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1 OverviewThe problem handled in this paper has been posed in [1]. It consists of thefollowing: suppose we have a newspaper depot at some location in a city, a setof distributors, and a set of nodes of subscribers where the newspapers should bedelivered. The objective is to distribute a newspaper to each of the subscribers,and minimise the time of delivery to the last-served subscriber (or, equivalently,the total distance ran by the distributor who is assigned the longest path).When two or more solutions have the same objective, the one with thesmallest average distribution time is preferred.Distances between nodes in the city are given by the sum of the verticaldistance with the horizontal distance between the nodes (i.e., the city has onlyvertical and horizontal streets).The approach described in this paper consists on heuristics that combinelocal search with global search methods, which are intended to, respectively,intensify and diversify the search. Hence, local search routines �nd a localoptimum for a given initial solution, whilst global search supplies the initialsolutions where to perform local search.The local search routines have been designed speci�cally for this problem;they are described in section 2. Global search is based on the niche searchalgorithm [5], and is described in section 3.1.1 Representation of the solutionsThe map of the city is represented by a set of nodes M = f0; 1; : : : ; Sg, where0 denotes the depot, and S is the number of subscribers. Each node n 2 M ischaracterised by its coordinates (xn; yn).The set of distributors is represented by D = f1; : : : ; Dg, where D is thetotal number of distributors used.We represent a solution x of the problem by a set of vectors, x = fp1; : : : ; pDg,where the elements of a given vector pi are the cities that the distributor i vis-its, in the order of the visit. The dimension of each of these vectors is n(i),the total number of nodes visited by distributor i (excluding the depot); hence,pi = [pi0 ; : : : ; pin(i) ].For the purpose of the heuristics discussed in this paper, we have reliedexclusively on feasible solutions. A solution is feasible i� all the subscribers(i.e., all the nodes in the map) are visited exactly once by a distributor, andall the distributors start at the depot. More formally, if we consider a problemwith S subscribers and D distributors, we de�ne the set of feasible solutions Fas the set of x = fp1; : : : ; pDg such that:� pi0 = 0 8i 2 D� pij 2M n f0g 8i 2 D; j 2 f1; � � � ; n(i)g� 8s 6= 0 2M 9!(i; j) : i 2 D; j 2 f1; : : : ; n(i)g; pij = s1



For example, a vector p2 = [0; 4; 2; 5] in the solution set means that the dis-tributor 2 starts at the depot (i.e., at node 0), and supplies the subscribers atnodes 4; 2 and 5, in this order. The total time taken by this distributor is henceti = dist(0; 4) + dist(4; 2) + dist(2; 5), where the distances dist(n;m) are thesum of the absolute values of the di�erence of the coordinates: dist(n;m) =jxn � xmj+ jyn � ymj.1.2 De�nition of the objectiveThe objective of this problem is to minimise the time of serving the subscriberwhich is served the latest. The time of serving the latest of the subscribers inthis solution is given by: t(x) = maxi2D tiwhere ti is the time at which the subscriber pin(i) is served:ti = n(i)Xj=1 dist(pij�1 ; pij )As mentioned above, there is another goal in this problem: to select, fromthe solutions which lead to the best objective (if there are more than one), theone with the smallest average distribution time. The average time of serving fora solution x is given bya(x) =Xi2D n(i)Xj=1 dist(pij�1 ; pij )(n(i)� j + 1)SFor the purposes of the heuristic that we implemented, we have relied on aclassi�cation of the individuals based on these two goals. If we denote themaximum of the distribution times of a solution x by t(x), and the averagedistribution time by a(x), solution x1 is said to be better than x2 (x1 � x2) i�:� t(x1) < t(x2), or� t(x1) = t(x2) and a(x1) < a(x2).2 Local searchThe local search heuristic that we have devised for this problem comprises thesearch of several types of neighbourhoods, which is performed iteratively untilno further improvement is obtained.The neighbourhoods devised for this problem are divided into two maincategories: exchanges of nodes between two distributors, and operations on thepath of each of the distributors. In the �rst category, we consider node pushingfrom one distributor to another and node exchanges between two distributors.2



