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1 Introduction

The use of meta-heuristics for solving combinatorial optimisation has now a long history, and there
are virtually no well-known, hard optimisation problems for which a meta-heuristic has not been
applied. Often, meta-heuristics obtain the best known solutions for hard, large-size real problems,
for which exact methods are too time consuming to be applied in in practice.

The pioneering, and landmark work on general considerations about meta-heuristics for com-
binatorial optimisation which, besides its well known aspects, pointed out many directions which
were not exploited at least until very recently, is (Glover, 1989; Glover, 1990). A recent survey
of many directions that meta-heuristics are taking, and many problems to which they are being
applied is available in (Aarts and Lenstra, 1997). There are many successful applications reported
in the literature; still, to the best of our knowledge there are no mathematical programming lan-
guages with an interface to solvers based on meta-heuristics. Mathematical programming being
the traditional, powerful way of modelling combinatorial problems, we believe that it would be
an important achievement to have a solver based on meta-heuristics callable from mathematical
programming systems.

In this paper we will focus on the different aspects to take into account when designing a
meta-heuristic which can be applied to any combinatorial optimisation problem modelled in math-
ematical programming.

2 Background

A general formulation of a combinatorial optimisation problem may have continuous and discrete
variables, and non-linear objective and constraints. It is called a non-linear mixed integer problem
(NLMIP), and can be formulated as follows:

max
x,y

{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0, x ∈ [l, u]n ⊂ Zn
+, y ∈ Rp

+} (1)

In this formulation, x = (x1, . . . , xn) are the integer variables, y = (y1, . . . , yp) the continuous
variables, f(x, y) is the objective function, g(x, y) = (g1(x, y), . . . , gm(x, y)) are inequality con-
straints and h(x, y) = (h1(x, y), . . . , ho(x, y)) are equality constraints. We will assume that lower
and upper bounds are known for each discrete variable, li ≤ xi ≤ ui. Zn

+ is the set of nonnegative
integral n-dimensional vectors and Rp

+ is the set of nonnegative p-dimensional vectors.
This general problem has some important special cases, which are the object of the remaining

of this section.

2.1 Pure integer non-linear problems

When all the variables are integer, the problem is pure integer non-linear (NLIP):

max
x

{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ [l, u]n ⊂ Zn
+} (2)

2.2 Pure integer linear problems

If both the objective and the constraints are linear, and all the variables are integer, we have a
pure integer linear program (IP), whose formulation is:

max
x

{cx : Ax ≤ b, x ∈ [l, u]n ⊂ Zn
+} (3)

A is an m× n matrix, and m is the total number of constraints.
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2.3 Mixed integer linear problems

If the objective and the constraints are all linear, and there are integer and continuous variables,
the problem is called mixed integer (MIP). The formulation of a mixed integer linear program is

max
x,y

{cx + dy : Ax + Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+} (4)

A and G are m×n and m×p matrices, respectively, where m is the number of constraints. There
are n integer variables x, and p continuous variables, y.

Extensive information on problems of this type, which also includes some heuristics for specific
problems, is presented in (Nemhauser and Wolsey, 1988).

2.4 Mixed integer problems with linear continuous variables

In this case we have non-linearities arising only on the discrete variables. Its formulation is:

max
x,y

{f(x) + dy : g(x) + Gy ≤ 0, h(x) + Hy = 0, x ∈ [l, u]n ⊂ Zn
+, y ∈ Rp

+} (5)

G and H are m× p and o× p matrices, respectively, and d is a vector of size o.

3 Solving strategies

3.1 Representation of the solutions

The strategy that we point out for solving the problem (1) consists of fixing the integer variables
using a meta-heuristic.

When the problem is pure integer, the objective function (or an infeasibility measure) can be
evaluated immediately. Let us call the variables fixed x̄, and let sk = gk(x̄, y) if gk(x̄, y) > 0 and
0 otherwise, for k = 1, . . . ,m. If all gk(x) = 0 and hl(x) = 0, x̄ is feasible, and the corresponding
objective is f(x̄). Otherwise, the choice of x̄ is infeasible, and a measure of the infeasibility is
given by

ζ =
m∑

k=1

sk +
o∑

l=1

h(x̄) (6)

An application of a meta-heuristic for the specific linear, pure IP problem has been presented in
(Pedroso, 2001a).

When the problem has continuous variables, we will solve the continuous (linear or not) problem
that results from fixing the integer ones, and using the objective corresponding to this problem for
evaluating the solution. The continuous variables (if some) are therefore determined as a function
of the integer ones, after these have been fixed. When the problem is pure integer, there is no
need to solve the second level, continuous problem.

