
Control of search parameters in evolutionary algorithmsJo~ao Pedro PedrosoRiken Institute, Laboratory for Information SynthesisHirosawa 2-1, Wako-shi, Saitama 351-01, Japane-mail: jpp@brain.riken.go.jpAbstract| In this paper we present a strategyfor automatically adapting the control parameters ofan evolutionary algorithm. Its main features consiston its simplicity, and on providing total independenceof the type of problem being solved.I. IntroductionEvolutionary algorithms have many well-known appli-cations in the solution of non linear optimisation prob-lems. They are generally considered to be very reliablemethods, although sometimes problems with prema-ture convergence arise. In these cases, the choice ofthe algorithm's parameters can be very important forobtaining a good solution.In this paper we introduce a strategy for automaticadaptation of the search parameters. One of the moti-vations for the implementation of such a strategy is toprovide a completely autonomous system, which wouldbe able to tackle any optimisation problem of its classwithout requiring the user to set up the control pa-rameters manually. The other motivation concerns theability to perform the evolutionary search for an un-speci�ed amount of time, possibly with changes in theform of the objective function in the middle, alwaystrying to keep appropriate search parameters.The strategy proposed is largely empirical, as it isvery di�cult to accurately keep track of the wholestatus of the system, and predict exactly what actionshould be taken. It consists �rstly on an exploitationof the search when the parameters are favourable tothe evolution of the current population, and hence theobjective is being ameliorated. This is done until weobtain no improvement in a generation of the evolu-tionary algorithm. When this arises new control pa-rameters are randomly determined. An improvementto this basic technique is done by adding a memoryto the control system, which would restore old valuesof the control parameters if the newly tested ones didnot provide an improvement. Finally, a simple systemfor avoiding premature convergence is implemented,which forces an increase in the mutation parameters iftoo many identical individuals are found in the popu-lation.We test the strategy proposed on a set of benchmark

functions available in the literature, and compare theresults obtained to the case where the parameters are�xed, either randomly or at their optimal value.The results presented were obtained with an im-plementation based on oating point representationof the solution, and a particular shape of the mu-tation, recombination, selection, and scaling opera-tors. The ideas that motivate the strategy proposedshould, nevertheless, be valid for other implementationparadigms. II. The genetic operatorsThe problems we deal with in this paper are nonlin-ear optimisation problems on a continuous domain.The genetic representation of solutions in our systemis identical to the mathematical one: vectors of oat-ing point numbers. So, for a problem of dimension n,the solution is a vector x = (x1 : : : xn); we call each xia chromosome, and the vector x a genome.The generation of a new individual from two parentsis composed of three steps: meiosis, possibly comple-mented with crossover, possibly followed by mutation.The meiosis and crossover processes produce a linearcombination of two individuals selected from the pop-ulation. The mutation adds a random perturbationto the solution created this way. All these operatorsare characterised by two parameters: probability ofoccurrence and intensity of the operation.We use the following notation: �p, �p, �p, are theprobabilities of meiosis, crossover, and mutation, re-spectively; �s, �s, �s are their respective intensities.r is a random number uniformly distributed in [0; 1],and �(s) = 1� rs2 is the distribution of the perturba-tions, where s is the intensity.For creating a new solution x from two parents y andz, the process of reproduction is presented in �gure 1.The meiosis operation creates an o�spring genomefrom two parents. This is done through random se-lection of chromosomes from either the mother or thefather, possibly complemented by crossover, until thegenome has all its chromosomes.Crossover takes on two chromosomes, and recom-bines them, leading to an intermediary value. The

if r < �p Do the meiosis with probability �pfor i = 1 to n doif r < �s (Note: �s measures the intensity of meiosis.)if r < �p With some probability do crossover,set xi := yi + (zi � yi) �sr with intensity �selseset xi := yi no crossover, exact copy of yielse. . . do the same, swapping the roles of y and zdoneelse In this case, no meiosis occurs:set x := y, or x := z copy exactly y or z, with same prob.for i = 1 to n do Now, do the mutation: for each element of xif r < �p with probability �pxi := xi � �(�s) add mutation of intensity �s.doneFigure 1: Overview of the genetic operations.smaller the \crossover intensity" parameter is, thecloser the produced chromosome is to that of one ofthe parents.Mutation adds, with some probability, a randomperturbation to the value obtained that way. For eachmutation, we randomly choose to add or subtract �(s)to the value of the chromosome1, where s gives theintensity, or magnitude of the mutation.An additional parameter used in the algorithm isthe selectivity, a factor that speci�es how competitivean individual must be in relation to the average in or-der to have a favoured probability of being selected.This parameter, denoted by �, acts on the scaling ofthe individuals' �tness prior to their selection for re-producing. If � is close to 0, the di�erences betweenindividuals are attenuated, and selection is close torandom. When � is close to 1, the better individ-uals are strongly favoured, and tend to be the onlyselected. (See [6] for more details on this scaling tech-nique.) The selection scheme used is roulette wheelselection; for its description see, for example, [2].III. The benchmark test bedFor the evaluation of the strategies that we proposein this paper, we have relied on the set of benchmarktests proposed in [1]. The set of test functions is thefollowing:Problem 1: the sphere model. Value to reach: 10�6.f1(x) = NXi=1 (xi � 1)2xi 2 [�5; 5] i = 1; : : : ; NProblem 2: Griewank's function. Value to reach: 10�4.f2(x) = 1d NXi=1 (xi � 100)2 � NYi=1 cos�xi � 100pi �+ 1d = 40001The value of the perturbation is scaled, so that it covers thewhole region between the value xi and its bounds.