In the second one, we consider 2- and 3-change neighbourhoods, and 2-swapneighbourhood within the path of each of the distributors.All the neighbourhoods that we consider in this paper are de�ned on the setF of feasible solutions.2.1 Node pushing neighbourhoodThe neighbourhood Np de�ned by node pushing from one distributor to anotheris de�ned as follows:Np(x) = fy : y 2 F and y can be obtained from x as follows: given the pathspi; pj 2 x of any two distributors i and j of x, remove one node pia ; a > 0 fromi and insert it in the path of jg.2.2 Node exchange neighbourhoodNode exchanges between two distributors i and j de�nes a neighbourhood Neas follows:Ne(x) = fy : y 2 F and y can be obtained from x as follows: given the pathspi; pj 2 x of any two distributors i 6= j in x, consider the ath node from path iand the bth node from path j, a; b > 0; then, swap nodes pia with pjbg.2.3 2-change neighbourhoodThe 2-change neighbourhood for the Manhattan problem is an adaptation of the2-change neighbourhood de�ned by Lin [3] for the travelling salesman problem.The idea is to operate on the paths of each of the distributors independently,by removing two edges and replacing them with another two (di�erent) edges.This neighbourhood is hence de�ned as:N2(x) = fy : y 2 F and y can be obtained from x as follows: given a pathpi 2 x, de�ning the set of nodes N visited by a distributor i, remove two edgesfrom this path and replace them with two other edges with both endpointson Ng.2.4 3-change neighbourhoodThis neighbourhood is an extension of the preceding one, where 3 arcs areremoved and replaced. It also corresponds to an adaptation of the 3-changeneighbourhood de�ned in [3] to the Manhattan problem.N3(x) = fy : y 2 F and y can be obtained from x as follows: given a pathpi 2 x, de�ning the set of nodes N visited by a distributor i, remove three edgesfrom this path and replace them with three other edges with both endpointson Ng.Notice that N2 � N3.
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2.5 2-swap neighbourhoodThe 2-swap neighbourhood operates on the paths of each of the distributorsindependently, by exchanging the position of 2 nodes of the path.Ns(x) = fy : y 2 F and y can be obtained from x as follows: given a pathpi 2 x, de�ning the path of a distributor i, swap the node at position a > 0, piawith the node at position b > 0, pibg.2.6 IteratingLocal search is performed by combining the neighbourhoods described above.Given a starting (feasible) solution, each neighbouring region is explored, all theimproving solutions being accepted. Search proceeds by iterating through theseneighbourhoods, and repeating until no further improvement is achieved.Improvement in this context means that we can �nd a solution y in someneighbourhood of the current solution, x, such that y � x (and hence y replacesx). As there are multiple possibilities of combining the search on each of theseneighbourhoods, we had to determine a strategy which would, from one side,provide as good as possible local optima, and from the other side be parsimo-nious in what concerns the computational burden.We have made some preliminary tests using random-start local search, andmore speci�c tests at the time of their integration in the evolutionary algorithm.The results obtained for random-start local search are presented in section 4.2,table 2.The complete local search strategy that appeared to perform best, startingwith purely random feasible solutions1, is the following:get a feasible solution x0Procedure Local Search(x0)t = 0do Start the iterative procedure.t = t+ 1xt = xt�18y 2 Np(xt) if (y � xt) xt := y Search all the neighbourhoods in a given order.8y 2 Ne(xt) if (y � xt) xt := y8y 2 Ns(xt) if (y � xt) xt := y8y 2 N3(xt) if (y � xt) xt := ywhile (xt � xt�1)return xtend procedureNote that there are two possibilities for updating the best solution whensearching in a particular neighbourhood. The �rst one, called best-updating,consists of searching the best solution y� in the entire neighbourhood. If it1These where obtained as follows: randomly choose one of the nodes to visit on the map(from those which are not yet assigned), and randomly assign it to a distributor.4



