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Abstract

In this paper we describe a hybrid strategy for solving combinatorial
optimisation problems, obtained by coupling a local search method to an
evolutionary algorithm, and we provide an application to the Manhattan
newspaper problem.

The local search method has been devised specifically for this class of
problems. It is based on a composite neighbourhood, which is searched
iteratively up to the point where no further improvements can be made.

The evolutionary structure is the niche search, an algorithm based on
the evolution of several independent niches. Niches whose individuals’ fit-
ness is good remain, and the others tend to be replaced. The separation
of the population into niches allows for a good compromise between inten-
sive search (inside each niche) and diversification (through the separation
between the niches).

*The author would like to thank Prof. Yves Pochet and Prof. Laurence Wolsey for many
helpful discussions and valuable comments on this paper.



1 Overview

The problem handled in this paper has been posed in [1]. It consists of the
following: suppose we have a newspaper depot at some location in a city, a set
of distributors, and a set of nodes of subscribers where the newspapers should be
delivered. The objective is to distribute a newspaper to each of the subscribers,
and minimise the time of delivery to the last-served subscriber (or, equivalently,
the total distance ran by the distributor who is assigned the longest path).

When two or more solutions have the same objective, the one with the
smallest average distribution time is preferred.

Distances between nodes in the city are given by the sum of the vertical
distance with the horizontal distance between the nodes (i.e., the city has only
vertical and horizontal streets).

The approach described in this paper consists on heuristics that combine
local search with global search methods, which are intended to, respectively,
intensify and diversify the search. Hence, local search routines find a local
optimum for a given initial solution, whilst global search supplies the initial
solutions where to perform local search.

The local search routines have been designed specifically for this problem;
they are described in section 2. Global search is based on the niche search
algorithm [5], and is described in section 3.

1.1 Representation of the solutions

The map of the city is represented by a set of nodes M = {0,1,...,S}, where
0 denotes the depot, and S is the number of subscribers. Each node n € M is
characterised by its coordinates (z, yn).

The set of distributors is represented by D = {1,...,D}, where D is the
total number of distributors used.

We represent a solution z of the problem by a set of vectors, z = {p1,...,pp},
where the elements of a given vector p; are the cities that the distributor ¢ vis-
its, in the order of the visit. The dimension of each of these vectors is n(i),
the total number of nodes visited by distributor ¢ (excluding the depot); hence,
Pi = [Pigs > Pines |-

For the purpose of the heuristics discussed in this paper, we have relied
exclusively on feasible solutions. A solution is feasible iff all the subscribers
(i.e., all the nodes in the map) are visited exactly once by a distributor, and
all the distributors start at the depot. More formally, if we consider a problem
with S subscribers and D distributors, we define the set of feasible solutions F
as the set of x = {p1,...,pp} such that:
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For example, a vector p» = [0,4,2,5] in the solution set means that the dis-
tributor 2 starts at the depot (i.e., at node 0), and supplies the subscribers at
nodes 4,2 and 5, in this order. The total time taken by this distributor is hence
t; = dist(0,4) + dist(4,2) + dist(2,5), where the distances dist(n,m) are the
sum of the absolute values of the difference of the coordinates: dist(n,m) =

1.2 Definition of the objective

The objective of this problem is to minimise the time of serving the subscriber
which is served the latest. The time of serving the latest of the subscribers in
this solution is given by:
t(r) = maxt;
i€D

where ¢; is the time at which the subscriber p; , is served:

t; = Z diSt(pij—l 7pij)

=1

As mentioned above, there is another goal in this problem: to select, from
the solutions which lead to the best objective (if there are more than one), the
one with the smallest average distribution time. The average time of serving for
a solution z is given by

a(m):zzdst(pzj_l,p]k)g( () ]+1)
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For the purposes of the heuristic that we implemented, we have relied on a
classification of the individuals based on these two goals. If we denote the
maximum of the distribution times of a solution x by ¢(z), and the average
distribution time by a(z), solution z; is said to be better than z2 (z1 < z) iff:

o t(z1) < t(x2), or

o t(x1) = t(x2) and a(z1) < a(z2).

