- 1. Dorian Auto manufactures luxury cars and trucks. The company believes that its most likely customers are high-income women and men. To reach these groups, Dorian Auto has embarked on an ambitious TV advertising campaign and has decided to purchase 1-minute commercial spots on two types of programs: comedy shows and football games. Each comedy commercial is seen by 7 million high-income women and 2 million high-income men. Each football commercial is seen by 2 million high-income women and 12 million high-income men. A 1-minute comedy ad costs \$50,000, and a 1-minute football ad costs \$100,000. Dorian would like the commercials to be seen by at least 28 million high-income women and 24 million high-income men.
 - (a) Use linear programming to determine how Dorian Auto can meet its advertising requirements at minimum cost.
 - (b) Find the range of values on the cost of a comedy ad for which the current basis remains optimal.
 - (c) Find the range of values for required HIW exposures for which the current basis remains optimal. Determine the new optimal solution if $28 + \Delta$ million HIW exposures are required.
 - (d) Find the shadow price of each constraint.
 - (e) If 26 million HIW exposures are required, determine the new optimal objective value.
- 2. Write the dual of each of the following problems:

3. My diet requires that all the food I eat come from one of the four "basic food groups" (chocolate cake, ice cream, soda, and cheesecake). At present, the following four foods are available for consumption: brownies, chocolate ice cream, cola, and pineapple cheese-cake. Each brownie costs 50¢, each scoop of chocolate ice cream costs 20¢, each bottle of cola costs 30¢, and each piece of pineapple cheesecake costs 80¢. Each day, I must ingest at least 500 calories, 6 oz of chocolate, 10 oz of sugar, and 8 oz of fat. The nutritional content per unit of each food is:

	Calories	Chocolate (Ounces)	Sugar (Ounces)	Fat (Ounces)
Brownie	400	3	2	2
Chocolate ice cream	200	2	2	4
Cola	150	0	4	1
Pineapple cheesecake	500	0	4	5

- (a) Formulate a linear programming model that can be used to satisfy my daily nutritional requirements at minimum cost.
- (b) Solve the problem using GLPK (or other software).
- (c) Determine the optimal values of variables, dual variables, reduced costs, and slack variables.
- (d) Formulate the dual problem.
- (e) Solve the dual problem and determine the optimal values of variables, dual variables, reduced costs, and deviation variables.
- (f) Check that the complementary deviation theorem applies, and give it an economic interpretation.
- 4. Glassco manufactures glasses: wine, beer, champagne, and whiskey. Each type of glass requires time in the molding shop, time in the packaging shop, and a certain amount of glass. The resources required to make each type of glass are:

	(Wine)	(Beer)	(Champagne)	(Whiskey)
	(x_1)	(x_2)	(x_3)	(x_4)
Molding time (min)	4	9	7	10
Packaging time (min)	1	1	3	40
Glass (oz)	3	4	2	1
Selling price (\$)	6	10	9	20

Currently, 600 minutes of molding time, 400 minutes of packaging time, and 500 oz of glass are available. Assuming that Glassco wants to maximize revenue, the following LP should be solved:

It can be shown that the optimal solution to this LP is $z = \frac{2800}{3}, x_1 = \frac{400}{3}, x_2 = 0, x_3 = 0, x_4 = \frac{20}{3}, s_1 = 0, s_2 = 0, s_3 = \frac{280}{3}$.

- (a) Find the dual of the Glassco problem.
- (b) Using the given optimal primal solution and the Theorem of Complementary Slackness, find the optimal solution to the dual of the Glassco problem.
- (c) Find an example of each of the complementary slackness conditions (e.g., a positive slack in a constraint implies a corresponding dual variable equal to zero). Interpret each example in terms of shadow prices.