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Summary. This chapter presents a general methodology for embodying simulation as part
of a tree search procedure, as a technique for solving practical problems in combinatorial
optimization. Target problems are either difficult to express as mixed integer optimization
models, or have models which provide rather loose bounds; in both cases, traditional, exact
methods typically fail.

The idea then is to have tree search instantiating part of the variables in a systematic way,
and for each particular instantiation—i.e., a node in the search tree—resort to a simulation
for assigning values to the remaining variables; then, use the outcome of the simulation for
evaluating that node in the tree. This method has been used with considerable success in game
playing, but has received very limited attention as a tool for optimization. Nevertheless, it
has great potential, either as a way for improving known heuristics or as an alternative to
metaheuristics.

We depart from repeated, randomized simulation based on problem-specific heuristics for
applications in scheduling, logistics, and packing, and show how the systematic search in a
tree improves the results that can be obtained.

1 Introduction

Tree search and branch-and-bound variants are among the most powerful search methods in
combinatorial optimization. How to direct the search through the tree, in terms of the selection
of a node, the selection of a variable within a node, and the selection of a value to assign to
that variable, are key factors for performance. Whereas in some applications these choices are
relatively straightforward, in other cases it is very difficult, mostly due to the absence of good
bounds. In this work we will focus on applications for which the outcome of a decision is very
difficult to assess before having a complete solution, therefore requiring the simulation of the
whole construction process to probe into the quality of the decision.

Designing effective methods under these circumstances involves decisions that overcome
the main weaknesses of tree search: not reaching a leaf node in a limited amount of time;
unbound growth of the queue of unexplored nodes; and most importantly, getting trapped in
a particular, limited part of the tree. We will develop on methods for this, based on good
heuristics for constructing a solution; tree search may be seen as an enhancement of these
heuristics which, in the limit case, may completely explore the search space.
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The applications covered in this work are the following:

1. Number partitioning—an easy problem to formulate, which will allow us to clearly state
the important aspects of tree search and simulation in this context (Section 3).

2. Stacking—a hard problem involving the choice of a stack to place an item in such a way
that the number of item relocations is minimal (Section 4).

3. Recursive circle packing—a variant of circle packing where annular items can either be
placed inside a rectangular container or inside other items (Section 5).

2 Background

2.1 Tree search

Tree search is a method for systematically exploring the search space, with the aim of finding
the best solution appearing therein. In its simplest form, all solutions are enumerated and ver-
ified, hence taking exponential time with respect to the number of variables. In optimization
problems for which there is an appropriate mathematical programming formulation, it is usu-
ally easy to find bounds on the solutions that can be obtained from a node, which allows the
search tree to be pruned without loss of optimality. For a minimization problem, if the lower
bound in a given node is greater than the value of a known solution (i.e., greater than an upper
bound on the optimum), then the tree can be safely pruned at this node. This is the standard
procedure in branch-and-bound (BB) [1, 2]. Literature on BB is ample, as the method is fully
general and can be applied in widely diverse areas. For a sample of recent applications of BB
methods see e.g., [3, 4, 5, 6].

For the problems we are dealing with here, formulations are very loose, rendering the
provided bounds very ineffective and leading to very little or no pruning at all. This implies
that, except for toy instances, exploration of the whole tree is unreasonable, either due to time
limitations or because the size of the tree would grow unacceptably large. Consequently, the
best solution found may not be optimal because the search space has not been fully explored.
In this context, tree search may be used as an approximative algorithm.

There are several ways for exploring the nodes of a search tree. In uninformed search there
is no use of information concerning the value of a node during tree exploration. For example,
in breadth-first search all nodes in a level of the tree (i.e., nodes that are equally distant from
the root) are explored before proceeding to the next level. In depth-first search (DFS) each
node is expanded down to the deepest level of the tree, where a node with no expansion—i.e.,
a leaf —is found; search then backtracks until a node with unexplored children is found, which
is again expanded until reaching a leaf, an so on, until the whole tree is explored. As only one
path from the root to a leaf has to be stored at any given time, DFS has modest memory
requirements. Problem-specific heuristics may be used in conjunction with DFS for deciding
the order of exploration of each node’s children; as this information is only considered locally
at each node, this is usually called partially informed search. On informed search, a set of
open nodes is used; the most common variant is best-first search, which selects the next node
to expand based on problem-specific knowledge. To this end, an evaluation function is used
which conveys information about the worth of each open node, and the one with the highest
rating from all open nodes is selected at each iteration.

When good guiding heuristics exist, DFS is usually very effective. When compared to
greedy construction based on such heuristics, DFS allows for substantial improvements; fur-
thermore, these improvements can be obtained very quickly due to the simplicity of DFS,
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which imposes an almost non-existent overhead on the greedy construction algorithm. For sit-
uations where the exploration of the full tree is expected to be possible in a reasonable time,
DFS is usually an appropriate choice. However, this is not the case for most practical prob-
lems. For sufficiently large trees, DFS suffers the problem of being unable to recover from
poor decisions taken at the beginning of the search.

For trees with high branching factor, iterative broadening, proposed in [7], attempts to
overcome the deficiencies of DFS by running a sequence of restricted depth-first searches.
Each restricted DFS considers a larger subset of the tree than the previous: the first iteration
examines the heuristically preferred node, the second iteration examines the two top-ranked
children of each node, and so on; in a tree of depth d, at iteration k, iterative broadening visits
kd−1 leaves.