is better than our current solution x, then replace x by y�. The second one,called better-updating, consists of replacing x during the local search wheneverthe current neighbour generated yi is better than x. In this case, the subse-quent \neighbour" yi+1 is obtained from the new solution x, and hence doesnot belong to the initial neighbourhood. Better-updating is used in our im-plementation because it generally provides superior results, as the number ofsolutions \tried" in each local search is larger. The notation used above, in theprocedure Local Search, is therefore slightly misleading.3 Niche searchEvolutionary algorithms function by maintaining a set of solutions, generallycalled a population, and making these solutions evolve through operations thatmimic the natural evolution: reproduction and selection of the �ttest. Some ofthese operators where customised for the concrete class of problems that we aredealing with in this paper; we focus on each of them in following sections.Niche search is an evolutionary algorithm where the total population isgrouped into separate niches, which evolve independently. The claim is thatthis way several more localised searches are done at the same time, inside eachof the niches; we hence expect to keep a good compromise between intensi�ca-tion of the search and diversi�cation of the population.Niches are subject to competition between them. The bad niches (i.e., thosewhich have worse populations) tend to extinguish: they are replaced by newones, which are formed by elements selected from a \good" niche and the ex-tinguishing one.3.1 Representation of the solutionsThe representation of a solution in the evolutionary algorithm is done identicallyto representation for the local search methods, described in section 1.1. Hence,the genome of an individual kept in the algorithm's population is representedby a set of vectors p = [p1; : : : ; pD], where pi = [pi0 ; : : : ; pin(i) ]. The geneticoperations for reproduction are described in the subsequent sections.3.2 MutationThe mutation operator that we have devised for this problem consists on select-ing a subpath inside the complete path of one of the distributors, removing it,and inserting it into the path of another distributor. This way we expect thatafter mutation many of the (probably good) subpaths of the original genomewill be kept in the mutant.In niche search there are two parameters controlling mutation: intensity andprobability of mutation. The probability of occurrence of mutation determinesif it actually occurs or not; the intensity of the mutation determines the impor-tance of the changes induced by this operator, i.e., the size of the subpath (the5



number of its nodes) that is to be removed from one distributor's path, andinserted in another one's.Suppose for example that we have an instance with 10 nodes and two dis-tributors. Our solution could be:[0 1 2 3 4 5] [0 6 7 8 9 10]If the subpath for mutation is [7 8 9], one solution that could potentially beobtained is[0 1 2 3 7 8 9 4 5] [0 6 10]3.3 CrossoverIn evolutionary algorithms crossover always means to operate on two solutionsof a given problem (the parents) to produce a third one (their descendent).One of the philosophical ideas motivating the crossover operation is thatwhen two solutions are very similar, the o�spring resulting from crossover be-tween them should also resemble them. In particular, two identical solutionsshould be able to produce a single o�spring, identical to them. The aim isto be able to somehow make the search region more concentrated in \good"subregions, as the evolutionary process goes on.We have devised a speci�c version of this operator to the Manhattan prob-lem. It consists of the following: take some subpaths of one of the solutions;then remove all the nodes in these subpaths from the other solution; �nally, ran-domly insert all the subpaths in the second solution, producing another feasiblesolution. The aim is to keep many of the subpaths of the parents unchanged inthe o�spring.More concretely, what we do is to select a subpath in one of the parents andinsert it on the other parent in such a way that the arc connecting the subpathto that solution is kept. Suppose for example that the subpath to insert in agiven solution is [1 2 3]; then, we start searching the arc ending in node 1 inthat solution. Admitting that this is the arc [. . . 5 1 . . . ], the o�spring producedwould have this path changed to [. . . 5 1 2 3 . . . ].As another example, consider the 10-node 2-distributor instance again. Ifwe are given the solutionsx1 = [0 1 2 3 4 5] [0 6 7 8 9 10]x2 = [0 1 3 5 7 9] [0 2 4 6 8 10]one possible subpath to choose at the crossover could be [2 3 4] from solutionx1. We search for the arc ending in node 2 in the solution x2, which is the arc[0 2 . . . ] from the second distributor. We then remove the nodes 2, 3 and 4from x2, obtaining x2 = [0 1 5 7 9] [0 6 8 10]Now we are ready to insert the subpath, obtaining:x2 = [0 1 5 7 9] [0 2 3 4 6 8 10]6