The solution of an NLMIP with the set of continuous variables not empty is, therefore, done
in two stages; on the first stage we fix the integer variables, and on the second stage we determine
the value of the continuous variables that correspond to the choice made at the first stage.

3.2 Solution of the second stage problem

3.2.1 The general case

The second stage problem is itself composed of two goals: the first goal is to minimise infeasi-
bilities, and if a feasible solution is found, we then try to optimise the (original) objective. The
minimisation of infeasibilities in the second stage problem corresponds to

ζ = min
s,y

{
m∑

k=1

sk +
o∑

l=1

|h(x̄, y)| : (7)
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gk(x̄, y) ≤ sk, k = 1 . . . , m

y ∈ Rp
+ , s ∈ Rm

+}

This problem can by itself a very difficult one: it can be a non-convex, non-smooth problem,
and there is no easy answer for the selection of a strategy for solving it. As a first approach, one
may think of the simplex method for non-linear programming (Nelder and Mead, 1965), which
is very elegant and easy to implement. It is, in its original form, a local search method, but
there are recent extensions that enable its use in global optimisation (Glover et al., 2000) and to
constrained global optimisation (Pedroso, 2001b). It does not use information, and does not make
assumptions, on the derivatives (which could potentially pose some problems in a general NLMIP),
and requires very few parameters for operation, making it a good candidate for the solution of the
second stage problem if it is non-linear.

3.2.2 Mixed integer problems with linear continuous variables

In this case, which corresponds to equations (4) and (5), by fixing all the integer variables of the
MIP at the values chosen in the first stage we obtain a linear problem:

z = max
y
{f(x̄) + hy : Gy ≤ f(x̄),Hy = h(x̄), y ∈ Rp

+} (8)

This (purely continuous) linear problem can be solved using any standard algorithm, like the
simplex. For detailed information about this algorithm, and the considerations to take into account
for an efficient implementation for this particular case, the reader is referred to (Chvatal, 1980).

If problem 8 is impossible, we formulate another linear program for the minimisation of the
infeasibilities. This is accomplished by setting up artificial variables and minimising their sum (a
procedure that is identical to the phase I of the simplex algorithm):

ζ = min
s,t,y

{
m∑

k=1

sk +
o∑

l=1

tl : (9)

f(x̄) + Gy ≤ s

h(x̄) + Hy ≤ t (10)
−h(x̄)−Hy ≤ t (11)
y ∈ Rp

+ , s ∈ Rm
+ , t ∈ Ro

+} (12)

An application of a meta-heuristic for the specific linear, MIP problem has been presented in
(Pedroso, 1998).

3.3 Evaluation and comparison of solutions

The evaluation attributed to a solution is composed of a binary label indicating if it is feasible or
not, and a real value which is the original objective (z) if the solution is feasible, or the sum of
infeasibilities (ζ) if it is not.

We need a way of comparing solutions, independently of them being feasible or not. What
we propose is to classify solutions in such a way that feasible solutions are always better than
infeasible ones, and are ranked among them according to the objective z; infeasible solutions are
ranked among them according to the sum of infeasibilities ζ.

We say that z̄i � z̄j (meaning that the structure i is better than the structure j) iff:

• ζi < ζj (i is closer to the feasible region than j).

• ζi = ζj = 0, and zi > zj (i has a better objective);
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4 Tools for implementing meta-heuristics

4.1 Construction

Construction concerns the choice of the initial values of the integer variables of 1. As seen before,
the continuous variables (if some) are computed on the basis of this choice.

4.1.1 Random construction

This construction has the advantage of being a powerful way of obtaining diversity; but in general
will lead to solutions of very poor quality.

It consists of assigning each of the variables xi a random integer value ri ∈ [li, ui] drawn with
uniform distribution. The remaining, continuous variables (if some), are computed on a second
stage, as explained in 3.2.

An interesting property of this construction is that it by itself has asymptotic convergence to
the global optimum, if it is repeated an infinite number of times.

4.1.2 Construction based on the continuous relaxation

The main idea for these construction methods has been presented for linear integer programs
in (Lengauer, 1990) on the static form. There, solutions of the problem were attempted by solving
their continuous relaxation, and rounding each variable to one of the integers closest to the solution
of the relaxation, with probabilities proportional to the closeness of the continuous value to an
integer.

On (Nemhauser and Wolsey, 1988) a (non-probabilistic) greedy construction, on the dynamic
form, is presented for linear mixed integer problems. At each step, a variable that has a fractional
value on the solution of the linear relaxation is fixed to its closest integer, and the linear relaxation
is resolved, until all variables are integer.