xi 2 [�600; 600] i = 1; : : : ; NProblem 3: Shekel's foxholes. Value to reach: �9. (ci,A(i) available in [1]).f3(x) = � mXj=1 1jjx �A(j)jj2 + cjm = 30xi 2 [0; 10] i = 1; : : : ; NProblem 4: Michalewicz' function. Value to reach:�9:66 (for N = 10).f4(x) = � NXi=1 sin(xi) � sin2m� i � x2i� �m = 10xi 2 [0; �] i = 1; : : : ; NProblem 5: Langerman's function. Value to reach:�1:4 (ci, A(i) available in [1]).f5(x) = � mXj=1 cj � e� jjx�A(j)jj2� � cos(� � jjx �A(j)jj2)m = 30xi 2 [0; 10] i = 1; : : : ; NFor all the results reported in this paper, we haveused benchmark problems of dimension 10 (N=10).The performance indexes, measured on 100 indepen-dent runs, are the following:� the best solution obtained for all runs.� the average solution obtained.� the number of successes, i.e., the number of timesthe value to reach was obtained.In order to have a reference for comparing the per-formances for the di�erent strategies employed, theevolutionary system used was set up with a populationof 25 elements, evolving for 2500 generations. Underthese circumstances, the di�cult benchmark problemsare virtually unsolvable, in a systematic way, by theevolutionary algorithm. It is, thus, a good basis whereto observe e�ects of the control parameters in the evo-lution.IV. Results with a standard algorithmFor the purpose of having a term of comparison forthe strategy of adapting the control parameters thatwe propose in this paper, we have �rst made a seriesof runs with static parameters.A. Random parametersThe �rst series of results were obtained for randomcontrol parameters. We have performed a series of 100independent runs, each with exogenous, independent,randomly determined control parameters. Results arepresented in table 1.

Table 1: Results with random parameters.Problem Best sol. Mean best sol. # successesSphere 4.8e-07 2.31 1Griewank 0.0429 7.85 0Shekel -10.16 -1.15 1Michalewicz -9.93 -7.55 14Langerman -1.499 -0.513 2B. Optimal parametersWe have next attempted to optimise the control pa-rameters using another evolutionary algorithm. Thismethod was inspired in the one described in [3], themultilevel genetic algorithm, where a meta-genetic al-gorithm is used to tune the control parameters of an-other genetic algorithm, making this last adaptive. Inour case, we have set the meta problem as a completelyindependent one, whose objective is to �nd the controlparameters which would lead to optimal, or more reli-able, performance of the inner algorithm.As it turned out, for the benchmark test bed usedand for the limited number of generations and pop-ulation size, this meta algorithm was rather unreli-able. Its solution|the control parameters of the in-ner algorithm|did not stabilise. This was due to thenature of the meta objective functions, which are ex-tremely noisy. For the same value of the meta solution(the control parameters), one could obtain many dif-ferent values of the meta �tness (the best objectivefound by the inner algorithm, using those control pa-rameters). In order to select more reliable parameters,we decided to take on the 1% best meta solutions ob-tained during the evolutionary process, and averagetheir values. These results are presented in table 2.Note that, except for the case of the sphere model (theonly unimodal benchmark), these values were quitedisperse.Table 2: Optimal parameters for each benchmark.Problem �p �s �p �s �p �s �Sphere .0086 .021 .63 .18 .86 .52 .72Griewank .032 .13 .56 .37 .38 .61 .74Shekel .24 .63 .51 .33 .54 .57 .60Michalewicz .043 .68 .72 .35 .66 .48 .64Langerman .54 .20 .42 .45 .73 .69 .60We have then used these control parameters to tunethe evolutionary algorithm. The results obtained thisway, for 100 independent runs, are reported in table 3.As these results clearly show, setting the appropri-ate values of the control parameters is a rather di�-

