and ending at the depot visiting the clients 0,1 , or more times but with total demand at most C. Note that each time a client i is visited, his demand d_{i} is counted again.
Suppose $n=4, C=13$ and $d=(2,4,5,7)$.
A feasible subtour is for example $0-3-2-0$ with $\sum_{i} d_{i}=9$.
A q-route, that is not a feasible subtour, is $0-1-2-1-0$ with
$\sum_{i} d_{i}=8$.
$0-1-2-3-1-0$ is a q-route without a 2 -cycle as
$\sum_{i} d_{i}=13 \leq C$.
A minimum cost q-route without 2 -cycles can be found by dynamic programming.

Naive DP for q-routes

$f(i, j, k)$ is the min cost of a walk starting at the depot and ending with visits to i, then j in which k units are delivered.

$$
f(i, j, k)=\min _{p: p \neq j}\left[f\left(p, i, k-d_{j}\right)+\bar{c}_{i j}\right]
$$

Min Cost q-route is

$$
\min _{i, j, k \leq C}\left[f(i, j, k)+\bar{c}_{0 j}\right] .
$$

Column Generation with q-routes without 2-cycles

Let q_{j}^{e} be the coefficient of edge e in q-route j with variable λ_{j}. One has

$$
\begin{array}{cccc}
\sum_{j=1}^{p} q_{j}^{e} \lambda_{j} & -x_{e} & = & 0 e \in E \\
\sum_{j=1}^{p} \lambda_{j} & & K \\
& \sum_{e \in \delta(i)} x_{e} & =2 i \in V \\
x_{e} & \geq 0 e \in E \\
\lambda_{j} & & \geq 0 j=1, \ldots, p
\end{array}
$$

$$
\begin{array}{rlcc}
\sum_{e \in \delta(i)} x_{e} & = & 2 & i \in V \\
\sum_{e \in \delta(0)} x_{e} & =2 K & \\
\sum_{e \in \delta(S)} x_{e} & \geq 2 k(S) & S \subseteq V \\
x_{e} & \leq & 1 & e \in E \backslash \delta(0) \\
-x_{e} & =0 & e \in E \\
& =K & \\
x_{e} & \geq 0 & e \in E \\
& \geq & 0 & j=1, \ldots, p
\end{array}
$$

$$
\begin{array}{rlrl}
\min \sum_{j=1}^{p} \sum_{e \in E} l_{e} q_{j}^{e} \lambda_{j} & \\
\mu & \sum_{j=1}^{p} \sum_{e \in \delta(i)} q_{j}^{e} \lambda_{j} & =2 i \in V \\
\nu & \sum_{j=1}^{p} \sum_{e \in \delta(0)} q_{j}^{e} \lambda_{j} & =2 K \\
\pi \quad \sum_{j=1}^{p} \sum_{e \in \delta(S)} q_{j}^{e} \lambda_{j} & \geq 2 k(S) S \subseteq V \\
\omega & \sum_{j=1}^{p} q_{j}^{e} \lambda_{j} & \leq 1 e \in E \backslash \delta(0) \\
\lambda_{j} & \geq 0 j=1, \ldots, p
\end{array}
$$

Reduced cost of $x_{e}: l_{e}-\mu_{i}-\mu_{j}-\sum_{e \in \delta(S)} \pi_{S}-\omega_{e} \quad e \in E \backslash \delta(0)$

$$
I_{e}-\mu_{j}-\nu-\sum_{e \in \delta(S)} \pi_{S} \quad e \in \delta(0)
$$

$d=(2,4,5), C=10$

min cost q-route: $0-2-3-0$ with reduced cost of -10 alternative q-route: $0-1-2-1-0$ with reduced cost of -7

	w_{1}	w_{2}	w_{3}	w_{12}	w_{23}		u
$c w=$	22	24	20	39	27		49
$v=1$	2	2		2		$=$	2
7.5							
$v=2$		2		2	2	$=$	2
8.5							
$v=3$			2		2	$=$	2
6.5							
$v=0$	2	2	2	2	2	$=$	4
3.5							
1,2	2	2		2	2	\geq	2
1,3	2		2	2	2	\geq	2
2,3		2	2	2	2	\geq	2
$1,2,3$	2	2	2	2	2	\geq	4
$e=12$				1		\leq	1
$e=23$					1	\leq	1

Recent Developments

Recently q-routes replaced by ng-routes
Note that can add constraints $\alpha_{e} x_{e} \leq \alpha_{0}$ and approach still works.
Robust branch-and-cut-and-price.
If cuts on the q-route variables - column generation becomes more difficult

What about time-windows?
Similar BCP approach.
Column generation may be easier - less choice.
Cut generation more difficult - cuts based on infeasibility.