Static construction On this construction, the continuous relaxation of the problem 1 is solved,
and at each step a variable is fixed to an integer value close to the (in general continuous) value
obtained with the relaxation. Depending on the distribution used for drawing the random integer,
the best solutions obtained with this construction may have or not asymptotic convergence to the
optimal value. Pseudo programming code for this construction is presented in algorithm 1.

Algorithm 1: Semi-greedy solution construction: static version.
StaticSemiGreedy()
(1) solve the continuous relaxation
(2) for k = 1 to n
(3) draw random integer r with some distribution
(4) x̄k := r
(5) return x̄

Dynamic construction In this case, the continuous relaxation of the problem (1) is solved as
before, and at each step a (randomly selected) variable is fixed to an integer value close to its
value at the relaxation’s solution. The difference with respect to the static construction is that, in
the dynamic version, a new relaxation is solved after each variable is fixed. Pseudo programming
code for this construction is presented in algorithm 2.

4.1.3 Distributions for random number generation

Probabilistic rounding construction. This construction consists of rounding each variable to
one of the integers closest to its value at the continuous relaxation. The probabilities for rounding
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Algorithm 2: Semi-greedy solution construction: dynamic version.
DynamicSemiGreedy()
(1) C := {1, . . . , n}
(2) while C 6= {}
(3) solve relaxation with all variables xi, i ∈ C relaxed
(4) randomly select index k from C
(5) draw random integer r with some distribution
(6) x̄k := r
(7) C := C\{k}
(8) return x̄

up or down each of the variables are given by the distance from the fractional solution, xR
k , to

its closest integers. For an index k ∈ {1, . . . , n}, the random value r is drawn with the following
probabilities:

P (r = bxR
k c) = 1− (xR

k − bxR
k c)

P (r = dxR
k e) = (xR

k − bxR
k c)

These distributions might generate solutions which are too similar to the solution of the relaxation;
in particular, is a variable is integer in the relaxation, it will only be assigned that integer value
in all the constructed solutions. In general, construction with this distribution will not have
asymptotic convergence to the optimum, for an infinite number of tentatives.

Bi-triangular construction. The goal of this strategy is to increase the diversification, while
keeping a good quality of the solutions, on average. We now extended the possibility of rounding
each variable xk to any integer between its lower-bound, lk, and its upper-bound, uk, with a
distribution that has a mean of xR

k .
A density function that can be used is the bi-triangular distribution, composed by two triangles,

which is defined by three parameters: the minimum a that is equal to lk − 0.5, the maximum b
that is equal to uk + 0.5, and the mean c, equal to the relaxation value. The probability density
function is given by:

f(x) =


2(b−c)(x−a)
(b−a)(c−a)2 if a ≤ x ≤ c
2(c−a)(b−x)
(b−a)(b−c)2 if c < x ≤ b

0 otherwise

We draw a random number x using this distribution, and let r be its closest integer. The bi-
triangular density function is represented in figure 1. This distribution spans the whole domain
of each of the variables, and hence has asymptotic convergence to the optimum for an infinite
number of solutions generated.

4.2 Neighbourhoods

Meta-heuristics based on local search try, at some point, to improve the quality of a solution by
hill climbing on its neighbourhood. For this purpose we propose neighbourhoods that consist of
incrementing or decrementing variables, independently or simultaneously.

The variables that are considered on these neighbourhoods are the integer one, as the contin-
uous, if some, are determined in function of them in a second stage problem.

4.2.1 Increment neighbourhood

The increment neighbourhood of a solution x, N1(x), is composed of solutions which differ from
x in one element xj , whose value is one unit above or below xj . Hence y is a neighbour solution
of x if for one index i, yi = xi + 1, or yi = xi − 1, with yj = xj for all indices j 6= i.
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Figure 1: Bi-triangular density function.

N1(x) =
{

y ∈ Z : y can be obtained from x by adding or subtracting one unit
to an element of x

}
The idea used on this neighbourhood can be extended to the case where we change more than

one variable at the same time. For example, the 2-increment neighbourhood of a solution x,
N2(x), is composed of solutions which differ from x on two elements xi and xj , whose values are
one unit above or below the original ones. Hence y is a neighbour solution of x if for two indices
i, j we have yi = xi + 1 or yi = xi − 1, and yj = xj + 1 or yj = xj − 1, with yl = xl for all indices
l 6= i, l 6= j.

More generally, we can define the k-increment neighbourhood as:

Nk(x) =
{

y ∈ Z : y can be obtained from x by adding or subtracting one unit
to k of its elements

}
When k increases, the number of neighbours of a solution increases exponentially. We may use

a strategy for reducing the size of the set of neighbours that is explored. Let O be the set of indices
of variables which appear in the objective function. For a feasible solution x, one may search only
the subset of Nk(x), where at least one variable whose index is in O is changed. Identically, for an
infeasible solution x, let V be the set of indices of variables which appear in the constraints that
were violated. One may search only the subset of Nk(x) where at least one variable has an index
in V (x). If either O or V (x) are empty, then the important integer variables only indirectly affect
the objective or violated constraints, and this heuristic will not work. In this case, one should
search the whole neighbourhood Nk(x).