Best-first search tries to overcome the deficiencies of DFS by considering, at each itera-
tion, nodes from different levels in the tree. A seminal example is the A* algorithm for the
shortest-path problem [8], where heuristic information that never overestimates the cost of the
best solution reachable from a node is used to evaluate it. Best-first search suffers the problem
of requiring exponential space, thus becoming impractical in many situations.

A related algorithm taking only linear space is iterative deepening A* (IDA*): each itera-
tion is a DFS modified to use heuristic evaluation as in A*, and a limit on the heuristic value
to interrupt the search; the interruption threshold is increased at each iteration [9]. In practice,
for many combinatorial optimization problems IDA* visits too many internal nodes before
reaching its first leaf; this is mainly due to the underestimation provided by the heuristics be-
ing substantially different from the best value that can be reached from each node. Besides,
IDA* does not cope well with the fact that in many optimization problems every node has a
different heuristic value, only the best of which is expanded at each iteration. In combinatorial
optimization problems the depth of the search tree is bounded, and reaching a leaf is usually
inexpensive; this is not exploited in IDA*.

The most widely used tools for solving combinatorial problems that can be formulated
as mathematical programming models are mixed integer linear programming (MIP or MILP)
solvers. These usually incorporate state-of-the-art tools in terms of pruning the search tree and
adding cuts to the model, in a black-box solver targeted at obtaining the best performance in
the widest range of problems possible. Still, deficiencies similar to those of DFS are often
observed in practice, as the solvers may be stuck in the search for very long periods. Methods
for overcoming this are a current trend, following the observation of heavy-tailed phenomena
in satisfiability and constraint satisfaction [10]. The basic idea is to execute the algorithm for
a short time limit, possibly restarting it from with some changes, usually with an increased
time limit until a feasible solution is found. This has been recently addressed in [11], where
variability of the solutions on which the MIP solver is trapped, for different initial random start
conditions, is exploited. The proposed method consists in making a number of short runs with
randomized initial conditions, bet on the most promising run, and bring it to completion, in
an approach named bet-and-run. Diversified runs are produced in several fronts: exchanging
rows and columns in the input instance, perturbing parameters of the MIP solver, and changing
coefficients in the objective function. The choice of the candidate to bring to completion is
based on 11 criteria, the most important of which are the number of open nodes, the lower
bound improvement with respect to the root node, and number of integer-infeasible variables
among all open nodes. Results are reported for a set of benchmark instances, showing that
bet-and-run can lead to significant speedups.

We propose to exploit variability in the search in a rather different manner, by making a
dive from each open node until reaching a leaf, and using its outcome in the evaluation of the
dive’s starting node. Dive results are also back-propagated up to the root node. Each of these
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dives corresponds to a descent on the tree, possibly in a randomized way, which in the context
of Monte-Carlo Tree Search—the subject of the next section—is called a simulation. The two
terms are used interchangeably in the remainder of this chapter. In the problems dealt with in
this work, simulations always lead to feasible solutions; hence, our method provides both an
anytime algorithm and, for small instances, complete search.

2.2 Monte-Carlo Tree Search: state of the art

Monte-Carlo Tree Search (MCTS) is a method for exploring the search tree and exploiting
its most promising regions. Although the idea of combining Monte-Carlo evaluation with
tree search had been studied before (see e.g. [12, 13]), it was not until recently—with the
appearance of MCTS—that it received greater scientific attention. Coulom [14] proposed the
initial version of MCTS and applied it with considerable success to the game of Go (9× 9
board). Game-playing is still the area where the algorithm and its many variants are most
commonly used [15]. In this context, MCTS has the aim of finding the most favorable decision
at each step, by taking random samples from the decision space and valuating nodes of the
tree according to the results of those samples. MCTS has had a particularly strong impact on
games, where its application has led to the best game-playing software, most notably for the
game of Go [16, 17]; but it has also been applied on artificial intelligence approaches for other
domains that can be represented as trees of sequential decisions and for planning problems
(see [18] for a comprehensive survey).

However, there are very few publications on combinatorial optimization; some results
have been provided for general mixed integer optimization [19], but to the best of our knowl-
edge, there are no reports of its application for solving specific optimization problems. This
possibility will be illustrated, with a detailed implementation and results, in the following sec-
tions. In the remainder of this section we describe the basic algorithm that will be used as the
foundation for the three applications presented.

MCTS is an iterative procedure in which a search tree is asymmetrically constructed,
attempting to expand the tree towards its most promising parts while balancing exploitation
of known good branches with exploration of seemingly unrewarding branches. The algorithm
is based on the idea of Monte-Carlo evaluation, i.e., the reward associated with a particular
node can be estimated from the results of random simulations started from that node. Each
node keeps track of the number of simulations run from its state as well as their outcomes, and
these data are used to produce an estimate value for the node when deciding how to expand
the tree. Each iteration of MCTS can be divided into the following four steps:

1. Selection: starting from the root node, select the child node which currently looks more
“promising”. This is done recursively until a node n which has not yet been fully expanded
is reached.
The definition of promising is one of the key aspects determining the performance of
MCTS. In plain MCTS, average win rate is used for node selection. The UCT algo-
rithm [20] provides an enhancement to this simple rule, by posing the selection problem
at each node as a multi-armed bandit problem, and then using the UCB1 policy [21] to
achieve an optimal bound on regret. In UCT, the score or utility U(n) of node n is defined
as

U(n) = X(n)+E(n), (1)

where X(n) is the exploitation utility associated with n, and E(n) is the exploration utility
of n. At each node, the child with maximum U(n) is selected, until an unexpanded node
is reached.
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In game-playing, X(n) is typically taken to be the average reward of simulations run from
n. Later in this section we propose an alternative expression for X(n) that is more suitable
for optimization.
The exploration component is normally defined as

E(n) = c

√
lnsp(n)

sn
, (2)

where c is an exploration parameter (theoretically equal to
√

2), sp(n) is the number of
simulations done under the parent node p(n), and sn is the number of simulations done
under the child node n. This expression is designed such that exploration progressively
gives way to exploitation, although all siblings are eventually selected if enough iterations
are allowed. This means that the search cannot become permanently trapped in any region
of the search space.
To summarize, selection starts at the root node and proceeds down the tree, selecting at
each node the child with highest utility. Upon reaching an unexpanded node, selection
stops and the current node is chosen for expansion.