The Inventory Routing Problem: One Period

The Inventory Routing Problem

$t=1 \quad t=2$
$t=3$

(5)

Model 1: Single Period Inventory Routing Problem

$$
\begin{aligned}
& \sum_{i \in I} x^{i} \leq C z^{0}, \quad x^{i} \leq W^{i} z^{i}, \quad z^{0} \geq z^{i}, \quad i \in I \\
& \sum_{j \in 10} y^{i j}=\sum_{j \in 10} y^{i j}=z^{i}, \quad j \in I 0, \\
& \sum_{i \in S \cup\{0\}} \sum_{j \in \backslash \backslash S} y^{i j} \geq z^{i}, \quad S \subseteq I
\end{aligned}
$$

Capacitated Subtours

$$
x, \in R_{+}^{T}, z^{i} \in\{0,1\} i \in I, z^{0} \in\{0,1, \ldots, K\}, y^{i j} \in\{0,1\}^{A}
$$

Where do the capacities come from?

$$
W_{t}^{i}=\min \left\{C, d_{t}^{i}+\bar{S}^{i}\right\}
$$

What about the capacitated subtours?

$$
c \sum_{i \in / O \backslash S} \sum_{j \in S} y^{i j} \geq \sum_{i \in S} x^{i}
$$

where $S \subseteq I$ and $I O=I \cup\{0\}$.

Direct a flow of x^{k} from the origin to each client $k \in I$: $f^{i j k}$ is the flow $\mathrm{i}(i, j)$ with destination $k \in I$

$$
\begin{gathered}
\sum_{i \in I 0} f^{i j k}-\sum_{i \in I} f^{j j k}=0 \quad \forall j \neq k, \forall k \\
\sum_{i \in I 0} f^{i j k}=x^{k} \quad k=j, \forall k \\
\sum_{k \in I} f^{i j k} \leq C y^{i j} \forall(i, j) \\
f^{i j k} \leq W^{k} y^{i j} \forall i, j, k
\end{gathered}
$$

Metric Inequalities

Suppose $\mu^{i j} \geq 0$ for all $(i, j) \in A$ and $S \subseteq I$, then

$$
\sum_{(i, j) \in A} \mu^{i j} y^{i j} \geq \sum_{i \in S} x^{i}
$$

is a valid inequality if

$$
\sum_{(i, j) \in P} \mu^{i j} \geq \min \left(C, \sum_{i \in v(P) \cap S} W^{i}\right)
$$

for every subtour P beginning and ending at the depot, where $v(P) \subseteq I$ are the clients on subtour P.

A Particular Metric Inequality

S_{1}, S_{2} is a partition of S

$$
\begin{aligned}
& \sum_{\left(10 \backslash S, S_{1}\right)} C y^{i j}+\sum_{\left(10 \backslash S, S_{2}\right)} W^{j} y^{i j}+\sum_{\left(S_{2}, S_{1}\right)}\left(C-W^{i}\right) y^{i j} \\
& +\sum_{\left(S_{2}, S_{2}\right)} \min \left(C-W^{i}, W^{j}\right) y^{i j} \geq \sum_{i \in S} x^{i}
\end{aligned}
$$

Example of a Particular Metric Inequality

$$
\begin{aligned}
& \quad \sum_{\left(10 \backslash S, S_{1}\right)} C y^{i j}+\sum_{\left(10 \backslash S, S_{2}\right)} W^{j} y^{i j}+\sum_{\left(S_{2}, S_{1}\right)}\left(C-W^{i}\right) y^{i j} \\
& +\sum_{\left(S_{2}, S_{2}\right)} \min \left(C-W^{i}, W^{j}\right) y^{i j} \geq \sum_{i \in S} x^{i} \\
& |I|=3, C=300, W=(289,123,76), S=\{1,2,3\}, \\
& S_{1}=\{1\}, S_{2}=\{2,3\} \\
& 300 y^{01}+123 y^{02}+76 y^{03}+(300-123) y^{21}+(300-76) y^{31} \\
& +\min (76,300-123) y^{23}+\min (123,300-76) y^{32} \geq x^{1}+x^{2}+x^{3}
\end{aligned}
$$

Multi-Period Metric Inequalities with Stock Upper Bounds: An Example

Add $s_{t-1}^{i}+x_{t}^{i}=D_{t}^{i}+s_{t}^{i}$ and IRP model for periods $1, \ldots, T$.

$$
\begin{aligned}
C \sum_{u=k}^{t} \sum_{(i, j) \in(I 0 \backslash S, S)} y_{u}^{i j} \geq \sum_{u=k}^{t} & \sum_{i \in S} x_{t}^{i}=\sum_{i \in S} \sum_{u=k}^{t} x_{u}^{i} \\
& \geq \sum_{i \in S}\left(D_{k t}^{i}-s_{k-1}^{i}\right)
\end{aligned}
$$

With $s_{k-1}^{i} \leq U^{i}$, above is of the form:

$$
\sigma+C v \geq b, 0 \leq \sigma \leq h, v \in Z
$$

This gives the inequalities:

$$
v \geq\left\lceil\frac{b-h}{c}\right\rceil \text { and } \sigma+\rho v \geq \rho\left\lceil\frac{b}{c}\right\rceil
$$