2 Local search

The local search heuristic that we have devised for this problem comprises the
search of several types of neighbourhoods, which is performed iteratively until
no further improvement is obtained.

The neighbourhoods devised for this problem are divided into two main
categories: exchanges of nodes between two distributors, and operations on the
path of each of the distributors. In the first category, we consider node pushing
from one distributor to another and node exchanges between two distributors.



In the second one, we consider 2- and 3-change neighbourhoods, and 2-swap
neighbourhood within the path of each of the distributors.

All the neighbourhoods that we consider in this paper are defined on the set
F of feasible solutions.

2.1 Node pushing neighbourhood

The neighbourhood N,, defined by node pushing from one distributor to another
is defined as follows:

N,(z) = {y : y € F and y can be obtained from z as follows: given the paths
pi,p;j € z of any two distributors ¢ and j of x, remove one node p;,,a > 0 from
i and insert it in the path of j}.

2.2 Node exchange neighbourhood

Node exchanges between two distributors ¢ and j defines a neighbourhood N,
as follows:

N.(z) = {y : y € F and y can be obtained from z as follows: given the paths

th

pi,pj € x of any two distributors ¢ # j in z, consider the "™ node from path 4

and the bt node from path j, a,b > 0; then, swap nodes p;, with p;, }.

2.3 2-change neighbourhood

The 2-change neighbourhood for the Manhattan problem is an adaptation of the
2-change neighbourhood defined by Lin [3] for the travelling salesman problem.
The idea is to operate on the paths of each of the distributors independently,
by removing two edges and replacing them with another two (different) edges.
This neighbourhood is hence defined as:

Ny(z) = {y : y € F and y can be obtained from z as follows: given a path
p; € z, defining the set of nodes A visited by a distributor 4, remove two edges

from this path and replace them with two other edges with both endpoints
on N'}.

2.4 3-change neighbourhood

This neighbourhood is an extension of the preceding one, where 3 arcs are
removed and replaced. It also corresponds to an adaptation of the 3-change
neighbourhood defined in [3] to the Manhattan problem.

N3(z) = {y : y € F and y can be obtained from z as follows: given a path
p; € x, defining the set of nodes N visited by a distributor 7, remove three edges
from this path and replace them with three other edges with both endpoints
on N'}.

Notice that No C N3.



2.5 2-swap neighbourhood

The 2-swap neighbourhood operates on the paths of each of the distributors
independently, by exchanging the position of 2 nodes of the path.

Ng(xz) = {y : y € F and y can be obtained from z as follows: given a path
p;i € x, defining the path of a distributor ¢, swap the node at position a > 0, p;,
with the node at position b > 0, p;, }.

2.6 Iterating

Local search is performed by combining the neighbourhoods described above.
Given a starting (feasible) solution, each neighbouring region is explored, all the
improving solutions being accepted. Search proceeds by iterating through these
neighbourhoods, and repeating until no further improvement is achieved.

Improvement in this context means that we can find a solution y in some
neighbourhood of the current solution, x, such that y < = (and hence y replaces

As there are multiple possibilities of combining the search on each of these
neighbourhoods, we had to determine a strategy which would, from one side,
provide as good as possible local optima, and from the other side be parsimo-
nious in what concerns the computational burden.

We have made some preliminary tests using random-start local search, and
more specific tests at the time of their integration in the evolutionary algorithm.
The results obtained for random-start local search are presented in section 4.2,
table 2.