2. Expansion: one or more children of the selected node n are created by applying possible
decisions in n to copies of n. We present two strategies for node expansion:
Single expansion: a single child node is created using a randomly chosen unexplored

decision in n. Other unexplored decisions are kept for a later time when node n is
again selected for expansion.

Full expansion: all children of n are immediately created by generating all possible de-
cisions in the node.

3. Simulation: from each node created in the expansion step, perform a simulation until
a terminal state (i.e., a solution) is reached, and record the value obtained. Various ap-
proaches can be taken in simulation, ranging from uniform random decisions—requiring
nothing more than a generative model of the problem—to heuristic construction algo-
rithms incorporating domain-specific knowledge. The latter approach typically allows
for faster convergence at the expense of simplicity and generality. In the applications pre-
sented in this work, we will use problem-specific construction heuristics for simulation;
for each problem, the heuristic used is detailed in the corresponding section.

4. Backpropagation: propagate the outcome of each simulation up the tree until the root
node is reached; this updates statistics (simulation scores and counts) on all nodes be-
tween the selected node and the root.

Because one simulation is done per new child of the selected node n, the two expansion
strategies described above will exhibit different behavior with respect to the variation of U(n);
namely, the number of children generated is proportional to the decrease in the exploration
term E(n) for the parent node n. This difference ultimately leads to different search paths in
the tree, which may in turn have an impact on the performance of the algorithm. In trees with
high branching factors, if single expansion is used, a node may be confirmed (to a certain
degree) as a poor choice before generating all its children, thereby saving both time and space
which can be used to explore other areas of the tree. This effect is dampened in trees with
lower branching factors.

Applying Monte-Carlo tree search to solve optimization problems has many similarities,
but also significant differences to its application in game-playing. First, the size of the search
trees in both domains is commonly large enough to prevent complete search within reasonable
computational time. Hence, MCTS should direct the search, leveraging all the information
gathered up to the moment in the most suitable way.
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A significant difference concerns the evaluation of nodes and their associated statistics.
Whereas in game-playing a branch with a high average win rate is suggestive of a strong line of
play, in optimization—since we are interested in finding extrema—the average solution under
a node is not a good estimator of the optimal solution to the node’s underlying subproblem.
Additionally, rewards in game-playing often take 0–1 values for loss and win, respectively;
objective functions, however, may take arbitrary values. Since UCB1/UCT were designed with
rewards in the [0,1] interval in mind, we must map objective function values into that interval,
in order to maintain the proper balance between the two components of (1). To address these
two issues, we propose the following expression for X(n):

X(n) =
ea−1
e−1

, with a =
ŵ∗− ẑ∗n
ŵ∗− ẑ∗

, (3)

where ẑ∗ and ŵ∗ are respectively the best and the worst simulation results found so far in the
whole tree, and ẑ∗n is the best simulation result under node n. A plot of the proposed reward
function can be seen in Figure 1.

z̃ ∗ w̃ ∗0

1

Fig. 1. The proposed reward function X(n) (solid line), in terms of the best simulation outcome
under node n, ẑ∗n. The linear reward function (dotted line) is shown for reference.

Although our main guiding criterion should be based on the best simulation outcome
ẑ∗n, the average outcome of simulations under a node—denoted as zn—may still provide a
useful hint on the interest in exploring the node. We propose to use a function similar to X(n)
representing the average reward under node n, and define it as

X(n) =
eb−1
e−1

, with b =
ŵ∗− zn

ŵ∗− ẑ∗
. (4)

Instead of incorporating this information directly into the exploitation term, we integrate
X(n) as a factor in the exploration term; we call this average-weighted exploration, and define
it as

E ′(n) = X(n)E(n). (5)

The above ideas, applied to the problem of combinatorial optimization, are summarized
in the pseudo-code in Algorithm 1.
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Algorithm 1: MCTS for (minimization) combinatorial optimization.
Data: problem instance I
Result: upper bound on optimal value (minimization problems)

1 r← create root node with initial state from I
2 z∗← ∞

3 repeat
4 n← starting from r, recursively select child node with maximum U(n)
5 C← set of child nodes obtained from expanding n
6 foreach c ∈C do
7 run a simulation from c
8 z← result of the simulation
9 propagate z up until reaching r

10 if z < z∗ then
11 z∗← z

12 until computational budget is depleted
13 return z∗

3 Number partitioning

The number partitioning problem (NPP) is a classical combinatorial optimization problem,
with applications in public key cryptography and task scheduling. Given a set (or possibly a
multiset) of N positive integers A = {a1,a2, . . . ,aN}, find a partition P ⊆ {1, . . . ,N} that
minimizes the discrepancy

E(P) =

∣∣∣∣∣∑i∈P ai− ∑
i6∈P

ai

∣∣∣∣∣ .
Partitions such that E = 0 or E = 1 are called perfect partitions.