Table: VMIRP-SUB: computational results for the instances with $n=50$ and $T_{\text {max }}=6$

		BC				C\&L			
No	$L B_{\text {lni }}$	$L B_{\text {LS }}$	LB Cut	BUB	Nodes	Time	BLB	BUB	Time
11	8375	9754	9754	$\mathbf{9 9 6 6}$	15123	1485	9901	9976	86400
I2	8952	10516	10523	$\mathbf{1 0 6 3 2}$	65	334	10632	$\mathbf{1 0 6 3 2}$	2536
I3	8725	10376	10391	$\mathbf{1 0 5 1 1}$	3972	1876	10511	$\mathbf{1 0 5 1 1}$	1355
I4	8628	10243	10243	$\mathbf{1 0 5 1 3}$	166667	18016	10513	$\mathbf{1 0 5 1 3}$	60289
I5	8386	9860	9899	$\mathbf{1 0 1 1 3}$	2500	2327	10113	$\mathbf{1 0 1 1 3}$	2416
I6	8417	9945	9948	$\mathbf{1 0 1 4 8}$	1900	2318	10114	$1014 x$	86400
I7	8355	9776	9776	9982	284288	28195	9982	9982	14698
I8	8385	10015	10066	$\mathbf{1 0 2 9 9}$	878	1360	10253	10229	86400
I9	8484	9897	9904	$\mathbf{1 0 0 1 0}$	819	801	10010	$\mathbf{1 0 0 1 0}$	6326
l10	8014	9546	9546	9659	2425	2081	9659	9659	3523
h1	29508	29862	29906	$\mathbf{3 0 1 8 9}$	1235	645	30189	$\mathbf{3 0 1 8 9}$	3036
h2	27983	29601	29615	$\mathbf{2 9 7 9 0}$	133	357	29790	$\mathbf{2 9 7 9 0}$	3334
h3	27830	29634	29657	$\mathbf{2 9 7 9 1}$	219	809	29791	$\mathbf{2 9 7 9 1}$	4020
h4	29517	31241	31241	31518	1424	1618	31518	31518	5737
h5	27413	28993	29021	$\mathbf{2 9 2 4 0}$	199	565	29240	$\mathbf{2 9 2 4 0}$	684
h6	30008	31621	31630	$\mathbf{3 1 9 0 3}$	367	1048	31903	$\mathbf{3 1 9 0 3}$	28320
h7	27933	29397	29397	$\mathbf{2 9 7 3 4}$	7988	1703	29734	$\mathbf{2 9 7 3 4}$	13561
h8	23923	25692	25692	$\mathbf{2 5 9 5 4}$	328	1202	25954	$\mathbf{2 5 9 5 4}$	21552
h9	28467	29863	29884	$\mathbf{3 0 1 9 3}$	390	822	30193	$\mathbf{3 0 1 9 3}$	20581
h10	29508	31101	31101	$\mathbf{3 1 3 3 8}$	83	488	31338	$\mathbf{3 1 3 3 8}$	1879

Table: Computational results for the instances 1 n 15 T 6 with $n=15$ and $T_{\text {max }}=6$

		BC				C\&L		
	k	Subtour	LS	Prop1	Gen	Cover	BLB	BUB
I1	2	4880.7	5581.1	5681.8	5732.8	5803.6	5987.4	5987.4
I1	3	5640.7	6222.0	6541.4	6580.9	6684.5	6861.07	6861.07
I1	4	6527.8	7049.5	7484.6	7525.6	7622.3	7320.32	7767.75
I1	5	7466.0	7697.3	8377.4	8480.9	8512.7	7574.4	8975.61
h1	2	11388.5	12196.1	12305.6	12367.0	12369.2	12624.7	12624.7
h1	3	12150.2	12820.6	13165.7	13248.6	13310.4	13517.6	13517.6
h1	4	13039.4	13642.5	14111.8	14217.6	14240.1	13999.8	14515.3
h1	5	13975.3	14540.1	15006.9	15109.4	15156.1	14262.2	15470.7

Moral

The MIP systems are amazing, but sometimes one can still help.

Thank you for your attention

CVRP

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming, 115(2):351Đ385, 2008.R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5):1269-1283, 2011.R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arag?ao, M. Reis, E. Uchoa, and R.F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3):491Đ511, 2006.
Improved Branch-Cut-and-Price for Capacitated Vehicle Routing D. Pecin, A. Pessoa, M. Poggi and E. Uchoa, IPCO 2014 (to appear)
IRP
C. Archetti, L. Bertazzi, G. Laporte, and M.G. Speranza.

A branch-and-cut algorithm for a vendor-managed inventory-routing problem.
Transportation Science, 41(3):382-391, 2007.
P. Avella, M. Boccia, and L.A. Wolsey.

Single-item reformulations for a vendor managed inventory routing problem: computational experience with benchmark instances.
CORE Discussion Paper 2013.

L.C. Coelho and G. Laporte.

The exact solution of several classes of inventory-routing problems.
Computers and Operations Research, 40 (2):558 - 565, 2013.