The complete local search strategy that appeared to perform best, starting
with purely random feasible solutions', is the following:

get a feasible solution zg

Procedure Local_Search(zo)

t=20

do Start the iterative procedure.
t=t+1
T =Tp_1
Vy € Np(ay) if (y < ®t) ©e :=y Search all the neighbourhoods in a given order.
VY € Ne(oy) if (y < 3t) 20 1=y
Vy € Ny(o,) if (y <mt) 20 1=y
Yy € N3y if (y < 2t) 2t ==y

while (z: < x¢—1)

return x4

end procedure
Note that there are two possibilities for updating the best solution when

searching in a particular neighbourhood. The first one, called best-updating,
consists of searching the best solution y* in the entire neighbourhood. If it

I These where obtained as follows: randomly choose one of the nodes to visit on the map
(from those which are not yet assigned), and randomly assign it to a distributor.



is better than our current solution z, then replace z by y*. The second one,
called better-updating, consists of replacing x during the local search whenever
the current neighbour generated y; is better than z. In this case, the subse-
quent “neighbour” y;,1 is obtained from the new solution z, and hence does
not belong to the initial neighbourhood. Better-updating is used in our im-
plementation because it generally provides superior results, as the number of
solutions “tried” in each local search is larger. The notation used above, in the
procedure Local_Search, is therefore slightly misleading.

3 Niche search

Evolutionary algorithms function by maintaining a set of solutions, generally
called a population, and making these solutions evolve through operations that
mimic the natural evolution: reproduction and selection of the fittest. Some of
these operators where customised for the concrete class of problems that we are
dealing with in this paper; we focus on each of them in following sections.

Niche search is an evolutionary algorithm where the total population is
grouped into separate niches, which evolve independently. The claim is that
this way several more localised searches are done at the same time, inside each
of the niches; we hence expect to keep a good compromise between intensifica-
tion of the search and diversification of the population.

Niches are subject to competition between them. The bad niches (i.e., those
which have worse populations) tend to extinguish: they are replaced by new
ones, which are formed by elements selected from a “good” niche and the ex-
tinguishing one.

3.1 Representation of the solutions

The representation of a solution in the evolutionary algorithm is done identically
to representation for the local search methods, described in section 1.1. Hence,
the genome of an individual kept in the algorithm’s population is represented
by a set of vectors p = [p1,...,pp], where p; = [piy,...,pi,,]- The genetic
operations for reproduction are described in the subsequent sections.

3.2 Mutation

The mutation operator that we have devised for this problem consists on select-
ing a subpath inside the complete path of one of the distributors, removing it,
and inserting it into the path of another distributor. This way we expect that
after mutation many of the (probably good) subpaths of the original genome
will be kept in the mutant.

In niche search there are two parameters controlling mutation: intensity and
probability of mutation. The probability of occurrence of mutation determines
if it actually occurs or not; the intensity of the mutation determines the impor-
tance of the changes induced by this operator, i.e., the size of the subpath (the



number of its nodes) that is to be removed from one distributor’s path, and
inserted in another one’s.

Suppose for example that we have an instance with 10 nodes and two dis-
tributors. Our solution could be:

[012345][0678910]

If the subpath for mutation is [7 8 9], one solution that could potentially be
obtained is

01237 8945][06 10]

3.3 Crossover

In evolutionary algorithms crossover always means to operate on two solutions
of a given problem (the parents) to produce a third one (their descendent).

One of the philosophical ideas motivating the crossover operation is that
when two solutions are very similar, the offspring resulting from crossover be-
tween them should also resemble them. In particular, two identical solutions
should be able to produce a single offspring, identical to them. The aim is
to be able to somehow make the search region more concentrated in “good”
subregions, as the evolutionary process goes on.

We have devised a specific version of this operator to the Manhattan prob-
lem. It consists of the following: take some subpaths of one of the solutions;
then remove all the nodes in these subpaths from the other solution; finally, ran-
domly insert all the subpaths in the second solution, producing another feasible
solution. The aim is to keep many of the subpaths of the parents unchanged in
the offspring.

More concretely, what we do is to select a subpath in one of the parents and
insert it on the other parent in such a way that the arc connecting the subpath
to that solution is kept. Suppose for example that the subpath to insert in a
given solution is [1 2 3]; then, we start searching the arc ending in node 1 in
that solution. Admitting that this is the arc [...5 1 ...], the offspring produced
would have this path changed to [...5123...].

