
Implementation of a library for modelling in economics:design guidelinesJo~ao Pedro PedrosoRiken Institute, Laboratory for Information SynthesisHirosawa 2-1, Wako-shi, Saitama 351-01, Japane-mail: jpp@brain.riken.go.jpAbstract| In this paper we propose some designguidelines for the implementation of a library for com-puter aided modelling and analysis in economics. Webase our approach in object-oriented programming.We also introduce a prototype implementation, wherea set of algorithms and data structures appropriatedfor economic modelling is supplied.I. IntroductionThere are many concrete economic problems for whichan analytical solution is not obtainable, due to the sizeof the problem or to its complexity. In these situationsit would be desirable to obtain numerical solutions,and a library providing algorithms and data struc-tures for computationally modelling economic prob-lems, and for the corresponding numerical solution,can be a valuable tool.Let us �rst de�ne a library as a collection of reusablecode, i.e., a set of computer instructions which can beused, without change, as the basis for the constructionof new programs. Properties that are usually requiredfor a library are that it is easy to �nd and understand,that there is a reasonable assurance that its code is cor-rect, and that no changes are required in the library'scode for building a new program that uses it [2].For the design of a library for analysis in economics,we propose that it should provide the programmerwith the capability of starting from the simulation ofthe behaviour of the basic agents of the market, andthen pursue by integrating their behaviour, thus con-structing abstract aggregate agents. These, in turn,can be further aggregated, until achieving the de-sired abstraction level required for the model. Thisway, more and more complex situations can be imple-mented, by progressively developing the pieces thatcompose the economic situation we want to solve.We believe that the most appropriate programmingparadigm for the implementation of such a library isthe object-oriented programming paradigm. This isbecause classes in an object oriented language can bevery intuitively associated to the types of agents thatactually exist in markets, and classes' member func-

tions to the agents behaviour. There is also an in-tuitive correspondence between the information thatis transmitted between the economic agents and themessages that can be passed between objects in a pro-gram.In this paper we also introduce a prototype imple-mentation using an object-oriented approach, wherea set of algorithms and data structures appropriatedfor economic modelling is supplied. The classes pro-vided in this library are closely related to the types ofentities that are considered in the economic analysis.The programmer can create objects (i.e., variables) foreach of the classes provided, as well as widen the setof classes through inheritance mechanisms.II. Object oriented programmingObjects and Classes. In object-oriented program-ming an object represents an individual, identi�ableitem, unit, or entity, either real or abstract, with awell-de�ned role in the problem domain.A class is a speci�cation of a structure, the be-haviour, and the inheritance scheme for objects.Classes also specify access permissions, visibility andmember lookup resolution.For example, we could have a Consumer class, whichwould implement an algorithm to react to a pricemessage by returning the optimal quantity purchased.An object of that class could be AdamSmith, whichwould be characterised by a particular budget con-straint and utility function. Then, if we call Adam-Smith.Quantity(Price = 100), this object will returnthe quantity that this particular consumer would op-timally buy at price 100. We could, alternatively, callAdamSmith.Price(Quantity = 100), and it would re-turned the price that this consumer would be disposedto pay in order to buy a quantity of 100.It is the responsibility of the object to satisfy therequest speci�ed in the message. The actual way ofsatisfying it does not need to be known by a user ofthat class|who often does not want to know the de-tails, only requires the results.