As with mutation, niche search has two parameters controlling the crossover:one determines the probability of occurrence, and the other sets the intensity ofthis operation. The intensity determines the number of crossovers to performand the size of the subpaths for each of them.3.4 Local searchIn our implementation we have decided to always bind a (probably non locally-optimal) new solution obtained by a genetic operation (crossover and mutation)into a local optimum. This means that a local search is performed every time anew individual is generated by the genetic part of the algorithm. The procedurefor the generation of a new element is, hence:select parents (p1, p2)Procedure Reproduce(p1; p2)create son s := crossover(p1, p2) Start the generation with crossover (section 3.3).s0 := mutation(s) Mutate the new solution (section 3.2).x := Local Search(s0) We �nish the generation of the new element performing a localsearch procedure, starting at solution s0 (section 2).return xend procedure3.5 Selection in each niche: rank-based �tnessesAs explained in section 1.2, there are two goals to achieve in this problem:�rstly, try to achieve an objective as good as possible; then, if the solution isdegenerated, choose the one with the smallest average distribution time. Thismotivates to have the selection of the individuals that are able to reproduce ateach generation based on their ranking, according to the two goals described onthat section.In niche search there is a parameter of each niche, called the selectivity,which controls the probability of selection of each individual in relation to theircompetitors. If this parameter is very low, then the probability of selection ofthe best individuals is only slightly greater than the probability of selection ofthe worst; if it is high, then the best individuals have a much greater probabilityof selection, what means that the \genetic information" of the worse ones is notlikely to propagate to the future generations.The way we handle this issue with the Manhattan problem is the following:we give a �tness for each individual based on its ranking. In a population of nelements, the best is assigned a �tness of 1 (i.e., n=n), the second-best (n�1)=n,up to the worse, whose �tness is 1=n. We then elevate this value to a power,greater or equal to zero, which is the selectivity parameter of the niche2, toobtain the scaled �tness of each individual.2This parameter may change with the phase of evolution; generally, it is low at the be-ginning of the evolutionary process and high at the end, thus increasing the selectivity stresswith time. 7



The selection is then performed through roulette wheel selection, giving toeach individual a probability of selection proportional to its scaled �tness (see,for example, [2] for a description of roulette wheel selection).3.6 ElitismElitism determines whether the best solution found so far by the algorithm iskept in the population or not. As mentioned before, niche search keeps severalgroups, or niches, evolving with some independence. Each of these groups maybe elitist (keeping its best element in its population) or not. Elitism generallyintensi�es the search in the region of the best solution.Our objectives are two fold: we want the search to be as deep as possiblearound good regions, but we do not want to neglect other possible regions. Thestrategy that we devised for accomplishing this is the following: niches whosebest individual is di�erent of the best individual of other niches are elitist. Whenseveral niches have an identical best individual (and this occurs frequently), onlyone of them is elitist. With this strategy we hope to have an intensi�ed searchon regions with good solutions, and at the same time enforce some degree ofdiversi�cation.3.7 Niche search core algorithmWe summarise now the main steps of the functioning of the niche search al-gorithm. This is the kernel algorithm, which drives the population operationsmaking use of the solution representation and genetic operators described in thepreceding sections. As we said before, niche search is characterised by evolu-tion in two layers: in the higher layer, there is the evolution of niches, subjectto competition between them. Each iteration of this process is called a nichegeneration, or simply a generation . In the lower layer, the individuals that com-pose each niche evolve inside it, competing with other individuals of the niche.Each iteration of this lower layer process is called an individual's generation, ora subgeneration.The code describing the evolution of the set of niches, in what we call a nichegeneration, is presented below.