A pseudo-polynomial time algorithm for the NPP is presented in [22] for the case where
all a j are all positive integers bounded by a constant A; for the general case of exponentially
large input numbers (or exponentially high precision, if the a j’s are real numbers) the problem
is NP-hard. If the numbers a j are independently and identically distributed random numbers
bounded by A = 2κN , the solution time abruptly raises at a particular value κ = κc; this is due
to the high probability of having perfect partitions for κ < κc, and this probability is close to
0 for κ > κc (see [23, 24] for more details).

A direct application of the NPP occurs in load-balancing of two identical machines. The
common two-way NPP, as well as a generalization to an arbitrary number of subsets (equiv-
alently, machines) are tackled in [25] by recasting the problem as an unconstrained quadratic
binary program (UQP); the UQP is then solved using a tabu search algorithm. Another ap-
plication arises in high-performance multi-disk database systems. To promote parallelization
of I/O and minimize query response times in such systems, data that is likely to be accessed
by same queries is distributed across K disks—a process called declustering. This problem,
equivalent to a multi-way NPP, is tackled in [26] using a two-phase approach: the first phase
consists in recursive bipartitioning to obtain an initial K-way partition; in the second phase,
the initial partition is improved through a refinement heuristic.

The best polynomial time heuristic known for the NPP is the differencing method of Kar-
markar and Karp [27] (the KK heuristic). It consists of successively replacing the two largest
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numbers by the absolute value of their difference and placing those items in separate subsets,
but without actually fixing the subset into which each number will go yet (see Algorithm 2).

Algorithm 2: The Karmarkar-Karp heuristic.
Data: ordered set of positive integers A
Result: discrepancy obtained

1 ∀ai ∈A , create a vertex i with label li← ai
2 E ←{}
3 while there is more than one labeled vertex do
4 u,v← vertices with the two largest labels
5 E ← E ∪{{u,v}}
6 set label lu← lu− lv
7 remove label lv from vertex v

8 return discrepancy (last label)

8 7 6 5 4
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6 5 4 1
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15 6 5 4
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4 1 1
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11 4 1
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9 5 4
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Fig. 2. Search tree for the complete differencing method with the set A = {8,7,6,5,4}.
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Fig. 3. Graph created with the KK heuristics, corresponding to the path 1→ 2→ 4→ 8→ 16
in Figure 2.
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Fig. 4. Graph created while applying complete search: steps followed for creating the optimal
partition, i.e, the path 1→ 3→ 6→ 12→ 24 in Figure 2.

Extensions of the KK heuristic for a complete search have been proposed in [28, 29]. In
each step of the KK heuristic the two largest numbers are replaced by their difference; for a
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complete search, the alternative of replacing them by their sum must also be considered. For
the previous example, the complete search tree is represented in Figure 2.

When applied to the set A = {8,7,6,5,4}, the KK heuristic leads to the partitions {8,6}
and {7,5,4} with discrepancy 2 (Figure 3). Figure 4 illustrates the graph corresponding to the
optimal solution, as obtained by complete search. Straight edges connect differencing vertices,
that will be in different partitions; curly edges connect addition vertices, that will be in the
same partition. The optimal solution is the partition {8,7} and {6,5,4}, which is a perfect
partition.

In the worst case, the complete differencing method has exponential complexity. Parts of
the search tree may be pruned by observing that:

• the KK heuristic is exact for partitioning 4 or less numbers;
• the algorithm can be stopped when a perfect partition is found;
• when the difference between the largest remaining number and the sum of other remaining

numbers is greater than 1, the best possible solution is to place the largest number in one
set and all the other numbers in the other set.

Algorithm 3 introduces depth-first search for the complete KK.

Algorithm 3: dfs(A ) — depth-first search.
Data: ordered set of positive integers A
Result: optimum discrepancy

1 if |A | ≤ 4 then return KK (A )
2 u,v← largest and second-largest values in A
3 d← u−∑a∈A \{u} a
4 if |d| ≤ 1 then return |d|
5 if d > 0 then return d
6 A ←A \{u,v}
7 `←dfs (A ∪{u− v})
8 if `≤ 1 then return `
9 r←dfs (A ∪{u+ v})

10 return min(`,r)

We propose the application of MCTS to this problem, using the KK heuristic as the con-
struction method in the simulation step. Since this heuristic is deterministic, running it from
the differencing child (which coincides with the heuristic’s choice) would lead to the exact
same solution as that obtained for the parent node; thus, we can safely reuse the parent’s so-
lution, and therefore only one new construction is required for the two children of each node.
Another advantage of using this heuristic is that repeated solutions are avoided altogether;
such would not be the case with random or semi-greedy simulations. Finally, the KK heuris-
tic allows the above pruning rules to be used, reducing the size of the search space without
sacrificing completeness.

Due to the very low branching factor, and from empirical observation, we use a full ex-
pansion strategy in the expansion step of MCTS, meaning that both children of each node are
immediately generated once the node is selected. Furthermore, for this problem, we choose
to use the classical exploration term E(n) (see (2)) in the evaluation of nodes, instead of the
average-weighted exploration term E ′(n) (see (5)). This is motivated by the fact that aver-
age node performance can be deceptive in the NPP; varying just one or two decisions during
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construction has very deep and unpredictable consequences on the quality of the final solu-
tions; this lack of correlation between particular decisions and solution quality makes average
performance a poor guiding principle in this problem.