Messages and methods. Methods are de�ned inclasses and implement how objects of that class react,when they receive a message. A message encodes arequest for a speci�c action, and is possibly accompa-nied by additional information (arguments) needed tocarry it out.Inheritance. Inheritance is a relationship betweenclasses where one class is a base class of another; thismeans that all the (public or protected) elements ofthe base class are available, without change.This way, classes can be organised into a hierarchi-cal inheritance structure. A derived class inherits at-tributes from base classes. For example, we could havea class ConsumerCES which would be a specialisationof the consumer class, de�ning consumers whose utilityfunction has constant elasticity of substitution (CES).The behaviour of the Consumer class is present, and inaddition the utility function of objects of this class isinstantiated.III. Basic algorithms and classesThe �rst part of the library that we propose consists ofa set of numerical analysis tools, which we summarisein this section. As most of the interesting problemsarising in economics are nonlinear, and many timesnonconvex and nonsmooth, the library should providealgorithms for tackling them. For this reason, at thecore of this library we integrate methods for globaloptimisation and equilibrium computation describedin [4] and [5], respectively.A. Maximisation classThe most important of the classes implemented to sup-port the development of the economics library is un-doubtfully the Maximisation class. This class providesa very high level interface to the numerical optimisers.The constructor of this class takes as an argumentan Functor object, which provides the objective func-tion, and a Constraints object, where the constraints ofthe optimisation problem are speci�ed. This class pro-vides the methods Solution and Objective, for accessingthe solution vector and the corresponding evaluation,respectively.The actual solver used depends on the objectivefunction and constraints passed as arguments for theconstruction of a Maximisation object. For example,if they are linear, a simplex-like optimiser could becalled; on the most general case, both objective andconstraints are nonlinear and nonconvex, and an ap-propriate solver for this case would be binded.The algorithms that underly the methods providedby this class are crucial for the whole development ofthe library, as they should provide a way of solving,with a good degree of con�dence, any optimisationproblem whose solution is not hopeless.

B. SimultaneousEquilibria classThis class implements a �xed point iteration methodfor the solution of simultaneous optimisation prob-lems, and is described in detail in [5].For the construction of one SimultaneousEquilibriaobject the programmer must supply a structure wherethe moves of all the players are stored, together witha Maximisation object for each of the players. Eachof these Maximisation objects is parameterised on themoves of the other players; i.e., it will maximise anobjective which depends the actions that were takenby the other market agents.The Solve member function of this class performsthe iterative solution of the system, by successivelycarrying out the optimisation for each of the playersand updating the solution data structure, where themoves of the players are stored.C. AsynchronousEquilibria classAsynchronous equilibria are characterised by a player(the leader) which optimises its actions taking into ac-count the optimal reaction of the other player (thefollower).Objects of the AsynchronousEquilibria class performan optimisation such that for each evaluation of the ob-jective, it is carried out another, nested optimisation.By other words, every time the objective function ofthe �rst stage problem (the leader) is called, there isa solution of the optimisation problem of the secondstage (that of the follower).Notice that objects of the AsynchronousEquilibriaclass can themselves be used as the input for the con-struction of a SimultaneousEquilibria object. We cantherefore have a sequence of nested simultaneous andasynchronous problems, and construct a multiple stageproblem. The only limits concern computational time,which can rapidly become rather restrictive.IV. Classes for market agentsA. ConsumersThe Consumer is the base class for simulating the be-haviour of a consumer. It provides several methodsthat correspond to actions that consumers are sup-posed to take in an given economic environment, andshould provide the basis for simulation of what is gen-erally found in common for all consumer instances.What the base class does is to implement a maximi-sation problem (hence it has a Maximisation object),which �nds the quantities that are optimally boughtby the consumer, given its utility function, its budget,and the price vectors stated by the market. Alterna-tively, it can �nd the price that the consumer wouldbe disposed to pay for buying a given quantity. Thisclass also provides a method to determine the indirectutility (the utility at the optimal quantity).



