Implementation of a library for modelling in economics:
design guidelines

Joao Pedro Pedroso

Riken Institute, Laboratory for Information Synthesis
Hirosawa 2-1, Wako-shi, Saitama 351-01, Japan
e-mail: jpp@brain.riken.go.jp

Abstract— In this paper we propose some design
guidelines for the implementation of a library for com-
puter aided modelling and analysis in economics. We
base our approach in object-oriented programming.
We also introduce a prototype implementation, where
a set of algorithms and data structures appropriated
for economic modelling is supplied.

I. Introduction

There are many concrete economic problems for which
an analytical solution is not obtainable, due to the size
of the problem or to its complexity. In these situations
it would be desirable to obtain numerical solutions,
and a library providing algorithms and data struc-
tures for computationally modelling economic prob-
lems, and for the corresponding numerical solution,
can be a valuable tool.

Let us first define a library as a collection of reusable
code, i.e., a set of computer instructions which can be
used, without change, as the basis for the construction
of new programs. Properties that are usually required
for a library are that it is easy to find and understand,
that there is a reasonable assurance that its code is cor-
rect, and that no changes are required in the library’s
code for building a new program that uses it [2].

For the design of a library for analysis in economics,
we propose that it should provide the programmer
with the capability of starting from the simulation of
the behaviour of the basic agents of the market, and
then pursue by integrating their behaviour, thus con-
structing abstract aggregate agents. These, in turn,
can be further aggregated, until achieving the de-
sired abstraction level required for the model. This
way, more and more complex situations can be imple-
mented, by progressively developing the pieces that
compose the economic situation we want to solve.

We believe that the most appropriate programming
paradigm for the implementation of such a library is
the object-oriented programming paradigm. This is
because classes in an object oriented language can be
very intuitively associated to the types of agents that
actually exist in markets, and classes’ member func-

tions to the agents behaviour. There is also an in-
tuitive correspondence between the information that
is transmitted between the economic agents and the
messages that can be passed between objects in a pro-
gram.

In this paper we also introduce a prototype imple-
mentation using an object-oriented approach, where
a set of algorithms and data structures appropriated
for economic modelling is supplied. The classes pro-
vided in this library are closely related to the types of
entities that are considered in the economic analysis.
The programmer can create objects (i.e., variables) for
each of the classes provided, as well as widen the set
of classes through inheritance mechanisms.

II. Object oriented programming

Objects and Classes. In object-oriented program-
ming an object represents an individual, identifiable
item, unit, or entity, either real or abstract, with a
well-defined role in the problem domain.

A class is a specification of a structure, the be-
haviour, and the inheritance scheme for objects.
Classes also specify access permissions, visibility and
member lookup resolution.

For example, we could have a Consumer class, which
would implement an algorithm to react to a price
message by returning the optimal quantity purchased.
An object of that class could be AdamSmith, which
would be characterised by a particular budget con-
straint and utility function. Then, if we call Adam-
Smith.Quantity(Price = 100), this object will return
the quantity that this particular consumer would op-
timally buy at price 100. We could, alternatively, call
AdamSmith.Price(Quantity = 100), and it would re-
turned the price that this consumer would be disposed
to pay in order to buy a quantity of 100.

It is the responsibility of the object to satisfy the
request specified in the message. The actual way of
satisfying it does not need to be known by a user of
that class—who often does not want to know the de-
tails, only requires the results.

Messages and methods. Methods are defined in
classes and implement how objects of that class react,
when they receive a message. A message encodes a
request for a specific action, and is possibly accompa-
nied by additional information (arguments) needed to
carry it out.

Inheritance. Inheritance is a relationship between
classes where one class is a base class of another; this
means that all the (public or protected) elements of
the base class are available, without change.

This way, classes can be organised into a hierarchi-
cal inheritance structure. A derived class inherits at-
tributes from base classes. For example, we could have
a class ConsumerCES which would be a specialisation
of the consumer class, defining consumers whose utility
function has constant elasticity of substitution (CES).
The behaviour of the Consumer class is present, and in
addition the utility function of objects of this class is
instantiated.

