
Hybrid Enumeration Strategies for Mixed
Integer Programming

João Pedro Pedroso

Technical Report Series: DCC-2004-8

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre 823, 4150-180 Porto, Portugal

Tel: +351-226.078.830 – Fax: +351-226.003.654

http://www.dcc.fc.up.pt/Pubs/treports.html



Hybrid Enumeration Strategies

for Mixed Integer Programming

João Pedro Pedroso

DCC-FC & LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150-180 Porto, Portugal

Email: jpp@ncc.up.pt

October 2004

Abstract

In this paper we present several algorithms which combine a partial enumeration
with meta-heuristics for the solution of general mixed-integer programming problems.
The enumeration is based on the primal values assignable to the integer variables of the
problem. We develop some algorithms for this integration, and test them using a set of
well-known benchmark problems.

Key-words: Enumeration, Linear Integer Programming, Mixed Integer

Programming

1 Introduction

This paper presents an enumeration strategy for general linear integer problems, based on
cycling through the variables’ primal, integer domains. Linear programming relaxations
are used for choosing the values to assign at each step, as well as for pruning nodes where
there is no hope of finding improving solutions.

The enumeration is done on the integer variables; if there are continuous variables,
their corresponding value is determined through the solution of a linear program (LP)
where all the integer variables are fixed.

For large or hard problems, the complete enumeration is not affordable on realistic
setups. We propose several possibilities in order to reduce the search tree, including
enumeration on a subset of variables, and enumeration on a subset of the possible
outcomes for each variable.

In some situations, especially when variables have large domains, the standard branch-
and-bound is likely to provide better results than enumeration. With this in view, we
propose the use of branch-and-bound in the last stage of determining a solution, for
obtaining the optimal value of some free variables, conditioned to the values of other
variables that are kept fixed.

We finally specify a hybrid strategy, where some variables are completely enumerated,
and some other are partially enumerated. As a solution improvement after construction,
some variables are freed and determined by branch-and-bound. At the end of each
iteration, the best found solution is partially destroyed, and the next construction at-
tempt starts with some variables instantiated from that solution. This strategy is rather
difficult to classify under the currently categorized meta-heuristics, of which a recent,
comprehensive survey has been published in [5]. It might be seen as a special case of
GRASP [11], were the semi-greedy construction is replaced by partial enumeration.

1



Section 6 provides computational results for a set of well-known benchmark prob-
lems, available in in the MPS format, in the MIPLIB [1, 8]. Results obtained by
the enumeration-based strategies are compared to those of branch-and-bound and tabu
search. We have used the publicly available GLPK software package for providing both
branch-and-bound and linear programming solvers.

There have been many approaches to the approximate solution of mixed-integer
problems (MIP); remarkable works include [4, 12, 3, 2]. In this contribution, our main
aim is to try to explore diversification ideas, through the use forced enumeration on some
variables. MIP-based enumeration ideas have to some extent been applied in constraint
programming, as referred in [12].

2 Background algorithms

The problem of optimizing a linear function subject to a set of linear constraints in the
presence of integer variables is a pure integer (IP) programming problem; in the more
general case where there are continuous variables, the problem is called mixed integer

(MIP). The mathematical programming formulation of a mixed integer linear program
is

z = min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Z
n
+, y ∈ R

p
+} (1)

where Z
n
+ is the set of nonnegative, integral n-dimensional vectors and R

p
+ is the set

of nonnegative, real p-dimensional vectors. A and G are m × n and m × p matrices,
respectively, where m is the number of constraints. The integer variables are x, and the
continuous variables are y. In this paper we assume that there are additional bound
restrictions on the integer variables: li ≤ xi ≤ ui, for i = 1, . . . , n.

A primal-based enumeration method for determining the solution of this problem
consists of progressively fixing the integer variables, each one at every different value of
its domain, up to the point where there are no more free (integer) variables [6]. At this
point we have a complete solution for the integer variables—call it x̄. We can hence solve
a linear program to determine the value of the objective that corresponds to these fixed
variables, as well as the corresponding optimal value of the continuous variables, if there
are some (Equation 2). Notice that if the initial problem is pure integer, at this point
there will be no free variables; some linear programming solvers might not provide the
correct values of z or ζ for the fixed variables.

z = min
y

{cx + hy : Ax + Gy ≥ b, x = x̄, y ∈ R
p
+} (2)

If this problem is infeasible, we calculate the total constraint violations at the end of
phase I of the simplex algorithm, which we denote by ζ. For minimization problems, we
say that a solution x1 is better than a solution x2 if ζ1 < ζ2, or ζ1 = ζ2 and z1 < z2.

