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Abstract—The conquers of the last decades in the fields of
artificial intelligence and optimization can provide tools for
improving features in many applications for smart devices. We
illustrate this by means of a case study where intelligent features,
involving optimization problems, are considered for some devices.
We explore challenges involved in their implementation, what
kind of information is necessary for making the device truly
intelligent, and possible ways of conveying it.

I. INTRODUCTION

In many situations the decision that can be taken by a smart
device can be described formally as mathematical optimization
problem. In this context, if the data available is accurate, being
smart is equivalent to being optimal, in the sense that if there
are solutions better that those taken by the device, then it could
have been smarter.

This paper lists some possibilities for improving the usabil-
ity of devices by enabling them with optimization capabilities,
using methods that are now a commonplace in scientific
communities working either in optimization or in artificial
intelligence.

II. STAND-ALONE DEVICES

We start by considering a vacuum cleaner—an example
which, though rather mundane, serves the purpose of illustrat-
ing cases where no external input is required, i.e., the devices
can operate in a stand-alone, independent fashion. Suppose
that the device may clean a square at a time in Figure 1, and
that we wish to minimize the distance travelled unnecessarily.
For tackling this problem it is convenient to formalize it in
mathematical notation; the first step is to prepare a graph
describing the situation, as shown in Figure 2. One possibility
for solving it is to assign a distance between each pair of
nodes, and find a tour going through all nodes that minimizes
the total distance traveled. This can be written as particular
a case of the well-know, travelling salesman problem (under
a degenerate, L1 distance matrix; more realistic situations
are instances of the undirected rural postman problem; see,
e.g., [1]). This problem is known to be NP-hard, meaning that
there are no algorithms known to date that find the optimum in
polynomial time, with respect to the input size; however, many
heuristic and meta heuristic methods finding near optimal
solutions have been proposed in the literature.
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Fig. 1. Layout of a room for cleaning; a vacuum cleaner is represented as
a black square, and is supposed to be able to clean one of the white squares
at a time, at the same time that it advances.

Fig. 2. Graph representation of the room (top). Nodes visited twice in an
optimal solution (bottom).



The situation described in this section can be completely
modeled and solved without resorting to the world outside
the place where the device operates; hence, we classify this
device as standalone. Its performance will depend solely on
the capacity of capturing its our characteristics and those of
a confined environment; and, of course, on a well-grounded
method to solve the underlying optimization problem. What
we would like to stress is that these methods—if not optimal,
at least acceptable—are now commonplace in optimization
science. Hence, the challenge is not on how to optimize but
rather on how to integrate optimization in the devices, by
providing the relevant information and collecting (and putting
in practice) the solution produced.

As a conclusion, for standalone devices:
• all the relevant information can be captured without being

connected to the outside world;
• performance depends only on their capabilities (including

perception of the environment and optimization);
• in a more elaborated setting, user input or preferences

may be used to fine tune the operation of the device.

III. PARTLY-CONNECTED DEVICES

In our second example we introduce a conceivable device
for optimally using the capacity of a battery (e.g., of an electric
car) when it is connected to a power supply. Let us describe
a very simplified version this situation as a mathematical
optimization problem. We discrete the span of the connection
time in a set of periods t = 1, . . . , T . Suppose that the power
company provides energy at prices pt and is ready to buy it
from the battery at prices vt < pt; these are the external inputs
that the device must acquire for optimal operation. The device
is characterized by a charging rate r, a discharging rate d (if
selling energy), a capacity Q, and the initial charge q0; the
charge available in the battery at period t is represented by qt.
The user defines a quantity R ≤ Q of energy that she requires
to be available in the battery at the end of the planning horizon.
The decision variables are, for t = 1, . . . , T :

• xt – binary variable with value 1 if the device is charging
at period t, or 0 otherwise;

• yt – binary variable with value 1 if the device is discharg-
ing (selling energy) at period t, or 0 otherwise.