As another example, consider the 10-node 2-distributor instance again. If
we are given the solutions

21 =[012345][067809 10]
2, =[013579][02468 10]

one possible subpath to choose at the crossover could be [2 3 4] from solution
x1. We search for the arc ending in node 2 in the solution s, which is the arc
[02...] from the second distributor. We then remove the nodes 2, 3 and 4
from x5, obtaining

22 =1[01579][06 8 10]
Now we are ready to insert the subpath, obtaining;:

2, =[01579][023 468 10]



As with mutation, niche search has two parameters controlling the crossover:
one determines the probability of occurrence, and the other sets the intensity of
this operation. The intensity determines the number of crossovers to perform
and the size of the subpaths for each of them.

3.4 Local search

In our implementation we have decided to always bind a (probably non locally-
optimal) new solution obtained by a genetic operation (crossover and mutation)
into a local optimum. This means that a local search is performed every time a
new individual is generated by the genetic part of the algorithm. The procedure
for the generation of a new element is, hence:

select parents (p1, p2)

Procedure Reproduce(pi,p2)

create son s := crossover(pi, p2)  Start the generation with crossover (section 3.3).
’

s’ 1= mutation(s) Mutate the new solution (section 3.2).

x := Local_Search(s’)  We finish the generation of the new element performing a local
search procedure, starting at solution s’ (section 2).

return

end procedure

3.5 Selection in each niche: rank-based fitnesses

As explained in section 1.2, there are two goals to achieve in this problem:
firstly, try to achieve an objective as good as possible; then, if the solution is
degenerated, choose the one with the smallest average distribution time. This
motivates to have the selection of the individuals that are able to reproduce at
each generation based on their ranking, according to the two goals described on
that section.

In niche search there is a parameter of each niche, called the selectivity,
which controls the probability of selection of each individual in relation to their
competitors. If this parameter is very low, then the probability of selection of
the best individuals is only slightly greater than the probability of selection of
the worst; if it is high, then the best individuals have a much greater probability
of selection, what means that the “genetic information” of the worse ones is not
likely to propagate to the future generations.

The way we handle this issue with the Manhattan problem is the following:
we give a fitness for each individual based on its ranking. In a population of n
elements, the best is assigned a fitness of 1 (i.e., n/n), the second-best (n—1)/n,
up to the worse, whose fitness is 1/n. We then elevate this value to a power,
greater or equal to zero, which is the selectivity parameter of the niche?, to
obtain the scaled fitness of each individual.

2This parameter may change with the phase of evolution; generally, it is low at the be-
ginning of the evolutionary process and high at the end, thus increasing the selectivity stress
with time.



The selection is then performed through roulette wheel selection, giving to
each individual a probability of selection proportional to its scaled fitness (see,
for example, [2] for a description of roulette wheel selection).

3.6 Elitism

Elitism determines whether the best solution found so far by the algorithm is
kept in the population or not. As mentioned before, niche search keeps several
groups, or niches, evolving with some independence. Each of these groups may
be elitist (keeping its best element in its population) or not. Elitism generally
intensifies the search in the region of the best solution.

Our objectives are two fold: we want the search to be as deep as possible
around good regions, but we do not want to neglect other possible regions. The
strategy that we devised for accomplishing this is the following: niches whose
best individual is different of the best individual of other niches are elitist. When
several niches have an identical best individual (and this occurs frequently), only
one of them is elitist. With this strategy we hope to have an intensified search
on regions with good solutions, and at the same time enforce some degree of
diversification.

3.7 Niche search core algorithm

We summarise now the main steps of the functioning of the niche search al-
gorithm. This is the kernel algorithm, which drives the population operations
making use of the solution representation and genetic operators described in the
preceding sections. As we said before, niche search is characterised by evolu-
tion in two layers: in the higher layer, there is the evolution of niches, subject
to competition between them. Each iteration of this process is called a niche
generation, or simply a generation . In the lower layer, the individuals that com-
pose each niche evolve inside it, competing with other individuals of the niche.
Each iteration of this lower layer process is called an individual’s generation, or
a subgeneration.

The code describing the evolution of the set of niches, in what we call a niche
generation, is presented below.



sett:=0 Start with an initial time.
niches(t) = CreateNiches(t) Create the desired number of niches for the run.