2.1 Blind enumeration

The enumeration of the integer variables can be described through a recursive function,
as shown in Algorithm 1. In this algorithm the set of currently fixed variables is
denoted by F , and the set of variables yet to be fixed by V; thus, its first call would be
Enumerate(x̄, x∗, {}, {1, . . . , n}).

This algorithm requires a computational time that grows exponentially with the
number of integer variables, and therefore is not usable but for toy problems.

2.2 Enumeration with pruning

An improvement of Algorithm1 that in practice can provide a considerable speedup
consists of solving an linear programming relaxation in each node, with the currently

2



Algorithm 1: Integer variables’ enumeration.
Enumerate(x̄, x∗, F , V)
(1) if V = {}
(2) determine z and ζ through Equation 2
(3) if x̄ = xLP is better than x∗

(4) x∗ := x̄

(5) return

(6) select index i from V
(7) F := F ∪ {i}
(8) V := V\{i}
(9) foreach j ∈ {li, ui}
(10) fix x̄i := j

(11) Enumerate(x̄, x∗, F , V)
(12) release x̄i

(13) F := F\{i}
(14) V := V ∪ {i}

enumerated variables fixed and the other relaxed, before fixing any variable, as specified
in Equation 3.

min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ R
n
+, y ∈ R

p
+, xi = x̄i ∀ i ∈ F} (3)

This LP relaxation provides several useful informations. First, if it is infeasible we
can prune the current node, as there will be not feasible solution on its branches. We can
also prune it if the value of the objective is equal, or worse than that of a known feasible
solution. Finally, if we denote this relaxation’s solution by xLP = (xLP

1 , . . . , xLP
n ), the

value of a relaxed variable xLP
i determined by this problem can be rounded; the rounded

value and its integer neighbors provide good initial guesses for the enumeration, as a
tentative for quickly obtaining good solutions.

In equation 3, variables in the set F are fixed at the value determined by the
enumeration, and the other integer variables are relaxed.

An enumeration based on these considerations is presented in Algorithm 2. In this
algorithm, for the case of binary variables, the set J (line 12) contains only two values;
but for general integer variables, it can be rather large. In order to tackle this issue, we
propose to solve the relaxation problem with modified objectives max xi and min xi, in
order to try to reduce respectively ui and li for this particular node. We only do this
when, for the original bounds, ui − li ≥ 3.

This enumeration provides a strategy that is somehow comparable to the standard
branch-and-bound. It can determine the optimal solution of any MIP, at the cost of a
computational time that on the worst case is exponential on the number of variables.
Numerical results for a set of benchmark problems are presented in section 6.1.

3 Enumeration-based probabilistic construction

We introduce now a construction procedure based on the enumeration strategy presented
in the previous section, but which also integrates a probabilistic factor limiting the size of
the enumeration, in order to try to quickly generate good solutions. This strategy is based
on doing an (possibly partial) enumeration for some variables, while other variables are
simply rounded to one of the integers closest to their value in the current LP relaxation.

3



Algorithm 2: Integer variables’ enumeration with node pruning.
Enumerate(x̄, x∗, F , V)
(1) determine xLP , z and ζ through Equation 3
(2) if V = {}
(3) if x̄ = xLP is better than x∗

(4) x∗ := x̄

(5) return

(6) if ζ > 0, or ζ = 0 and z ≥ z∗

(7) return

(8) select index i from V
(9) F := F ∪ {i}
(10) V := V\{i}
(11) k = closest integer to xLP

i

(12) J := {k}
(13) foreach j ∈ {k + 1, k − 1, . . .} : li ≤ j ≤ ui

(14) J := J ∪ {j}
(15) foreach j ∈ J
(16) fix x̄i := j

(17) Enumerate(x̄, x∗, F , V)
(18) release x̄i

(19) F := F\{i}
(20) V := V ∪ {i}

The construction strategy is presented in Algorithm 3, which takes a parameter
π, specifying the probability of a variable being selected for enumeration (as opposed
to rounding). This parameter also specifies the probability of using each value of the
variable’s domain on the enumeration. If a variable i is selected for enumeration, the
integer closest to xLP

i (its value at the current LP relaxation) is selected for enumeration
with probability one; all the other values in [li, ui] are selected with probability π.