If one can afford spending a large time in the search, one might consider a superset of the
k-increment neighbourhood:

Nk
d (x) =

{
y ∈ Z : y can be obtained from x by adding or subtracting d or less
units to k of its elements

}
A version of the N1 neighbourhood was proposed in (Resende and Feo, 1996) for satisfiabil-

ity problems, where there are only binary variables. The 1-flip neighbourhood proposed there
consisted of negating the value of the variable in one index, and keeping all the other variables
unchanged.
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4.2.2 Hunt search

Hunt search was originally conceived for locating values in an ordered table; search started with a
unit step, and the step was doubled at each iteration, until having crossed the wished value. When
applied to local search, the idea is to check for improvements in the objective (or infeasibility)
when one of the n integer variables is independently perturbed, with a geometrically increasing
step. The steps are 1, 2, 4, 8, . . .; therefore, for an index k values searched are going to be x̄k +
1, x̄k + 3, x̄k + 7, . . ., or its symmetric x̄k − 1, x̄k − 3, x̄k − 7, . . ..

Hunt search stops when there are no more improvements on the objective, or when the bound
of the variable has been crossed.

This method can lead to dramatic reductions on the time consumed when one is making
improvements in a solution where the upper and lower bounds are far apart, and the initial solution
is not close to a local optimum. It should, therefore, be a complement of the implementation of
the neighbourhood search.

4.3 Meta-heuristics

Many meta-heuristics which are based on local search can be used for combining a construction
and a local search of the neighbourhoods defined above.

A basic tool that should be provided is, of course, simple local search.
Iterated local search, or a variant of GRASP, might be the next step. Using this method

with an appropriate construction will combine fast generation of good solutions with asymptotic
convergence to the optimum, and might therefore please many of the users.

Tabu search seems to be a good way of pursuing, as it will allow fast generation of good
solutions, and possibly a better quality of the solutions, on average, than the preceding methods.
One might combine it with a restart procedure when stagnation is observed, especially if theoretical
convergence to the global optimum is required.

Simulated annealing and evolutionary algorithms are also possible ways of enlarging the meta-
heuristics stack; but on these cases, parameterisation might pose some problems, as the amount of
information that is required from the user might be a burden that one cannot afford in a general
tool.

5 Interface with mathematical programming tools

For linear problems, the most commonly used format for communicating a problem to a solver is
the MPS format. This is a rather old and limited format, but is still the de facto standard. All
major mathematical programming systems have the possibility of generating MPS files from the
(linear) model and data. Meta-heuristics for these cases were already implemented, with interfaces
using this protocol.

For non-linear problems, there is no such wide-spread standard as the MPS, and most likely
the interface will have to be implemented in a case-by-case basis. An interface to the AMPL
language (Fourer et al., 1993) is currently under way.

For the exact solution of a MIP, the solver might be called with no information other than
the model itself. On the other hand, in order to have control over the meta-heuristic, some
information concerning the solution strategy has to be passed; at a bare minimum, the stopping
criterion should be stated, using default values for all the other settings. Useful information that
can be transmitted when solving a problem with a meta-heuristic includes:

Stopping criterion: most commonly, the maximum time/iterations allowed.

Construction: the type of construction to be employed. At least two options should be available:
random and greedy construction.

Neighbourhood: the type of neighbourhood to be used in the search.
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Method: the meta-heuristic method to employ. Possibly, simple local search should be the default
value.

One interesting feature that a mathematical programming system might allow to explore con-
cerns the integration of the meta-heuristic with exact approaches. One might be interested in
using a solution provided by the meta-heuristic for eliminating subtrees of a branch-and-bound
process, and similarly make the meta-heuristic search from a partial solution found in the branch-
and-bound; particularly, if the branch-and-bound has to be interrupted, one might want to make
sure that the solution is a local optimum before using it in some practical application.

6 Conclusion

In this paper we have provided the basis for implementing meta-heuristics for a general non-linear,
mixed integer program, provided it has a model in mathematical programming.

The main idea underlying the proposed methods is the possibility of enlarging the use meta-
heuristics to the community of operations researchers which are used to specifying models in
mathematical programming.

Though implementation of these ideas has been done for some specific cases, most of the
situations are not is still not handled. Its implementation is required for assessing the quality and
efficiency of the methods in practice.
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