III. Basic algorithms and classes

The first part of the library that we propose consists of
a set of numerical analysis tools, which we summarise
in this section. As most of the interesting problems
arising in economics are nonlinear, and many times
nonconvex and nonsmooth, the library should provide
algorithms for tackling them. For this reason, at the
core of this library we integrate methods for global
optimisation and equilibrium computation described
in [4] and [5], respectively.

A. Maximisation class

The most important of the classes implemented to sup-
port the development of the economics library is un-
doubtfully the Maximisation class. This class provides
a very high level interface to the numerical optimisers.

The constructor of this class takes as an argument
an Functor object, which provides the objective func-
tion, and a Constraints object, where the constraints of
the optimisation problem are specified. This class pro-
vides the methods Solution and Objective, for accessing
the solution vector and the corresponding evaluation,
respectively.

The actual solver used depends on the objective
function and constraints passed as arguments for the
construction of a Maximisation object. For example,
if they are linear, a simplex-like optimiser could be
called; on the most general case, both objective and
constraints are nonlinear and nonconvex, and an ap-
propriate solver for this case would be binded.

The algorithms that underly the methods provided
by this class are crucial for the whole development of
the library, as they should provide a way of solving,
with a good degree of confidence, any optimisation
problem whose solution is not hopeless.

B. SimultaneousEquilibria class

This class implements a fixed point iteration method
for the solution of simultaneous optimisation prob-
lems, and is described in detail in [5].

For the construction of one SimultaneousEquilibria
object the programmer must supply a structure where
the moves of all the players are stored, together with
a Maximisation object for each of the players. Each
of these Maximisation objects is parameterised on the
moves of the other players; i.e., it will maximise an
objective which depends the actions that were taken
by the other market agents.

The Solve member function of this class performs
the iterative solution of the system, by successively
carrying out the optimisation for each of the players
and updating the solution data structure, where the
moves of the players are stored.

C. AsynchronousEquilibria class

Asynchronous equilibria are characterised by a player
(the leader) which optimises its actions taking into ac-
count the optimal reaction of the other player (the
follower).

Objects of the AsynchronousEquilibria class perform
an optimisation such that for each evaluation of the ob-
jective, it is carried out another, nested optimisation.
By other words, every time the objective function of
the first stage problem (the leader) is called, there is
a solution of the optimisation problem of the second
stage (that of the follower).

Notice that objects of the AsynchronousEquilibria
class can themselves be used as the input for the con-
struction of a SimultaneousEquilibria object. We can
therefore have a sequence of nested simultaneous and
asynchronous problems, and construct a multiple stage
problem. The only limits concern computational time,
which can rapidly become rather restrictive.

IV. Classes for market agents
A. Consumers

The Consumer is the base class for simulating the be-
haviour of a consumer. It provides several methods
that correspond to actions that consumers are sup-
posed to take in an given economic environment, and
should provide the basis for simulation of what is gen-
erally found in common for all consumer instances.

What the base class does is to implement a maximi-
sation problem (hence it has a Maximisation object),
which finds the quantities that are optimally bought
by the consumer, given its utility function, its budget,
and the price vectors stated by the market. Alterna-
tively, it can find the price that the consumer would
be disposed to pay for buying a given quantity. This
class also provides a method to determine the indirect
utility (the utility at the optimal quantity).

As an example, consider the case where one wants
to simulate the behaviour of a consumer whose utility
function is U(z,y) = [a y? + (1 — a):n”]%, where z is
the quantity of the good under analysis, and y is the
quantity of other goods that the consumer buys with
its budget. This is a constant elasticity of substitution
(CES) function, concerning the substitution between
this good and other goods. We firstly implement a
functor class for this utility function, the CesFunctor.
Then, we create an object of this class, and use it as
an argument for constructing a consumer object:

CesFunctor CesUtility
CesUrtility.Alpha(0.2)
CesUtility.Rho(0.8)

Consumer CesConsumer(CesUtility)

The utility function object.
Set «=0.2
and p=0.8

Create a consumer with
this utility function,

and set its budget to 100.

This returns the optimal quantity
bought at a relative price of 10.

CesConsumer.Price(1) This returns the relative price at which the
quantity bought is 1 unit.

The optimal quantity that is purchased by a con-
sumer of this type at a given price, Quantity() is de-
termined by the maximisation of its utility subject to
the budget constraint. The Price() member returns
the inverse of this function.