We denote a continuous random variable with uniform distribution within [0, 1] by R.

4 Solution improvements

After a solution is constructed, we do a local search on the each integer variable individ-
ually, keeping all the other variables fixed.

Finally, we attempt an intensification on this solution, by releasing some of the integer
variables on running a partial branch-and-bound to determine their optimal value subject
to the values of the other, fixed variables.

On this setting, both local search and intensification make sense only if the con-
structed solution if feasible. Therefore, if the construction fails, a new construction
starts without these two steps.

4.1 Local search

We present here a simple local search method, based on depth-first hill-climbing on a
neighborhood N(x̄) consisting of the solutions which have all variables identical to x̄

except for one index. The best of such neighbors for an index j can be determined
solving Equation 4, where I = {1, . . . , n}.

min
x,y

{cx + hy : Ax + Gy ≥ b, y ∈ R
p
+, xj ∈ Z, xi = x̄i ∀ i ∈ I\{j}} (4)

4



Algorithm 3: Construction procedure.
Construct(x̄, x∗,F ,V, π)
(1) determine xLP , z and ζ through Equation 3
(2) if V = {}
(3) if x∗ not initialized or x̄ = xLP is better than x∗

(4) x∗ := x̄

(5) return

(6) if ζ > 0, or ζ = 0 and z ≥ z∗

(7) return

(8) randomly select index i from V
(9) F := F ∪ {i}
(10) V := V\{i}
(11) if R > π

(12) if R < xLP
i − bxLP

i c
(13) x̄i := dxLP

i e
(14) else

(15) x̄i := bxLP
i c

(16) Construct(x̄, x∗,F ,V, π)
(17) else

(18) k = closest integer to xLP
i

(19) J := {k}
(20) foreach j ∈ {k + 1, k − 1, . . .} : li ≤ j ≤ ui

(21) if R > π

(22) J := J ∪ {j}
(23) foreach j ∈ J
(24) x̄i := j

(25) Construct(x̄, x∗,F ,V, π)
(26) release x̄i

(27) F := F\{i}
(28) V := V ∪ {i}

The actual implementation of the search of neighborhood N(x̄) is done by fixing all the
variables x at x̄, except for an index j, and determining the optimal value of the variable
xj by a (single integer variable) branch-and-bound.

Local search is done depth-first, i.e., a neighbor that improves the quality of the
current solution is immediately accepted, as described in Algorithm 4. In the local
search routine we will do as many movements as required for the current solution to
have no neighbor better that itself, as shown in Algorithm 5.

Given the quality that is expected from the construction algorithm, the improvements
due to local search are expected to be relatively few; anyway, as the computational burden
of this search is comparatively small, it is worthy to try a local search at the end of every
construction.

4.2 Intensification

The process of releasing one integer variable, while keeping the other fixed, can be
extended: we might release more variables, letting branch-and-bound do a deeper search,
which we call intensification. On one extreme, if all the variables are released, there
would be a pure branch-and-bound; on the other, if no variable is released, there would

5



Algorithm 4: Solution improvement.
Improve(x̄)
(1) I := {1, . . . , n}
(2) while I 6= {}
(3) randomly select j ∈ I
(4) solve Equation 4, determining xj

(5) if x is better than x̄

(6) return x

(7) I := I\{j}
(8) return x̄

Algorithm 5: Local search routine.
LocalSearch(x̄)
(1) s := Improve(x̄)
(2) while s 6= x̄

(3) x̄ := s

(4) s := Improve(x̄)
(5) return x̄

be no intensification. We propose to use a parameter ρ specifying the probability of any
individual variable to be selected for being released; with ρ = 1 all variables would be
selected, with ρ = 0 no variable is selected.