InitParameters(niches(t)) Randomly initialise the parameters that characterise each niche:
crossover probability and intensity, mutation probability and intensity, etc.

InitialisePopulation(niches(t)) Randomly initialise the population of each niche.

Evaluate(niches(t)) Evaluate the fitness of all the niches in the initial population. For
evaluating a niche, we used the fitness of its best element (other strategies are also possible).

iterate Start evolution.

Breed(niches(t))  Create a new generation of individuals in each of the niches, through
the lower layer evolution process described below.

Evaluate(niches(t)) Evaluate the new niches.
weak(t) := SelectWeak(niches(t)) Select the niches that will extinguish.
strong(t) := SelectStrong(niches(t)) Select the niches that will be used for

generating new niches.

newniches(t) := Recombination(weak(t),strong(t)) Create a new niche for
replacing each of the extinguishing ones. The recombination strategy used is to

create a population formed of the union of the weak niche with a strong one. Then,

replace the individuals of the weak niche by a selection of the best individuals from

that population.

InitParameters(newniches(t)) Assign random parameters to the created niches.

Evaluate(newniches(t)) Evaluate the new niches.

Extinguish(weak(t), niches(t)) Remove the weak niches from the population

Insert(newniches(t), niches(t)) and include the newly created ones.

niches(t+1) := niches(t)

ti=t+1 Increase the time counter.
until Terminated() Termination criteria: number of generations completed.
display solution Solution is the best individual found.

Notice that all the parameters that characterise each niche (selectivity, muta-
tion intensity and probability, etc.) are determined exogenously and randomly.
The (random) values of the mutation intensity and of the crossover intensity
are multiplied by a value, which linearly decreases with the generations passed,
being 1 at the beginning and 0 at the end; the selectivity is multiplied by a
value, which linearly increases with the generations past, being 0 at the begin-
ning and 1 at the end. The aim of this is to force the population to be more
and more homogeneous, as the number of generations increases (and solutions
are hopefully closer to the optimum).

We now turn to the evolution of the individuals inside each of the niches.
Pseudo-programming code describing how individuals breed at each generation
of the niche evolution (i.e., describing what a subgeneration is) is presented
here. Notice that this process is repeated for each of the niches, at each niche
generation.



Procedure Breed(niches(t))

for all niche in niches(t) do (t is the niche generation counter).

g:=0 Initialise the “subgeneration” counter.

population(g) := niche Set the reference population: (only) the elements of the
niche that is now breeding.

iterate Start evolution.
for all element in offspring(g) do

p1 = Selection(population(g)) Select parents for reproduction

p2 = Selection(population(g)) (in our implementation through

roulette wheel selection).

element := Reproduce(p1,p2) Create the offspring using the

operators described in (section 3.4).

done
Evaluate(offspring(g))  Evaluate the objective of all the individuals in the
niche’s population. Scale to obtain the fitnesses (section 3.5).

population(g+1) := offspring(g) Future population is the offspring.
g:=g+1 Increase the subgeneration counter.
until Terminated() Termination criteria: maximum subgenerations achieved, or

best individual of current population is not better than that of last
subgeneration’s (and minimum subgenerations are not achieved yet).

niche := population(g) Update niche’s population. This niche is now ready to
start competition with the others.

done

end procedure

4 Numerical results

4.1 The problem instance

One instance of this problem has been defined in [1]. In this instance, we are
given the coordinates of 120 subscribers of a newspaper, located in the city of
Manhattan, and the coordinates of the depot. We want to allocate the nodes to
4 newspaper distributors, for optimising the objective of the problem and the
subsequent goal.

The coordinates of the subscribers nodes are presented in table 1.

4.2 Random-start local search

In this section we summarise the results obtained for several possibilities of
combinations of searching the neighbourhoods defined in section 2. For each of
the composite neighbourhoods, we iterate through all the neighbourhood until
no further improvement (over the preceding iteration) is achieved.