As an example, consider the case where one wantsto simulate the behaviour of a consumer whose utilityfunction is U(x; y) = [� y� + (1� �)x�] 1� , where x isthe quantity of the good under analysis, and y is thequantity of other goods that the consumer buys withits budget. This is a constant elasticity of substitution(CES) function, concerning the substitution betweenthis good and other goods. We �rstly implement afunctor class for this utility function, the CesFunctor.Then, we create an object of this class, and use it asan argument for constructing a consumer object:CesFunctor CesUtility The utility function object.CesUtility.Alpha(0.2) Set �=0.2CesUtility.Rho(0.8) and �=0.8Consumer CesConsumer(CesUtility) Create a consumer withthis utility function,CesConsumer.Budget(100) and set its budget to 100.CesConsumer.Quantity(10) This returns the optimal quantitybought at a relative price of 10.CesConsumer.Price(1) This returns the relative price at which thequantity bought is 1 unit.The optimal quantity that is purchased by a con-sumer of this type at a given price, Quantity() is de-termined by the maximisation of its utility subject tothe budget constraint. The Price() member returnsthe inverse of this function.B. DemandThe demand classes calculate the aggregate quantitypurchased by a set of consumers, which constitute thewhole market for a particular good.One version of these classes is built based on a dis-crete set of consumers; the aggregate demand for givenvalues of the price (and other parameters) is found bydetermining the weighted sum of the values of indi-vidual demands (i.e., each of the consumer types hasa given weight, which corresponds to the number ofconsumers of that type in the market).Another one is built based on a particular type ofconsumers, which supply a member function for be-ing self parameterised. This parameterisation permitsdi�erentiating preferences or budget of consumers; theaggregate demand is determined by numerically inte-grating the individual demands for given regions of thepreference parameter.Finally, a combination of these two classes leads toa composite, 
exible demand class.Demand Part1(CesConsumer, 10) In a part of the market,there are 10 consumers like CesConsumer.Functor SetBudget = CesConsumer.SetBudget() Functionfor parameterising consumers based on their budget.Demand Part2(CesConsumer, SetBudget, 10, 500) Inanother part of the market, there are identical consumers, butwhose budget ranges from 10 to 500.Demand TotalDemand This is the whole demand of the market:TotalDemand.Add(Part1) Include the �rst part of the marketTotalDemand.Add(Part2) and the second one.TotalDemand.Quantity(10) This returns the demand of thewhole market for a price of 10.The degree of abstraction that the Demand classprovides is quite considerable. Its objects can be called

like a normal function of the price; for each functioncall, it calculates the individual demand for all the con-sumers, by summing and/or integrating their optimalquantities. The individual demands are determinedthrough the optimisation of the utility functions.C. FirmsThe simulation of �rms has many similarities with thesimulation of consumers: �rms, regarded from a com-petitive behaviour point of view, receive a vector ofprices (and possibly more market parameters) as in-put and decide their production plan by maximisingtheir pro�t. The Firm class provides methods thatcorrespond to these actions. Objects of this class arecreated by supplying a production function, that ofthe �rm that is being simulated.What the base Firm class does is to implement amaximisation problem, which calculates its optimalproduction plan given its production function, the costof the inputs, and the prices of the outputs. It also pro-vides a method to determine the (optimised) costs fora given value of the output.As an example, consider the case where one wantsto simulate the behaviour of a �rm producing somegood, which is characterised by a quality factor (relia-bility), which is increased by increasing redundancy inproduction units. This is an usual situation in telecom-munication and energy producers. With a number n ofunits, the �rm has a total cost of n U (where U is thecost of one unit), and can produce quantity x = K � jat quality s = Pnj=0 Cnj � �n�j � (1 � �)j , where � isthe reliability of each production unit, and K is itscapacity. (Cnj are the combinations of n machines j ata time). For example, having 2 production units (andtherefore a cost of 2 U), a �rm can either produce aquantity 2 K with reliability �2 or a quantity K withreliability � (1� �).The cost minimisation for such �rms is quite simple;is consists simply of determining the minimum numberof units that satisfy both the demand and the reliabil-ity constraint. After creating the class for simulatingthis, we could use it as follows:RedundancyProdFunctor Prod Create the production functor.Prod.Capacity(100) Set capacity to 100Prod.Reliability(0.99) and unit reliability to 99%.Firm Factory(Prod) Create a �rm with this production function.Factory.SetQuality(0.999) Set the reliability required for the �nalproduct to 99.9%.Factory.Quantity(10) This returns the optimal quantity producedif the market price of the good is 10.Factory.Cost(250) This is the cost for optimally producing aquantity of 250.The Monopoly class is a derivation of Firm, wherethe price of the product is not taken as given. TheMonopoly objects have hence strategic variables con-cerning the production plan, as well as the price of theoutput. Its objective is the pro�t, and its constraintsare determined by the production function.