The problem corresponding to the intensification procedure is formulated in Equa-
tion 5, where V is the set of released variables, and F the set of variables kept fixed.

min
x,y

{cx + hy : Ax + Gy ≥ b, y ∈ R
p
+, xj ∈ Z ∀ j ∈ V, xi = x̄i ∀ i ∈ F} (5)

The intensification procedure is presented in Algorithm 6.

Algorithm 6: Intensification.
Intensify(x̄, ρ, i)
(1) F := {}
(2) V := {1, . . . , n}
(3) foreach i ∈ {1, . . . , n}
(4) if R < π

(5) F := F ∪ {i}
(6) V := V\{i}
(7) solve Equation 5
(8) if no integer solution was found
(9) return x̄

(10) return x, the solution of Equation 5

6



5 The Complete Meta-heuristic

5.1 Parameterized version

The elements presented in the previous sections are combined to form a complete meta-
heuristic, in Algorithm 7. The input parameters are the number of iterations T , and the
probability of selection for enumeration π, the probability of selection for intensification
ρ, and the name of the file containing the instance to solve.

Algorithm 7: A complete meta-heuristic — parameterized version.
MetaHeuristic(T, seed, π, ρ,MPSfile)
(1) read global data A, G, b, c, and h from MPSfile

(2) initialize random number generator with seed

(3) t = 0
(4) F := {}
(5) V := {1, . . . , n}
(6) while t ≤ T

(7) Construct(x̄, x∗,F ,V, π)
(8) x̄ := LocalSearch(x̄)
(9) x̄ := Intensify(x̄, ρ)
(10) if x∗ not initialized or x̄ better than x∗

(11) x∗ := x̄

(12) t = t + 1
(13) return x∗

This algorithm has the nice property of permitting the user to select the amount
of effort to use in enumeration, intensification, and in rounding construction and local
search. In particular, with π = 1 there will be a complete enumeration; with ρ = 1 there
will be a complete branch-and-bound; and with π = ρ = 0 there will construction based
on random rounding (with no enumeration), complemented by local search.

However, there is a significant difficulty on the usage of this algorithm, on finding
a good, general parameterization. The appropriate parameters for a given problem can
produce very poor results if used on a different one. In particular, for easy problems it
seems to be more appropriate to run the full enumeration or branch-and-bound, as in
these cases in addition to obtaining the optimal solution we also obtain the proof that
it is optimal.

We next propose a way of exploring two issues: varying the parameters π and ρ

dynamically during the search, and allowing a limited CPU time per iteration.

5.2 Parameter-free version

In order to do the search in a fashion that is as much as possible “parameter-free”, we
propose to randomly determine the parameters that control the previous algorithm, π

and ρ, in each iteration, with uniform probability in the interval [0, 1], as specified in
Algorithm 7. This has the inconvenient of potentially producing iterations where too
much CPU time is spent, if either of the parameters is close to one. To tackle this, we
have to limit the CPU time spent both in enumeration and in intensification, for each
iteration. This, again, we do in a randomized way, by setting the limit CPU time of
either procedure to be a random fraction of the number of variables of the problem. The
choice of the number of variables as a basis for CPU allowance is somewhat arbitrary,
somewhat intuitive, but seems to produce reasonable results.

7



Algorithm 8: A complete meta-heuristic — parameter-free version.
MetaHeuristic(T, seed,MPSfile)
(1) read global data A, G, b, c, and h from MPSfile

(2) initialize random number generator with seed

(3) t = 0
(4) F := {}
(5) V := {1, . . . , n}
(6) while t ≤ T

(7) π = R

(8) Construct(x̄, x∗,F ,V, π) (allow R × n seconds, max.)
(9) x̄ := LocalSearch(x̄)
(10) ρ = R

(11) x̄ := Intensify(x̄, ρ) (allow R × n seconds, max.)
(12) if x∗ not initialized or x̄ better than x∗

(13) x∗ := x̄

(14) t = t + 1
(15) return x∗

6 Results

6.1 Complete enumeration

The performance of the complete enumeration is somewhat comparable to that of branch-
and-bound, especially for problems with all integer variables binary. We must however
note that the results obtained by enumeration are extremely dependent on the sequence
of enumeration; a variation of two orders of magnitude on the CPU time is often observed
when the variables are enumerated in different sequences. For the results presented here,
the variables were enumerated on the order of their appearance in the input file.