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set t := 0 Start with an initial time.niches(t) = CreateNiches(t) Create the desired number of niches for the run.InitParameters(niches(t)) Randomly initialise the parameters that characterise each niche:crossover probability and intensity, mutation probability and intensity, etc.InitialisePopulation(niches(t)) Randomly initialise the population of each niche.Evaluate(niches(t)) Evaluate the �tness of all the niches in the initial population. Forevaluating a niche, we used the �tness of its best element (other strategies are also possible).iterate Start evolution.Breed(niches(t)) Create a new generation of individuals in each of the niches, throughthe lower layer evolution process described below.Evaluate(niches(t)) Evaluate the new niches.weak(t) := SelectWeak(niches(t)) Select the niches that will extinguish.strong(t) := SelectStrong(niches(t)) Select the niches that will be used forgenerating new niches.newniches(t) := Recombination(weak(t),strong(t)) Create a new niche forreplacing each of the extinguishing ones. The recombination strategy used is tocreate a population formed of the union of the weak niche with a strong one. Then,replace the individuals of the weak niche by a selection of the best individuals fromthat population.InitParameters(newniches(t)) Assign random parameters to the created niches.Evaluate(newniches(t)) Evaluate the new niches.Extinguish(weak(t), niches(t)) Remove the weak niches from the populationInsert(newniches(t), niches(t)) and include the newly created ones.niches(t+1) := niches(t)t := t + 1 Increase the time counter.until Terminated() Termination criteria: number of generations completed.display solution Solution is the best individual found.Notice that all the parameters that characterise each niche (selectivity, muta-tion intensity and probability, etc.) are determined exogenously and randomly.The (random) values of the mutation intensity and of the crossover intensityare multiplied by a value, which linearly decreases with the generations passed,being 1 at the beginning and 0 at the end; the selectivity is multiplied by avalue, which linearly increases with the generations past, being 0 at the begin-ning and 1 at the end. The aim of this is to force the population to be moreand more homogeneous, as the number of generations increases (and solutionsare hopefully closer to the optimum).We now turn to the evolution of the individuals inside each of the niches.Pseudo-programming code describing how individuals breed at each generationof the niche evolution (i.e., describing what a subgeneration is) is presentedhere. Notice that this process is repeated for each of the niches, at each nichegeneration.
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Procedure Breed(niches(t))for all niche in niches(t) do ( t is the niche generation counter).g := 0 Initialise the \subgeneration" counter.population(g) := niche Set the reference population: (only) the elements of theniche that is now breeding.iterate Start evolution.for all element in o�spring(g) dop1 = Selection(population(g)) Select parents for reproductionp2 = Selection(population(g)) (in our implementation throughroulette wheel selection).element := Reproduce(p1; p2) Create the o�spring using theoperators described in (section 3.4).doneEvaluate(o�spring(g)) Evaluate the objective of all the individuals in theniche's population. Scale to obtain the �tnesses (section 3.5).population(g+1) := o�spring(g) Future population is the o�spring.g := g + 1 Increase the subgeneration counter.until Terminated() Termination criteria: maximum subgenerations achieved, orbest individual of current population is not better than that of lastsubgeneration's (and minimum subgenerations are not achieved yet).niche := population(g) Update niche's population. This niche is now ready tostart competition with the others.doneend procedure4 Numerical results4.1 The problem instanceOne instance of this problem has been de�ned in [1]. In this instance, we aregiven the coordinates of 120 subscribers of a newspaper, located in the city ofManhattan, and the coordinates of the depot. We want to allocate the nodes to4 newspaper distributors, for optimising the objective of the problem and thesubsequent goal.The coordinates of the subscribers nodes are presented in table 1.4.2 Random-start local searchIn this section we summarise the results obtained for several possibilities ofcombinations of searching the neighbourhoods de�ned in section 2. For each ofthe composite neighbourhoods, we iterate through all the neighbourhood untilno further improvement (over the preceding iteration) is achieved.The initial solutions were obtained as follows: randomly choose one of thenodes to visit on the map (from those which are not yet assigned), and randomlyassign it to a distributor.In the random composite neighbourhood, the order of searching each of theneighbourhoods is randomly determined at each iteration. The motivation for10