Table 1 presents results obtained with the KK heuristic and with time-limited DFS and
MCTS, run on 10 hard instances from [29].

Instance KK DFS (60s) MCTS (60s) DFS (600s) MCTS (600s)
hard0100 73.37 56.12 54.56 53.36 51.20
hard0200 171.81 151.91 150.88 151.35 149.79
hard0300 265.77 247.07 248.82 247.07 247.18
hard0400 366.18 343.36 347.55 339.07 344.84
hard0500 461.60 443.54 441.42 438.79 437.22
hard0600 557.09 540.22 542.59 539.13 540.66
hard0700 659.50 640.48 641.78 637.70 633.84
hard0800 751.27 737.65 738.49 731.98 735.67
hard0900 853.36 834.95 837.93 834.95 833.87
hard1000 952.47 932.55 938.05 932.55 930.23

Table 1. Results obtained for number partitioning with the KK heuristic, DFS, and MCTS
on hard, large instances from [29]. DFS and MCTS results are reported at 60 seconds (center
columns) and 600 seconds (right-hand side columns). For MCTS, the average best solution
of 10 independent runs is shown. Values reported are log2(n+1), where n is the discrepancy
obtained (which for these instances is a very large integer).

As expected, both tree search variants provide very considerable improvements over KK.
It is well known that for difficult instances the optimum for NPP is very hard to find; DFS,
being able to explore a much larger portion of the tree—hundreds to thousands of millions of
nodes per hour, for these instances—is very difficult to beat. Also, as previously mentioned,
the performance of DFS is highly dependent on the construction heuristic used, which in this
case provides solutions of very good quality to begin with.

Although there is no clear indication of a winner from the results obtained, the observation
of mixed results between DFS and MCTS is nonetheless impressive: MCTS was highly com-
petitive despite exploring less than a thousandth of the nodes explored by DFS. This suggests
that MCTS can effectively guide the search towards promising regions. In our view, these are
very promising results.

We conclude with the hypothesis that MCTS’s rate of convergence should improve over
time, not only for this problem but also in general. While DFS gains practically nothing as the
search progresses, MCTS constantly accumulates knowledge of the search landscape, which
should theoretically help convergence to the optimum. Having admittedly few results to sup-
port this hypothesis, we leave its confirmation as future work.

4 Stacking

The stacking problem (SP) consists of a series of placement decisions for a set of items with
known dates for entrance and exit from a warehouse (see Figure 5), denoted by release and
due dates, respectively. Items are placed in vacant positions, or on top of other items forming
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stacks, i.e., last-in first-out queues. At any given time, only the top item of each stack can be
taken, so in order to take an item that is not at the top of a stack, it is necessary to first relocate
all items above it to other stacks. The objective is to store and then deliver all items, while
respecting their release and due dates, with a minimum number of relocations. In the variant
tackled in this work, we assume that there is no height limit on stacks (uncapacitated SP),
movements occur instantaneously, and releases or deliveries cannot be antecipated or delayed.

Stacking problems have evident practical importance in container port operations [30, 31]
and ship stowage planning [32, 33]. Stacking is also important in the steel industry as a means
of storage for finished products [34].

As demonstrated in [34], the zero-relocation SP (decision problem) is NP-complete for
any fixed number of stacks W ≥ 4, by a polynomial reduction to the problem of coloring
circle graphs. From this it follows that the general r-relocation SP is also NP-complete, and
the optimization version of the SP is NP-hard.

DeliveryRelease

Fig. 5. A warehouse where items are stored in stacks, using a stacking crane that can only
handle one item at a time.

Although the SP is first described in [34], the paper mentions the existence of similar
problems and presents an overview of the literature. One such problem is the Block Relocation
Problem (BRP), which is actually a subset of the SP. In the BRP, the initial state of the stacks
is given as input data along with a (partial) order of retrieval of the items. The objective is
to find the shortest sequence of movements such that items are retrieved in the given order.
In [35], a branch-and-bound algorithm for the BRP, as well as a simple heuristic for real-
time applications are proposed. The heuristic rule is based on an estimate of the number of
additional relocations for each stack. In [36], an algorithm for the BRP based on the corridor
method is presented. The corridor method combines mathematical programming techniques
with heuristics. The main idea is to exactly solve subproblems where some variables are fixed,
creating a “corridor-like” region where an item is allowed to go.

For tackling the SP itself, in [34], a discrete-event simulation model of the warehouse is
used, and construction of solutions is based on a semi-greedy heuristic. The heuristic is in-
voked when deciding the placement of an item during a release or reshuffle. Reshuffling is
defined as the relocation of items that is necessary to reach an item lower in the stack. For
simplicity, the voluntary relocation of items in-between releases or deliveries—called remar-
shalling—is not considered during a simulation. Note, however, that this may potentially leave
the optimal solution(s) out of the search space, therefore losing the guarantee of optimality
even for a complete search.

A simulation consists in traversing a schedule of events (i.e., releases and deliveries) in
chronological order and processing each event appropriately. When multiple events have the
same date, deliveries are processed first, in increasing order of item depth, where the depth of
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an item is defined as the number of items above it in the same stack. Then, any releases are
processed in inverse order of due date, that is, items with greater due date are released first.
Ties are resolved randomly.

The probabilistic component of the construction heuristic is exploited by repetition of the
process using different seeds for the pseudo-random number generator, in a simple method
called Multiple Simulation (MS). This simple yet effective idea can also be exploited in
Monte-Carlo tree search, taking advantage of the tree structure to implicitly force different
simulations to be executed.