Oligopolies in this library are simulated by theSimultaneousEquilibria or an AsynchronousEquilibriaclasses, to which we supply the Firms that take part inthe game, and the demand function. Nash equilibriaare computed by iterating through the optimal quan-tities that each �rm produces, taking into account theother �rms quantity, until reaching a stable situation.Stackelberg equilibria are computed by solving the fol-lowers problem inside the leaders objective function(what determines that optimal response of the followerfor any action of the leader).D. SupplyThe Supply class provides the same type of aggrega-tion over the Firm class that the Demand provides overConsumer. Hence, it determines the aggregate quan-tity produced by a set of �rms for a given price. All the�rms are considered as price takers. It is used mainlyfor determining perfect competition equilibria, wheresupply (by price takers) equals demand.E. WelfareMarket welfare is determined by aWelfare class, whichis created based on a Demand and a Supply objects. Itcomputes the total welfare for given values of the price(possibly associated to some other factor, such as aquality level) by numerically integrating the demandfunction (thus obtaining the consumers surplus), andsubtracting the aggregate cost.F. RegulatorsThe Regulator class takes as input a set of Firms anda Demand object. It performs the optimisation of themarket welfare (aWelfare object), determined throughthe demand function and the costs of the �rms. Dif-ferent types of regulation are possible, by stating whatare the variables that a Regulator object can set (e.g.price, quantity, quality), and the kind of reaction ofthe other agents in the market.G. MarketsMarkets are simulated by placing together the severalobjects that constitute it, and assigning an order tothe game that they play.A typical construction is to start by creating the setof consumers, and create their aggregate demand func-tion. The same thing is done to the supply side, bycreating a set of �rms and the aggregate cost. Basedon the demand and supply objects, we can create awelfare, or an equilibrium computation object. Themarket welfare maximisation, or any type of game be-tween the �rms, could be determined through theseobjects.In our example, consider the situation where a reg-ulator sets a reliability level to which the �rms must

conform, and then there is a Nash-Cournot game be-tween the �rms for determining their optimal capacity:RegOnQuality RegulatorFirm Leader(Prod) Create the leader and the followerFirm Follower(Prod) objects, with a given production function.Leader.SetQuality( Regulator.Quality() ) Set the imposedFollower.SetQuality( Regulator.Quality() ) quality.AsynchronousEquilibria Stackelberg Create the object forcalculating the equilibrium.Stackelberg.SetLeader(Leader) Set the leader andStackelberg.SetFollower(Follower) the follower �rms,Stackelberg.SetDemand(TotalDemand) and the demand.Stackelberg.LeaderQuantity() This returns the leader's quantityat the equilibrium,Stackelberg.FollowerQuantity() this the follower's one,Stackelberg.Price() and this the equilibrium price.V. ConclusionThe library for economic modelling that we describeon this paper was conceived based on the principle ofgiving the programmer a set of tools for the simulationof economic situations, starting from the simulation ofthe behaviour of its basic agents.The simulation process pursues by integrating be-haviour of these basic agents, constructing abstractaggregate agents, which. in turn, can be further ag-gregated, until achieving the desired level required forthe simulation. This way, more and more complex sit-uations are implemented, by progressively joining thepieces of the market whose solution we want to know.The cost of going into such a low level in the sim-ulation process, in terms of computational burden, israther high. We believe, nevertheless, that this cost iscompletely justi�ed by the understanding of the mar-ket mechanisms that becomes possible; for example,we do not need to restrict the studied models to caseswhere an analytical solution exists.References[1] G. Booch. Object-Oriented Design With Applica-tions. Benjamin Cummings, second edition, 1994.[2] M. D. Carroll and M. A. Ellis. Designing and Cod-ing Reusable C++. Addison-Wesley, 1995.[3] J. O. Coplien. Advanced C++ Programming Stylesand Idioms. Addison-Wesley, 1992.[4] J. P. Pedroso. Niche search: an evolutionary al-gorithm for global optimisation. In H.-M. Voigtet al., editors, Parallel Problem Solving from Na-ture IV, volume 1141 of Lecture Notes in ComputerScience, Berlin, Germany, 1996. Springer.[5] J. P. Pedroso. Numerical solution of Nash andStackelberg equilibria: an evolutionary approach.In Proceedings of the First Asia Conference onSimulated Evolution and Learning, Korea, 1996.[6] J. P. Pedroso. Universal Service: Issues on Mod-elling and Computation. PhD thesis, Universit�eCatholique de Louvain, 1996.