Depot x y0 375 375Node x y Node x y Node x y1 17 310 41 186 440 81 368 2302 39 85 42 188 63 82 371 4703 48 403 43 194 433 83 375 3874 49 444 44 197 352 84 375 4015 55 153 45 200 376 85 390 3796 59 250 46 211 462 86 391 4417 59 476 47 212 140 87 392 1838 62 353 48 222 181 88 392 1969 81 441 49 223 21 89 396 42010 85 367 50 223 328 90 397 9611 85 419 51 233 27 91 399 36512 89 418 52 235 405 92 406 10313 105 376 53 239 229 93 408 15814 109 258 54 276 231 94 410 15215 110 411 55 284 362 95 410 20316 110 447 56 286 24 96 410 43217 118 413 57 292 148 97 412 12818 120 49 58 299 188 98 413 23619 120 451 59 302 184 99 413 47320 120 459 60 317 237 100 417 46621 122 104 61 320 331 101 418 21122 133 410 62 323 137 102 421 21823 142 439 63 324 85 103 421 49524 145 412 64 325 74 104 429 42025 146 364 65 329 217 105 434 32126 161 190 66 335 109 106 436 25327 161 414 67 338 168 107 438 46528 161 434 68 338 208 108 443 49129 162 458 69 338 332 109 444 39830 165 374 70 342 143 110 444 46831 167 399 71 345 427 111 449 45232 178 409 72 346 247 112 452 14133 179 265 73 353 350 113 452 39434 179 365 74 353 488 114 453 37935 179 427 75 354 135 115 479 41236 182 359 76 356 113 116 483 48737 184 76 77 362 491 117 484 42438 184 198 78 364 129 118 485 41939 185 124 79 365 34 119 489 48040 186 169 80 368 129 120 496 409Table 1: Coordinates of the Manhattan subscribers11



implementing it was to provide a more robust composite composite local searchmethod, but it turns out that the results obtained were considerably worse thanany of the other combinations. This result is quite surprising, as one couldimagine that a random choice of the neighbourhood would widen the compositeneighbourhood. Best Average CPUNeighbourhood t(x) t(x) time (s)Np!N3!Ne!Ns 1292 1512.9 5223Np!N3!Ns!Ne 1286 1509.7 4492Np!Ne!N3!Ns 1275 1495.7 4433Np!Ne!Ns!N3 1269 1494.1 4373Np!Ns!N3!Ne 1290 1509.9 6363Np!Ns!Ne!N3 1268 1507.2 4474random order 1310 1581.3 4125Table 2: Solutions obtained for local search on 2500 random starting points,using di�erent composite neighbourhoods.The best composite neighbourhood seems to be, hence, Np!Ne!Ns!N3;further results, which seem to con�rm its superiority, are presented in table 3.This is the local search neighbourhood that we have decided to include in theniche search. Run Best t(x) Average t(x) CPU time (s)1 1280 1497.8 43722 1247 1496.6 43653 1297 1495.8 43364 1285 1495.3 43255 1273 1497.9 43696 1265 1494.7 43997 1291 1494.5 44098 1259 1497.5 43259 1257 1497.4 432910 1259 1494.5 4423Table 3: Results obtained for 10 independent runs of local search with theneighbourhood Np ! Ne ! Ns ! N3, each of them being the result of 2500searches with random starting points.4.3 Niche searchFor the purpose of comparing niche search with local search, we have dividedthe results into two series: one in which niche search performs the same amount12



of local searches that were performed in the random-start tests, and anotherwhere the computational time is identical. Notice that local search tends to takemuch less time inside niche search, because the number of iterations requiredto \stabilise" the solution (i.e., obtain no further improvements through localsearch) is smaller. The reason for this is that, as we often start the local searchfrom a good solution, it is easier to reach the point where it produces no furtherimprovement.Previous experiments with niche search have shown that small populationsand a small number of niches tend to provide a good compromise betweenrobustness and computational requirements [6]. The number of niches and thepopulation of each niche that we used for obtaining the results described in thissection are, hence, relatively small. For an increased reliability, a larger numberof these should be adopted (especially a larger number of niches, as this wouldstrongly diminish the probability of getting stuck in a local optimum).4.3.1 Identical number of local searchesFor this series of runs, we have tuned the algorithm's parameters in such away that the number of local searches (i.e., the total number of individualsgenerated) is the same used for testing local search (section 4.2).These results show a clear improvement over random-started local search.The average solution found by niche search, 1223.4, is much superior to the onefor by pure local search, represented in table 3 (1271.3), the improvement beingabout 3.9%. Notice that the best solution found by random started local search(1247) is worse than the worst obtained by niche search (1234).For the results presented in table 4, we have used 5 niches, each composedof 3 individuals (hence a total population of 15 individuals), which we madeevolve for 25 generations, inside which each niche could produce from 5 subgen-erations (if no improvement is made after the 5th subgeneration) to 10 (if allsubgenerations lead to improvements).4.3.2 Identical computational timeFor this series of runs, we have tuned the algorithm's parameters in such a waythat the computational time required is identical to the one that was used inthe series of random start local search (this implies that the number of localsearches performed in niche search is greater than those performed in randomstart local search).Results obtained here provide a further improvement of about 1.2% over theprevious section. We arrive to an improvement over random started local searchof about 5.2%, for a slightly smaller computational time. These results showa clear interest in using niche search as a mechanism for controlling the startsolution of local search.For the results described in this section, we have used 5 niches, each com-posed of 3 individuals (hence a total population of 15 individuals). Nichesevolved for 75 generations, each having from 5 to 10 subgenerations.13



Local CPURun t(x�) a(x�) searches time (s)1 1234 647.6 2535 13972 1246 616.8 2529 14213 1205 600.7 2458 13974 1219 620.5 2461 13645 1241 658.1 2488 14246 1210 568.0 2435 13037 1226 600.7 2444 12548 1220 612.5 2527 13609 1216 616.9 2422 134510 1217 625.2 2536 1471Table 4: Niche search: results obtained for 10 independent runs with approxi-mately 2500 calls to the local search routines (i.e., a total of about 2500 gener-ated individuals).