In order to accelerate MS, a simulation is interrupted as soon as it is known that the number
of relocations of the incumbent solution cannot be improved. This is actually a weak form of
pruning, as seen in branch-and-bound algorithms. Whenever a better solution is found, the cut
value is updated, tightening the upper bound for future simulations. This optimization is not
used in MCTS because, even after a simulation is known to be poor, the algorithm can still
benefit from knowing how poor the simulation is, and therefore it is run to completion anyway.

We now describe the construction heuristic used in multiple simulation, called Flexibility
Optimization (FO). FO will be used in the MS method, as well as in the simulation step of
MCTS. For details on the remaining steps of the MCTS algorithm, please refer to Section 2.2.

First we need to define the concept of stack movement date: the earliest movement date of
stack s is represented as

ms = min
i∈Is

Di,

where Is represents the set of items currently in stack s, and Di is the due date of item i. When
stack s is empty, then ms = ∞ by definition. Another important concept is that of due date
inversion: an inversion occurs when an item i is placed (directly of indirectly) over an item j
such that Di > D j. In order to deliver j, i will have to be relocated.

One can view ms as an indicator of the flexibility of stack s for receiving new items without
creating inversions. To illustrate this idea, consider an empty stack s, with ms = ∞; this stack
is considered as having infinite flexibility, since any item can be added to it without creating a
new inversion. On the other hand, if Is 6= {}, then ms is finite and only items with due date up
to ms can be added to s without creating an inversion.

When placing an item, FO will prefer stacks where loss of flexibility is minimized, when-
ever this is possible without creating new inversions. If a new inversion is unavoidable, the
heuristic places the item in the stack with the largest movement date, in order to postpone
the forced relocation as much as possible. The heuristic makes use of a function associating
to each placement decision i→ s a score f (i,s); this function embeds the above rules, and is
defined as

f (i,s) =


1

1+Di−ms
−1 if Di > ms,

1
1−Di+ms

otherwise.
(6)

The graph for this function is shown in Figure 6. Note that the top branch in (6) represents
the creation of a new inversion (since Di > ms), therefore lower scores ( f (i,s) ∈ [−1,0]) are
assigned to it. The bottom branch represents the placement of an item without creating an
inversion, being given a higher score than any inversion-inducing decision. Given an item i
and a set of possible destination stacks T , the FO heuristic constructs a restricted candidate
list of stacks RCL = {s ∈ T : f (i,s)≥ f (i,s′),∀s′ ∈ T}, and randomly selects a stack from the
RCL as the destination of item i.

A computational experiment was conducted on the 24 benchmark instances of [34], com-
paring MCTS with the MS method. We use the generic MCTS algorithm presented in Algo-
rithm 1, running simulations with the FO heuristic in the algorithm’s simulation step. In this
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Fig. 6. Score function f (i,s) used by the FO heuristic.

case, since the heuristic used is non-deterministic, a new simulation must be run for each node
created in MCTS. As for the expansion strategy used, in this problem we choose single expan-
sion due to the potentially high branching factor. Additionally, we use the average-weighted
exploration term defined in (5).

The two methods were run ten times on each instance, for 600 seconds, using different
seeds for the pseudo-random number generator. Table 2 presents the average number of relo-
cations of the best solution found after 60 seconds (left-hand side columns), and at the end of
the 600-second period (right-hand side columns).

The tree search is naturally expected to perform better, but the reduced computational
budget (especially the 60-second limit) presents some difficulties for MCTS. As MCTS uses
the results of simulations from each node to estimate their worth, it usually has a warmup
period during which its decisions may be poor due to the lack of information. As more time
is allowed, node evaluation estimates improve and results are expected to be more consistent.
The reduced time is an advantage for MS also because of its inexistent overhead, as opposed
to MCTS which must traverse the tree from the root to a non-expanded node at each iteration,
must create and maintain the tree structure in memory, and must propagate simulation results
upward.

The results indicate that even with 60 seconds, MCTS performs better than MS in most
instances; this shows that the search is able to quickly focus on the more promising branches.
As expected, performance is further improved with the increased time limit of 600 seconds.

5 Recursive circle packing

The recursive circle packing problem (RCPP) originates from the tube industry, where ship-
ping costs represent an important fraction of the total cost of product delivery [37]. Tubes are
produced in a continuous extraction machine and cut to the length of the container inside of
which they will be shipped. Before being placed in the container they may be inserted into
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Instance MS (60s) MCTS (60s) MS (600s) MCTS (600s)
2-A 52872.6 52358.1 52794.3 51854.5
2-B 50820.6 50760.2 50799.1 50727.3
2-C 49450.7 48880.0 49249.2 47514.3
2-D 50227.2 50230.6 50058.9 49090.4
3-A 23148.2 23124.3 22568.4 22502.2
3-B 24608.7 24665.6 24137.5 24201.0
3-C 24627.9 24738.3 23915.3 24036.8
3-D 24130.7 24065.4 23349.3 23510.7
4-A 14439.4 14441.0 14159.9 14132.4
4-B 13355.9 13429.9 13204.6 13150.5
4-C 13981.8 14050.8 13720.9 13854.0
4-D 14796.0 14865.8 14501.4 13975.5
10-A 3524.9 3484.1 3494.1 3289.5
10-B 4031.3 3790.9 4013.4 3751.4
10-C 3644.3 3497.1 3606.1 3421.7
10-D 3416.3 3437.9 3390.3 3410.4
20-A 883.9 887.5 882.6 885.3
20-B 1029.4 950.6 1022.8 842.2
20-C 1098.0 977.1 1098.0 975.7
20-D 1178.0 1159.2 1178.0 1158.9
40-A 79.0 53.7 79.0 53.4
40-B 59.0 30.5 59.0 9.0
40-C 41.0 32.1 41.0 29.3
40-D 154.0 99.7 154.0 94.3

Table 2. Results for the stacking problem: average number of relocations over 10 runs with
the MS and MCTS algorithms, for large instances from [34], with a time limit of 60 seconds
(left-hand side columns) and 600 seconds (right-hand side columns).

other, wider tubes, so that usage of container space is maximized—a process called telescop-
ing. As all the tubes occupy the full length of the container, maximizing container load is
equivalent to maximizing the area filled with circles (or, more precisely, rings/annuli) in a
section of the container.