Table 3: Results for optimised search parameters.Problem Best sol. Mean best sol. # successesSphere 4.4e-13 1.5e-11 100Griewank 7.4e-03 5.6e-02 0Shekel -10.2 -1.71 2Michalewicz -9.98 -9.95 100Langerman -1.31 -0.615 0cult task. The optimisation with another evolutionaryalgorithm does not lead to parameters providing a re-liable �nal performance for all the problems, althoughit involves a huge amount of computational time forthe solution of the meta problem. During the metaoptimisation process, all the optimal values of eachbenchmark were obtained by the inner algorithm; butwe could not �nd the parameters which would allow�nding them in a systematic way. Furthermore, themeta solution (the control parameters of the inner op-timisation) would alternate regions of good and poorperformance; absolute convergence was not observed.An additional drawback of this procedure is thatthe parameters determined are highly dependent onthe benchmark. Good parameters for one problem arenot, in general, still good for another one, as the resultsin table 2 show. Hence, if a new problem would be tobe solved systematically with reasonable performance,a new meta optimisation would also be involved.V. Adaptation strategiesA. Randomly perturbing parametersIn order to deal with the extreme complexity of theadaptation of control parameters problem, we couldnor devise solutions other than those of, equally ex-treme, simplicity.A �rst strategy consists on the following: we startthe evolutionary algorithm with random parameters.We then create a new population, using these param-eters for the generation of its individuals. Then, if thesolution was improved, we keep the parameters; if not,we set new random parameters. We then perform an-other generation. This process is repeated until thetermination condition is met. New parameters are de-termined with uniform random distribution in theirdomain, [0; 1].Results obtained with this strategy are reported intable 4. Although they are far from being satisfactory,this strategy already provides some desirable features:there is no need of external interference for the deter-mination of the control parameters, and it is indepen-dent of the benchmark problem.

Table 4: Results for randomly adapted parameters.Problem Best sol. Mean best sol. # successesSphere 3.29e-08 1.89e-4 3Griewank 0.025 0.184 0Shekel -10.2 -1.66 2Michalewicz -9.93 -9.75 89Langerman -1.5 -0.568 5B. Simple adaptation of parametersA �rst improvement that can be made to this strat-egy concerns implementing a primitive memory: thesystem remembers what was the last action taken.At each generation, we randomly select what param-eter to \adapt". We then set it randomly, and keep inmemory the old value that was being used. If the ac-tion was successful (i.e., the objective was amelioratedin the subsequent generation), then the parameter iskept; otherwise, we restore the previous value. Thisbeing done, we randomly choose another parameterto \adapt", and pursue this way until a terminationcriteria is met.A second improvement consists on implementing asentinel for checking premature convergence. In somesituations, if the mutation intensity is too small, wemay reach a population composed of individuals allaround the same point; and, as there are still somesmall mutations being done, minimal improvementsmight be occurring, leading for no action in the pa-rameter adaptation. In order to prevent this, we im-plemented a system for checking if all the individualsare similar. We de�ne two individuals y and z as notsimilar i� 9i : jjyi � zijj > 0:01Bi, where Bi is thedi�erence between the upper and the lower bound forthe chromosome i.If at any given point of the evolution all individ-uals are similar, we have premature convergence; inthis case, we force the mutation parameter to be in-creased. Note that this only provides a faster way forleaving premature convergence: a random perturba-tion of the mutation intensity parameter would sooneror later arise, with an equivalent e�ect. But this canavoid wasting too much time around a particular so-lution, doing only a very localised search.Results obtained with this strategy are reported intable 5. An overall improvement of the performancefor all the benchmark problems is observed, both interms of reliability and in terms of quality of the solu-tions. VI. ConclusionIn this paper we present a simple strategy for auto-matically adapting the control parameters of an evo-

Table 5: Results for random adaptation with memory.Problem Best sol. Mean best sol. # successesSphere 3.93e-14 5.37e-06 69Griewank 0.0148 0.0975 0Shekel -10.2 -1.76 3Michalewicz -9.98 -9.87 100Langerman -1.5 -0.617 4lutionary algorithm. It basically consists of randomlyperturbing them whenever a new generation of the sys-tem does not lead to and improved solution.Its nice characteristics, apart from its extreme sim-plicity, consist on providing total independence withrespect to the type of problem being solved. There isno need of external interference for the determinationof control parameters, independently of the problembeing solved.Some tests with benchmark problems available inthe literature tend to indicate that this strategy in-creases both the reliability of the evolutionary systemand the quality of the solutions found.Future improvements that we foresee to this strat-egy consist on �nding a more adequate distributionfor the random perturbation of the parameters, whichcould potentially permit further improvements on thespeed and on the quality of the solutions.References[1] H. Bersini, M. Dorigo, L. Gambardella, S. Langer-man, and G. Seront. First international contest onevolutionary optimization, 1996. In IEEE Interna-tional Conference on Evolutionary Computation.[2] D. E. Goldberg. Genetic Algorithms in Search, Op-timization & Machine Learning. Addison-Wesley,1989.[3] J. J. Grefenstette. Optimization of control param-eters for genetic algorithms. IEEE Transactionsod Systems, Man, and Cybernetics, 16(1):122{128,1986.[4] J. H. Holland. Adaptation in Natural and Arti�cialSystems. University of Michigan Press, 1975.[5] Z. Michalewicz. Genetic Algorithms + Data Struc-tures = Evolution Programs. Springer-Verlag, sec-ond, extended edition, 1994.[6] J. P. Pedroso. Niche search: an evolutionary al-gorithm for global optimisation. In H.-M. Voigt,W. Ebeling, I. Rechenberg, and H.-P. Schwefel, edi-tors, Parallel Problem Solving from Nature IV, vol-ume 1141 of Lecture Notes in Computer Science,Berlin, Germany, 1996. Springer.