We can now state the problem as follows:

minimize z =
T∑

t=1

(ptrxt − vtdyt) (1)

subject to: qt−1 + rxt = qt + dyt, for t = 1 . . . , T, (2)
xt + yt ≤ 1, for t = 1 . . . , T, (3)
0 ≤ qt ≤ Q, for t = 1 . . . , T, (4)
qT ≥ R. (5)

The objective is to minimize the net cost of charging the
battery (1), subject to energy conservation (2), being either
loading, unloading, or inactive (3), and capacity limits (4) in
each period, while satisfying the restriction imposed on the
final charge (5).

This model turns out to be easy to solve, i.e., an optimal
solution can be found in a very short time with a general-
purpose mixed integer programming solver, for any reasonable
input size. The difficulty is, once more, not in finding the
optimum but in conveying the information needed for being
able to do that.

A somehow similar situation, but considerably more difficult
to model and optimize, concerns the minimization of the cost
required for heating (or cooling) a house or building with
time-dependent electricity prices. As in the case of charging
a battery, one would like to use energy when it is less costly;
but now the links between usage and result, in terms of the
main output (temperature inside the building) are much more
difficult to model. Furthermore, an important variable (outdoor
temperature) cannot be forecast with certainty. Nevertheless,
satisfactory models for solving this problem are available in
the literature; see, e.g., [2] for a model incorporating weather
forecast information, and [3] for a model taking into account
also room-to-room influences. A scheme of the information
flow for using these methodologies is provided in Figure 3.
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Fig. 3. Building climate control (adapted from [2]). Predictions for weather
and energy prices must be dynamically acquired from external sources.

As a conclusion, for partly-connected devices:
• access to the outside world is required for capturing

relevant information;
• performance depends both on the capabilities of the

devices and on the accuracy of the data it obtained;
• providing and using user input for controlling the device

is likely to be more difficult than for standalone devices:
as this isn’t a closed world, interactions are now more
complex.

IV. FULLY-CONNECTED DEVICES

To illustrate the attributes of a fully-connected device we
will use as an example an implement controlling traffic lights.
Let us first focus on the situation of such an appliance

If there are several energy suppliers k from which the device can choose,
it may compute the optimum zk for each of them, and connect to the supplier
k for which zk is minimum (this is, hence, a min-min optimization problem).



operating in the countryside; in this case, we may consider
that decisions taken by the device will only have a local
impact (i.e., the device does not affect traffic in other places).
This being the case, if traffic is not congested it is trivial to
make the device operate optimally: it should detect cars with
sufficient anticipation, and whenever possible let them pass
without avoidable stops.

When a set of traffic lights is connected as a network,
each mutually influencing the others, their optimal operation
becomes a much more difficult challenge. In simple settings,
it would be desirable to have at least a mechanism for a device
to detect if traffic is congested ahead, to use this information
in its operation (reducing transit allowed into the congested
area), and to send it to devices behind.

In more complex settings, it is questionable whether smart
traffic lights would be enough to control the flow of vehicles.
Most likely, a centralized control system is required; this
allows making use of a model where the traffic policy is
given as an input, and the system limits congestion in specified
core areas of a city. Hence, with this example we have likely
reached the current edge for the capabilities of a smart device.
Still, the information that smart devices can provide to such
a centralized control system is very relevant, and should be
exploited; an interaction between central control and smart
traffic lights is, presumably, the most promising direction for
advancing usability in this field.

As a conclusion, for fully-connected devices:
• operation relies almost exclusively on information ob-

tained from the outside world;
• performance clearly depends on the capabilities of the

device, but it is also crucially dependent on trustworthy
external data;

• most likely, many conflicting objectives have to be taken
into account.