The initial solutions were obtained as follows: randomly choose one of the
nodes to visit on the map (from those which are not yet assigned), and randomly
assign it to a distributor.

In the random composite neighbourhood, the order of searching each of the
neighbourhoods is randomly determined at each iteration. The motivation for
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Depot x y

0 375 | 375

Node x y || Node x y || Node T y
1 17 | 310 || 41 186 | 440 || 81 368 | 230
2 39 | 85| 42 188 | 63 | 82 371 | 470
3 48 | 403 || 43 194 | 433 || 83 375 | 387
4 49 | 444 || 44 197 | 352 || &4 375 | 401
5 55 | 153 || 45 200 | 376 || 85 390 | 379
6 59 | 250 || 46 211 | 462 || 86 391 | 441
7 59 | 476 || 47 212 | 140 || 87 392 | 183
8 62 | 353 || 48 222 | 181 || 88 392 | 196
9 81 | 441 || 49 223 | 21| 89 396 | 420
10 85 | 367 || 50 223 | 328 || 90 397 | 96
11 85 | 419 || 51 233 | 27 || 91 399 | 365
12 89 | 418 || 52 235 | 405 || 92 406 | 103
13 105 | 376 || 53 239 | 229 || 93 408 | 158
14 109 | 258 || 54 276 | 231 || %4 410 | 152
15 110 | 411 || 55 284 | 362 || 95 410 | 203
16 110 | 447 || 56 286 | 24 || 96 410 | 432
17 118 | 413 || 57 292 | 148 || 97 412 | 128
18 120 | 49 || 58 299 | 188 || 98 413 | 236
19 120 | 451 || 59 302 | 184 || 99 413 | 473
20 120 | 459 || 60 317 | 237 || 100 417 | 466
21 122 | 104 || 61 320 | 331 || 101 418 | 211
22 133 | 410 || 62 323 | 137 || 102 421 | 218
23 142 | 439 || 63 324 | 85 || 103 421 | 495
24 145 | 412 || 64 325 | T4 || 104 429 | 420
25 146 | 364 || 65 329 | 217 || 105 434 | 321
26 161 | 190 || 66 335 | 109 || 106 436 | 253
27 161 | 414 || 67 338 | 168 || 107 438 | 465
28 161 | 434 || 68 338 | 208 || 108 443 | 491
29 162 | 458 || 69 338 | 332 || 109 444 | 398
30 165 | 374 || 70 342 | 143 || 110 444 | 468
31 167 | 399 || 71 345 | 427 || 111 449 | 452
32 178 | 409 || 72 346 | 247 || 112 452 | 141
33 179 | 265 || 73 353 | 350 || 113 452 | 394
34 179 | 365 || 74 353 | 488 || 114 453 | 379
35 179 | 427 || 75 354 | 135 || 115 479 | 412
36 182 | 359 || 76 356 | 113 || 116 483 | 487
37 184 | 76 || 77 362 | 491 || 117 484 | 424
38 184 | 198 || 78 364 | 129 || 118 485 | 419
39 185 | 124 || 79 365 | 34 || 119 489 | 480
40 186 | 169 || 80 368 | 129 || 120 496 | 409

Table 1: Coordinates of the Manhattan subscribers
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implementing it was to provide a more robust composite composite local search
method, but it turns out that the results obtained were considerably worse than
any of the other combinations. This result is quite surprising, as one could
imagine that a random choice of the neighbourhood would widen the composite
neighbourhood.

Best | Average CPU
Neighbourhood t(z) t(zx) time (s)
N, —+N3—=N,— N, | 1292 1512.9 5223
N, —+N3;—=N;— N, | 1286 1509.7 4492
N,—N,—N3—N, | 1275 | 14957 | 4433
N,—N,—N,—N3 | 1269 | 14941 | 4373
N,—Ns—Nz— N, | 1290 | 1509.9 6363
N,—Ns—N.— N5 | 1268 | 1507.2 4474
random order 1310 | 1581.3 4125

Table 2: Solutions obtained for local search on 2500 random starting points,
using different composite neighbourhoods.