This problem is evidently more general than circle packing, which is known to be NP-
complete (see, e.g., [38]). We propose a heuristic method for tackling it, which has proved to
be able to produce very good solutions for practical purposes.

A non-technical, general overview of circle packing is presented in [39]; for a biblio-
graphic review article see [40], which surveys the most relevant literature on efficient mod-
els and methods for packing circular objects/items into regions in the Euclidean plane; ob-
jects/items and regions considered are either 2- or 3-dimensional. A survey of industrial ap-
plications of circle packing and of methods for their solution, both exact and heuristic, is
presented in [41].

In the base RCPP, a number A of tubes is available for packing in a container of width W
and height H, in such a way that the value of the packing is maximum. Let A = {1, . . . ,A} be
the index set of the tubes; each tube i ∈ A is characterized by an external radius rexti and an
internal radius rinti , and may be placed in the container or not. A formulation in mixed integer
non-linear programming, provided in [37], considers:
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• binary variables wi for all i ∈ A , where wi = 1 if tube i is placed directly inside the
container, wi = 0 otherwise;

• binary variables uki for k, i ∈ A such that rintk ≥ rexti , where uki = 1 if tube i is placed
directly inside tube k, uki = 0 otherwise (only required if rintk ≥ rexti ; other pairs (k, i) are
not excluded for facilitating notation);

• position variables (xi,yi) of the center of tube i, for all i ∈A (only relevant if i is packed).

Each loaded tube is placed within the bounds of a container, which we assume to be a
rectangle with vertices (0,0), (W,0), (0,H) and (W,H). The constraints are the following:

• inserted tubes must be completely inside the container;
• loaded tubes may be placed either directly in the container or inside other tubes;
• for each pair of tubes (i, j) directly placed in the container, the distance between them

must be greater than or equal to the sum of their external radii;
• the above constraint is likewise applied for each pair of tubes (i, j) directly placed inside

the same tube k;
• if tube i is placed directly in tube k, their centers must be close enough for i to remain

completely inside k.

The objective of this problem is to maximize the value of the packing, i.e., the sum of a
user-defined value vi for loaded tubes:

maximize V = ∑
i∈A

vi

(
wi + ∑

k∈A
uki

)
. (7)

We now describe a heuristic method for quickly constructing a solution to the RCPP. The
method begins with an empty container and iteratively inserts new tubes either directly into
the container or into a previously packed tube. An auxiliary set O of open objects is used,
which initially has the container as its only element. An object (a tube or the container) is said
to be open while it is possible to insert at least one of the remaining tubes into it. Whenever a
new tube is packed, it is added to O; and when it is found that no tubes can be inserted into
an object, it is removed from O . The algorithm packs a new tube per iteration until either all
available tubes have been packed or O becomes empty.

In order to prioritize telescoping—which seems intuitively advantageous because value is
gained without further occupying the container—we choose, if possible, to insert the next tube
into the open object o∈O with minimum free space/area. It is then checked if at least one tube
can be inserted into o: if it is possible, we move on to the next step in the algorithm; otherwise,
o is removed from O and the object having the next minimum free space is checked. If during
this selection O becomes empty, the algorithm stops and the current solution is returned.

After selecting the object o into which a tube will be inserted, the actual tube to be inserted
is selected. In this step, the algorithm greedily chooses the tube t which has the maximum
estimated value-to-area ratio. This ratio is an estimate of the total value of a tube and all tubes
that can potentially be telescoped into it, divided by its area. It is approximated in a manner
similar to the greedy heuristic for the knapsack problem, which is based on the value-to-weight
ratio of items.

Finally, from the set of positions of t in o, a position p with minimum ordinate is chosen;
for tie-breaking, the position with smallest abscissa is selected. An iteration ends by inserting
tube t into object o at position p, and updating O to include t.

Since the position variables (xi and yi) in the mathematical model are real variables, the
set of positions for a tube is often infinite. In the computation of candidate positions for tube
t, we reduce this possibly infinite set to a finite set through a number of simple rules. When
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inserting a new tube t directly into the container (Figure 7), the candidate positions considered
are:

• the two positions placing t at the bottom corners of the container;
• for each tube u already packed directly into the container, include all positions where t is

tangent to u and to any wall of the container;
• for each pair of tubes (v,w) already packed directly into the container, include all positions

where t is tangent to both v and w.

Similarly, when t is being inserted into a wider, previously packed tube t ′ (Figure 8), the set
of candidate positions includes:

• the position placing t at the bottom center of t ′;
• for each tube u packed directly into t ′, include all positions that are tangent to both t ′ (from

the inside) and u (from the outside);
• for each pair of tubes (v,w) already packed directly into t ′, include all positions that are

tangent to both v and w;

Fig. 7. Circle packing inside a rectangle: positioning possibilities given previously placed,
fixed circles (in black).