Local CPURun t(x�) a(x�) searches time (s)1 1225 596.7 7769 4133.32 1209 602.0 7635 3861.23 1217 609.1 7719 3901.24 1191 590.3 7789 3600.95 1204 589.2 7731 4116.16 1217 632.9 7724 4313.87 1202 592.9 7726 3934.68 1211 596.7 7671 4202.69 1213 616.5 7812 3863.610 1196 549.4 7726 4051.1Table 5: Niche search: results obtained running the algorithm the same amountof computational time that 2500 random-start local searches take.
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We �nish by showing the circuit obtained for the best solution found in theseruns, together with the best solution found before the average time (the secondgoal) was considered in the classi�cation of the individuals. These solutions arerepresented in �gures 1 and 2, respectively.
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Figure 1: Best solution found: overview of the paths followed by each of thedistributors. Depot is at node 0. 15
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Figure 2: Another solution with the same objective, but with a higher (worse)average time.
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5 ConclusionIn this paper we describe a hybrid strategy for solving combinatorial optimi-sation problems which is obtained combining an evolutionary algorithm withlocal search methods. We apply this strategy to tackle the Manhattan newspa-per problem. Although this strategy does not provide any results in terms ofthe closeness to the optimum of the problem we deal with (which, to the best ofour knowledge, at the present time is unknown for the speci�c instance that wastreated), it does provide interesting results in terms of achieving good feasiblesolutions (upper bounds). A combination of this strategy with another work-ing on the lower bound would be of great value, and is certainly an attractivedirection for future research.The results obtained by the hybrid strategy show a clear improvement of thecombination of evolutionary approaches with local search, which provide a mixof intensi�cation and diversi�cation procedures in the same algorithm. Improve-ments of the hybrid strategy over random start local search provide a measureof the performance of the niche search, which may be used for comparison withother evolutionary approaches.The elitist mode implemented proved to be an e�cient diversi�cation mech-anism: we observed that when the best niches propagated, many times the bestindividual in several niches would be the same. But, as between all the nicheswith the same best individual only one could be elitist, the best element of theothers would soon change, and very often lead to improvements afterwards.The roulette wheel selection based on a measure of the ranking was alsoan important point, as it allowed for considering the two goals of the problemin selection. It was also important in coping with the sometimes dramaticdi�erences that small changes in the structure of the solution imply in terms ofthe objective, as well as with the fact that often di�erent solutions lead to thesame objective value.There are several things that can be done in order to improve this heuristic,both in the local search strategies and in the niche search. On the side of thelocal search, we believe that the modi�cation that could probably bring betterimprovements might be increasing the number of nodes that distributors canexchange between them; i.e., distributors may be able to exchange subpathsbetween them, instead of only exchanging nodes. On the side of the nichesearch, there are two modi�cations that we believe may be worthy. The �rst isto allow di�erent niches to run di�erent local search methods; for example, eachniche might run a di�erent combination of the exploration of the neighbourhoodsde�ned in section 2. Another modi�cation, which is somehow related to thisone, is to \remunerate" each niche in terms of the improvement that it makeson the solution, instead on doing it in terms of the �tness of its individuals.
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