The best composite neighbourhood seems to be, hence, N, = N, = N; — N3;
further results, which seem to confirm its superiority, are presented in table 3.
This is the local search neighbourhood that we have decided to include in the
niche search.

Run | Best ¢(z) | Average t(z) | CPU time (s) |

1 1280 1497.8 4372
2 1247 1496.6 4365
3 1297 1495.8 4336
4 1285 1495.3 4325
) 1273 1497.9 4369
6 1265 1494.7 4399
7 1291 1494.5 4409
8 1259 1497.5 4325
9 1257 14974 4329
10 1259 1494.5 4423

Table 3: Results obtained for 10 independent runs of local search with the
neighbourhood N, - N, —+ Ns — N3, each of them being the result of 2500
searches with random starting points.

4.3 Niche search

For the purpose of comparing niche search with local search, we have divided
the results into two series: one in which niche search performs the same amount

12



of local searches that were performed in the random-start tests, and another
where the computational time is identical. Notice that local search tends to take
much less time inside niche search, because the number of iterations required
to “stabilise” the solution (i.e., obtain no further improvements through local
search) is smaller. The reason for this is that, as we often start the local search
from a good solution, it is easier to reach the point where it produces no further
improvement.

Previous experiments with niche search have shown that small populations
and a small number of niches tend to provide a good compromise between
robustness and computational requirements [6]. The number of niches and the
population of each niche that we used for obtaining the results described in this
section are, hence, relatively small. For an increased reliability, a larger number
of these should be adopted (especially a larger number of niches, as this would
strongly diminish the probability of getting stuck in a local optimum).

4.3.1 Identical number of local searches

For this series of runs, we have tuned the algorithm’s parameters in such a
way that the number of local searches (i.e., the total number of individuals
generated) is the same used for testing local search (section 4.2).

These results show a clear improvement over random-started local search.
The average solution found by niche search, 1223.4, is much superior to the one
for by pure local search, represented in table 3 (1271.3), the improvement being
about 3.9%. Notice that the best solution found by random started local search
(1247) is worse than the worst obtained by niche search (1234).

For the results presented in table 4, we have used 5 niches, each composed
of 3 individuals (hence a total population of 15 individuals), which we made
evolve for 25 generations, inside which each niche could produce from 5 subgen-
erations (if no improvement is made after the 5th subgeneration) to 10 (if all
subgenerations lead to improvements).

4.3.2 Identical computational time

For this series of runs, we have tuned the algorithm’s parameters in such a way
that the computational time required is identical to the one that was used in
the series of random start local search (this implies that the number of local
searches performed in niche search is greater than those performed in random
start local search).

Results obtained here provide a further improvement of about 1.2% over the
previous section. We arrive to an improvement over random started local search
of about 5.2%, for a slightly smaller computational time. These results show
a clear interest in using niche search as a mechanism for controlling the start
solution of local search.

For the results described in this section, we have used 5 niches, each com-
posed of 3 individuals (hence a total population of 15 individuals). Niches
evolved for 75 generations, each having from 5 to 10 subgenerations.
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Local CPU
Run | t(z*) | a(z*) | searches | time (s)

1 1234 | 647.6 2535 1397
2 1246 | 616.8 2529 1421
3 1205 | 600.7 2458 1397
4 1219 | 620.5 2461 1364
) 1241 | 658.1 2488 1424
6 1210 | 568.0 2435 1303
7 1226 | 600.7 2444 1254
8 1220 | 612.5 2527 1360
9 1216 | 616.9 2422 1345
10 1217 | 625.2 2536 1471

Table 4: Niche search: results obtained for 10 independent runs with approxi-
mately 2500 calls to the local search routines (i.e., a total of about 2500 gener-
ated individuals).