Fig. 8. Circle packing inside another circle (telescoping): positioning possibilities given pre-
viously placed, fixed circles (in black).

After the set of candidate positions is computed, positions violating any constraint (e.g.,
positions where t overlaps with a packed tube) are discarded. It must be noted that with this
simplification we are excluding the majority of the original problem’s search space, so the
property of proven optimality is lost even when this restricted search space is fully explored.
Figure 9 shows an example of an optimal solution which cannot be generated by the described
method; whichever the first tube is, it is not at a corner of the container.

The above construction method is purely greedy, leading to a single solution if the same
data is provided multiple times. The method is converted into a semi-greedy algorithm by
introducing a probabilistic component into one of the choices; in our implementation, the
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Fig. 9. An optimal solution which is not contained in the restricted search space.

position into which a new tube is inserted is randomly selected, giving higher probability
to positions closer to the greedy decision. The full construction method is summarized in
Algorithm 4.

Algorithm 4: Construction heuristic for recursive tube packing.
Data: container C and set of available tubes A
Result: set S of tubes packed and their respective positions

1 S ←{}
2 O ←{C}
3 while O 6= {} and A 6= {} do
4 o← element of O with minimum unused area
5 foreach t ∈A (from largest to smallest value-to-area ratio) do
6 P ← positions for t inside o
7 if P 6= {} then
8 choose position p ∈P (semi-greedy choice)
9 S ←S ∪{(t, p)}

10 O ← O ∪{t}
11 A ←A \{t}
12 break

13 if could not place any tube inside o then
14 O ← O \{o}

15 return S

This semi-greedy variant is used in both algorithms compared in the computational ex-
periment. The semi-greedy (SG) algorithm consists in repeating constructions with different
pseudo-random number generator seeds, whereas MCTS uses it for the simulation step. As
in the stacking problem, MCTS uses a single-expansion strategy and scores nodes using the
average-weighted exploration term.

The computational experiment included 6 instances of the RCPP, adapted from [37]. The
two algorithms were run 10 times on each instance, with a time limit of 600 seconds. Table 3
reports the average total value of the best solution found after 60 seconds, and at the end of
the full 600-second period.



18 João Pedro Pedroso and Rui Rei

Instance SG (60s) MCTS (60s) SG (600s) MCTS (600s)
large03 3660023.3 3660021.8 3660024.2 3660023.5
large05 4140042.1 4140044.0 4140043.0 4140047.1
large16 30311008.0 30625928.6 30311016.6 31192827.3
small03 938000.0 950000.0 940000.0 957000.0
small05 1090000.0 1120000.0 1090000.0 1120000.0
small16 10438035.5 10388039.2 10450036.6 10534032.5

Table 3. Average value packed in a container, for 10 independent observations, for the RCPP
with semi-greedy construction and with Monte-Carlo tree search, with a time limit of 60 sec-
onds (left-hand side columns) and 600 seconds (right-hand side columns). Instances adapted
from [37].

Although the number of instances is small, the results indicate a superior performance
of MCTS after 60 seconds, further widening the gap when the full 600 seconds are allowed.
This is an expected consequence of allowing extra time, as more information is gathered and
MCTS’s estimates of node values are refined.

6 Conclusion

Tree search is at the heart of the solution of combinatorial optimization problems. The use of
simulation to estimate node values is twofold advantageous: it provides quick solutions to the
problem; and it prevents misleading evaluations given by poor bounds.

In this work we propose the use of tree search in combination with problem-dependent
heuristics for three relevant problems in logistics, to provide better estimates of node val-
ues and speed up convergence towards good solutions. In the first application—the number
partitioning problem, arising e.g., in load balancing—tree search exploits the quality of the
well-known Karmarkar-Karp construction heuristic. The second application is the stacking
problem, common in container port operations and in handling warehouse storage, for which
full simulation is necessary to evaluate even the earliest placement decisions. Finally, tree
search is applied to the recursive circle packing problem—a generalization of circle packing
in rectangles—where, once more, early decisions during construction may not be accurately
assessed before the solution is complete. In the two last applications, a random component
is introduced in the construction heuristic for the sake of diversification. A simulation based
on such construction heuristics builds a feasible solution, whose value is used in the evalua-
tion of all nodes in the path between the root of the search tree and the node from which the
simulation originated.

In logistics, many situations are studied using simulation models, due to the difficulty in
fully characterizing them as formal mathematical models. Simulation-based optimization is
a general framework for improving solutions for these models; tree search provides a sys-
tematic way for using the simulation models already available in an optimization context. One
promising application area with relevance in logistics is resource-constrained scheduling; con-
struction rules can be used for simulation, and decisions complementary to these rules can be
implicitly explored under the tree search.

The integration of the paradigms of simulation and, potentially, exact search, is a promis-
ing step toward the solution of hard problems, whose formulation in mathematical optimiza-
tion is too loose for mixed integer solvers to provide acceptable solutions. It also enlarges



Tree Search and Simulation 19

the scope in which operations research exact methods can be applied, in the sense that the
simulation may deal with problems which are not linear or even well-defined. The only re-
quirements in this regard would be to contain all relevant solutions in the search tree, and to
have consistent evaluations provided by simulation. Although complete enumeration is usu-
ally a remote possibility, solutions found on the searched path may provide excellent, realistic
approximations, as has been illustrated with the study cases of number partitioning, stacking,
and recursive circle packing.
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