CesConsumer.Budget(100)
CesConsumer.Quantity(10)

B. Demand

The demand classes calculate the aggregate quantity
purchased by a set of consumers, which constitute the
whole market for a particular good.

One version of these classes is built based on a dis-
crete set of consumers; the aggregate demand for given
values of the price (and other parameters) is found by
determining the weighted sum of the values of indi-
vidual demands (i.e., each of the consumer types has
a given weight, which corresponds to the number of
consumers of that type in the market).

Another one is built based on a particular type of
consumers, which supply a member function for be-
ing self parameterised. This parameterisation permits
differentiating preferences or budget of consumers; the
aggregate demand is determined by numerically inte-
grating the individual demands for given regions of the
preference parameter.

Finally, a combination of these two classes leads to
a composite, flexible demand class.

Demand Part1(CesConsumer, 10) In a part of the market,
there are 10 consumers like CesConsumer.

Functor SetBudget = CesConsumer.SetBudget() Function
for parameterising consumers based on their budget.

Demand Part2(CesConsumer, SetBudget, 10, 500) In
another part of the market, there are identical consumers, but
whose budget ranges from 10 to 500.

This is the whole demand of the market:
Include the first part of the market
and the second one.

This returns the demand of the
whole market for a price of 10.
The degree of abstraction that the Demand class

provides is quite considerable. Its objects can be called

Demand TotalDemand

TotalDemand.Add(Part1)
TotalDemand.Add(Part2)
TotalDemand.Quantity(10)

like a normal function of the price; for each function
call, it calculates the individual demand for all the con-
sumers, by summing and/or integrating their optimal
quantities. The individual demands are determined
through the optimisation of the utility functions.

C. Firms

The simulation of firms has many similarities with the
simulation of consumers: firms, regarded from a com-
petitive behaviour point of view, receive a vector of
prices (and possibly more market parameters) as in-
put and decide their production plan by maximising
their profit. The Firm class provides methods that
correspond to these actions. Objects of this class are
created by supplying a production function, that of
the firm that is being simulated.

What the base Firm class does is to implement a
maximisation problem, which calculates its optimal
production plan given its production function, the cost
of the inputs, and the prices of the outputs. It also pro-
vides a method to determine the (optimised) costs for
a given value of the output.

As an example, consider the case where one wants
to simulate the behaviour of a firm producing some
good, which is characterised by a quality factor (relia-
bility), which is increased by increasing redundancy in
production units. This is an usual situation in telecom-
munication and energy producers. With a number n of
units, the firm has a total cost of n U (where U is the
cost of one unit), and can produce quantity z = K - j
at quality s = 37 C} - 0" - (1 — o)/, where o is
the reliability of each production unit, and K is its
capacity. (C]” are the combinations of n machines j at
a time). For example, having 2 production units (and
therefore a cost of 2 U), a firm can either produce a
quantity 2 K with reliability 02 or a quantity K with
reliability o (1 — o).

The cost minimisation for such firms is quite simple;
is consists simply of determining the minimum number
of units that satisfy both the demand and the reliabil-
ity constraint. After creating the class for simulating
this, we could use it as follows:

RedundancyProdFunctor Prod

Prod.Capacity(100)

Prod.Reliability(0.99) and unit reliability to 99%.

Firm Factory(Prod) Create a firm with this production function.

Factory.SetQuality(0.999) Set the reliability required for the final

product to 99.9%.

Create the production functor.
Set capacity to 100

Factory.Quantity(10) This returns the optimal quantity produced
if the market price of the good is 10.
Factory.Cost(250) This is the cost for optimally producing a

quantity of 250.

The Monopoly class is a derivation of Firm, where

the price of the product is not taken as given. The

Monopoly objects have hence strategic variables con-

cerning the production plan, as well as the price of the

output. Its objective is the profit, and its constraints
are determined by the production function.

Oligopolies in this library are simulated by the
SimultaneousEquilibria or an AsynchronousEquilibria
classes, to which we supply the Firms that take part in
the game, and the demand function. Nash equilibria
are computed by iterating through the optimal quan-
tities that each firm produces, taking into account the
other firms quantity, until reaching a stable situation.
Stackelberg equilibria are computed by solving the fol-
lowers problem inside the leaders objective function
(what determines that optimal response of the follower
for any action of the leader).