Local CPU

Run | t(z*) | a(z*) | searches | time (s)
1225 | 596.7 7769 4133.3
1209 | 602.0 7635 3861.2
1217 | 609.1 7719 3901.2
1191 | 590.3 7789 3600.9
1204 | 589.2 7731 4116.1
1217 | 632.9 7724 4313.8
1202 | 592.9 7726 3934.6
1211 | 596.7 7671 4202.6
1213 | 616.5 7812 3863.6
0 1196 | 549.4 7726 4051.1

= O 00 O Utk Wi

Table 5: Niche search: results obtained running the algorithm the same amount
of computational time that 2500 random-start local searches take.
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We finish by showing the circuit obtained for the best solution found in these
runs, together with the best solution found before the average time (the second
goal) was considered in the classification of the individuals. These solutions are
represented in figures 1 and 2, respectively.

31 3 35 41 43 46 20 20 19 16 23 28 27 24 22 17 15 12 11 9 7 4 3 13 10 8 1 t1=1101
57 59 53 54 53 48 38 26 40 47 30 37 42 49 51 56 79 {2=1173

00 99 103 108 116 119 117 118 120 115 109 113 114 105 105 98 102101 95 88 & 93 94 11297 92 90 80 78 75 76 66 63 64  t3=1169
52 45 44 50 B 14 6 5 2 21 18  (4=1167

t(x) = 1101
a(x) = 5865
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Figure 1: Best solution found: overview of the paths followed by each of the
distributors. Depot is at node 0.
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P10 85 91 109113114 10510698 10210195 88 87 93 94 11297 92 9 80 78 75 76 66 63 64 79 56 51 49 42 I 39 11=1189

P20 BL 72 60 65 08 67 70 62 57 59 58 54 53 48 47 40 38 2 21 18 2 5 =

P30 73 60 61 55 50 3 14 6 1 8 10 13 15 17 22 24 23 28 29 20 19 16 9 11 12 3 4 7 B=1191

P40 83 84 89 86 9 104 115120 118117 119 116 111 107 110 108 103100 99 82 77 74 71 52 45 44 36 34 25 30 31 27 3 35 41 43 46 t4=1169

1(x) = 1101
a(x) = 613583
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Figure 2: Another solution with the same objective, but with a higher (worse)
average time.
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5 Conclusion

In this paper we describe a hybrid strategy for solving combinatorial optimi-
sation problems which is obtained combining an evolutionary algorithm with
local search methods. We apply this strategy to tackle the Manhattan newspa-
per problem. Although this strategy does not provide any results in terms of
the closeness to the optimum of the problem we deal with (which, to the best of
our knowledge, at the present time is unknown for the specific instance that was
treated), it does provide interesting results in terms of achieving good feasible
solutions (upper bounds). A combination of this strategy with another work-
ing on the lower bound would be of great value, and is certainly an attractive
direction for future research.

The results obtained by the hybrid strategy show a clear improvement of the
combination of evolutionary approaches with local search, which provide a mix
of intensification and diversification procedures in the same algorithm. Improve-
ments of the hybrid strategy over random start local search provide a measure
of the performance of the niche search, which may be used for comparison with
other evolutionary approaches.

The elitist mode implemented proved to be an efficient diversification mech-
anism: we observed that when the best niches propagated, many times the best
individual in several niches would be the same. But, as between all the niches
with the same best individual only one could be elitist, the best element of the
others would soon change, and very often lead to improvements afterwards.

The roulette wheel selection based on a measure of the ranking was also
an important point, as it allowed for considering the two goals of the problem
in selection. It was also important in coping with the sometimes dramatic
differences that small changes in the structure of the solution imply in terms of
the objective, as well as with the fact that often different solutions lead to the
same objective value.

There are several things that can be done in order to improve this heuristic,
both in the local search strategies and in the niche search. On the side of the
local search, we believe that the modification that could probably bring better
improvements might be increasing the number of nodes that distributors can
exchange between them; i.e., distributors may be able to exchange subpaths
between them, instead of only exchanging nodes. On the side of the niche
search, there are two modifications that we believe may be worthy. The first is
to allow different niches to run different local search methods; for example, each
niche might run a different combination of the exploration of the neighbourhoods
defined in section 2. Another modification, which is somehow related to this
one, is to “remunerate” each niche in terms of the improvement that it makes
on the solution, instead on doing it in terms of the fitness of its individuals.
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