V. ARTIFICIAL INTELLIGENCE, OPTIMIZATION, AND
SMART DEVICES

In many situations, decisions that can be taken by a smart
device are discrete: at a given step, either follow one path
or follow another. This kind of decisions are well studied
of combinatorial optimization, where the most common and
successful methods rely on the exploration of a search tree.
If the underlying problem is well defined, and the data
unambiguous, then most likely a general-purpose solver for
mixed integer programming can find an optimal solution (often
very quickly [4]).

If the situation is less clear and a mathematical model cannot
be readily derived, then most likely the appropriate method for
finding a solution comes from the field of artificial intelligence.
A recent method able to deal with such situations is Monte-
Carlo tree search: an iterative procedure in which a search
tree is asymmetrically constructed, attempting to expand its
most promising parts, but balancing exploitation of known

Taking into account the social savings that could be attained, this is a much
neglected improvement opportunity.

good branches with exploration of branches for which less
information is available [5], [6]. The algorithm, used very
successfully in game playing, is based on the idea of Monte-
Carlo evaluation: the reward associated with a particular node
is estimated from the results of random simulations started
from that node. Each node keeps track of the number of
simulations run from its state as well as their outcomes, and
these data are used to produce an estimate of the value for
the node when deciding how to expand the tree. This can be
trivially extended to the case where real world information is
used to complement outcomes generated with simulation (with
much more relevance given to real data).

Other situations deal with decisions on continuous values
(e.g., the time allowed to a certain path in a given traffic light),
typically in the context of nonlinear optimization. Concerning
smart devices, it expected that most of the relevant cases can
be handled by derivative free methods; the requirement for the
optimization process is to provide a method capable of quickly
finding optima, or very good solutions, without information
on derivatives (see, e.g., [7]). Interesting properties concern
being able to swiftly reoptimize upon changes on data, and to
deal with noise; several methods for this are proposed in [8].
One of the favorites in the engineering community, due to
the simplicity of implementation, is the simplex method for
nonlinear optimization [9].

A very important requirement for providing optimization
technology in smart devices is to have access to a simulated
environment, where an expected outcome is generated for a
given input (i.e., for a tentative solution of the optimization
method) without actually putting it in practice. This simulation
step is essential for training the optimization method, so that
its solution can move towards interesting areas without going
through costly (or otherwise undesirable) decisions in the
real world. Simulation tools are also a requirement for prior
training in factory, before the device is put in its operating
environment; the aim is again to avoid learning with costly
decisions in the real world.

As a summary, the challenges to the device design commu-
nity are the following:

• to produce devices aware of the capabilities of the recent
progress in artificial intelligence and optimization;

• to provide a “simulation mode”, representing the outside
world without actually interacting with it;

• to prepare mechanisms for prior training in factory, for
having a reasonable solution when the device starts
operating in practice;

• a lot of work must be done on reality perception, data
detection, and data cleanup.

As for the optimization community, the challenges can be
summarized as follows:

• to provide appropriate heuristics and best practices for
the cases where the optimization problem is known to be
difficult;

• to fulfill the requirement of robust and flexible algorithms,
capable of adapting to many different situations;



• fool proof design: guarantee that unacceptable solutions
will not be proposed when the device is brought into
operation in the real world.

VI. CONCLUSIONS

Optimization methods and software have evolved into a
mature subject, providing algorithms and tools that can be
used to solve a number of real life problems, or to improve the
operation of commonly used devices. However, these methods
are still mostly confined to applications in organizations, being
largely absent from everyday life — even considering state-
of-the-art smart devices.

In this short paper we provide some examples of appli-
cations of optimization methods in typical, everyday routine,
and of the challenges involved. The paper deals mainly with
situations that, to the best of our knowledge, are not being
addressed with the depth that they could, and hence the current
outcomes are likely to be suboptimal. The paper has raised
several questions and provided no answers. Our expectations
are that the issues raised will be addressed by joint efforts
of researchers coming from two fields: device design and
optimization; nevertheless, the interdisciplinary nature of these
subjects may require the support of other areas.
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