D. Supply

The Supply class provides the same type of aggrega-
tion over the Firm class that the Demand provides over
Consumer. Hence, it determines the aggregate quan-
tity produced by a set of firms for a given price. All the
firms are considered as price takers. It is used mainly
for determining perfect competition equilibria, where
supply (by price takers) equals demand.

E. Welfare

Market welfare is determined by a Welfare class, which
is created based on a Demand and a Supply objects. Tt
computes the total welfare for given values of the price
(possibly associated to some other factor, such as a
quality level) by numerically integrating the demand
function (thus obtaining the consumers surplus), and
subtracting the aggregate cost.

F. Regulators

The Regulator class takes as input a set of Firms and
a Demand object. It performs the optimisation of the
market welfare (a Welfare object), determined through
the demand function and the costs of the firms. Dif-
ferent types of regulation are possible, by stating what
are the variables that a Regulator object can set (e.g.
price, quantity, quality), and the kind of reaction of
the other agents in the market.

G. Markets

Markets are simulated by placing together the several
objects that constitute it, and assigning an order to
the game that they play.

A typical construction is to start by creating the set
of consumers, and create their aggregate demand func-
tion. The same thing is done to the supply side, by
creating a set of firms and the aggregate cost. Based
on the demand and supply objects, we can create a
welfare, or an equilibrium computation object. The
market welfare maximisation, or any type of game be-
tween the firms, could be determined through these
objects.

In our example, consider the situation where a reg-
ulator sets a reliability level to which the firms must

conform, and then there is a Nash-Cournot game be-

tween the firms for determining their optimal capacity:
RegOnQuality Regulator
Firm Leader(Prod) Create the leader and the follower
Firm Follower(Prod) objects, with a given production function.
Leader.SetQuality(Regulator.Quality()) Set the imposed
Follower.SetQuality(Regulator.Quality()) quality.

AsynchronousEquilibria Stackelberg Create the object for
calculating the equilibrium.

Stackelberg.SetLeader(Leader) Set the leader and

Stackelberg.SetFollower(Follower) the follower firms,
Stackelberg.SetDemand(TotalDemand) and the demand.
Stackelberg.LeaderQuantity() This returns the leader's quantity

at the equilibrium,

Stackelberg.FollowerQuantity() this the follower's one,

Stackelberg.Price() and this the equilibrium price.

V. Conclusion

The library for economic modelling that we describe
on this paper was conceived based on the principle of
giving the programmer a set of tools for the simulation
of economic situations, starting from the simulation of
the behaviour of its basic agents.

The simulation process pursues by integrating be-
haviour of these basic agents, constructing abstract
aggregate agents, which. in turn, can be further ag-
gregated, until achieving the desired level required for
the simulation. This way, more and more complex sit-
uations are implemented, by progressively joining the
pieces of the market whose solution we want to know.

The cost of going into such a low level in the sim-
ulation process, in terms of computational burden, is
rather high. We believe, nevertheless, that this cost is
completely justified by the understanding of the mar-
ket mechanisms that becomes possible; for example,
we do not need to restrict the studied models to cases
where an analytical solution exists.

References

[1] G. Booch. Object-Oriented Design With Applica-
tions. Benjamin Cummings, second edition, 1994.

[2] M. D. Carroll and M. A. Ellis. Designing and Cod-
ing Reusable C++. Addison-Wesley, 1995.

[3] J. O. Coplien. Advanced C++ Programming Styles
and Idioms. Addison-Wesley, 1992.

[4] J. P. Pedroso. Niche search: an evolutionary al-
gorithm for global optimisation. In H.-M. Voigt
et al., editors, Parallel Problem Solving from Na-
ture I'V, volume 1141 of Lecture Notes in Computer
Science, Berlin, Germany, 1996. Springer.

[5] J. P. Pedroso. Numerical solution of Nash and
Stackelberg equilibria: an evolutionary approach.
In Proceedings of the First Asia Conference on
Simulated Fvolution and Learning, Korea, 1996.

[6] J. P. Pedroso. Universal Service: Issues on Mod-
elling and Computation. PhD thesis, Université
Catholique de Louvain, 1996.