Complete primal-based enumeration results, as well as results obtained utilizing
the B&B implementation of GLPK, on the series of benchmark problems selected, are
provided in the Table 1. The maximum CPU time allowed is 24 hours; in case this limit
is exceeded, the best solution found within the limit is reported. GLPK uses a heuristic
by Driebeck and Tomlin to choose a variable for branching, and the best projection
heuristic for backtracking (see [7] for further details).

6.2 Meta-heuristic (parameter-free version)

We present results obtained by the parameter-free meta-heuristic in table 21. Comparison
of these results with those of the complete enumeration and branch-and-bound, provided
in the previous section, shows that for easy problems, branch-and-bound and the com-
plete enumeration are generally preferable. For large problems, the meta-heuristic is
likely to be preferable, as it quickly provides solutions for problems on which the exact
approaches use a very large amount of CPU time.

The results can also be compared to those obtained by a tabu search implementation,
which are provided in appendix D, table 4. This comparison shows that the results are
in general favorable to tabu search. We believe that one of the main weaknesses of the
enumeration-based meta-heuristic resides in parameterization, which remains a subject

1The number of iterations allowed in this experiment was probably too small, as we observed that in most

of the cases improving solutions were found in the last iterations. A more thorough experiment is currently

under way.

8



problem Branch-and-bound Primal enumeration
name CPU (s) best z remarks CPU (s) best z remarks
bell3a 124 878430.32 111 878430.32
bell5 132 8966406.49 2372 8966406.49
egout 3.3 568.1007 657 568.101
enigma 13 0 5.3 0
flugpl 1.2 1201500 0.07 1201500
gt2 >24h 30161∗ stopped >24h (not found) stopped
lseu 89 1120 64 1120
mod008 47 307 58 307
modglob >24h 20815372.17∗ stopped >24h 29059400∗ stopped
noswot 127 -41∗ failed >24h -40∗ stopped
p0033 1 3089 1.1 3089
pk1 45781 11 9413 11
pp08a >24h 7350 stopped >24h 7790∗ stopped
pp08aCUT >24h 7350 stopped >24h 7920∗ stopped
rgn 3.8 82.2 2.9 82.2
stein27 3.6 18 6.3 18
stein45 248 30 488 30
vpm1 9450 20 >24h 21∗ stopped

Table 1: Results obtained by the complete enumeration, and by branch-and-bound, using
GLPK - version4.4. Solvers were interrupted when 24 hours of CPU time have been spent.
(∗ indicates non-optimal solutions.)

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optim. runs (E[tf ](s)) runs (E[tf ](s)) runs (E[tf ](s))
bell3a 878430.32 0 0 95 10.86 95 31.11 95 31.11
bell5 8966406.5 0 0 100 28.19 75 283.6 75 283.64
egout 568.101 0 0 100 0.19 95 52.49 95 52.49
enigma 0 0 0 80 572.70 65 728.5 65 728.46
flugpl 1201500 0 0 60 14.78 60 15.37 60 15.37
gt2 21166 0 0 100 18.24 15 5524. 15 5523.96
lseu 1120 0 0 100 0.12 65 174.7 65 174.72
mod008 307 0 0 100 0.59 95 33.33 95 33.33
modglob 20781300.2 0 0.20 100 0.16 5 6211. 0 À 6375.75
noswot -41 0 4.65 95 21.29 45 491.4 0 À 7900.36
p0033 3089 0 0 100 0.95 100 1.449 100 1.45
pk1 14 0 27.3 100 0.034 5 2747. 0 À 2833.90
pp08a 7460 0 1.50 100 0.085 5 5346. 0 À 5627.83
pp08aCUT 7370 0 0.27 100 0.11 5 4975. 0 À 5004.99
rgn 82.2 0 0 100 0.033 100 0.086 100 .086
stein27 18 0 0 100 0.022 100 0.036 100 .036
stein45 30 0 0 100 0.065 70 20.78 70 20.79
vpm1 20 0 0 100 0.20 75 456.1 75 456.07

Table 2: Parameter-free meta-heuristic (Algorithm 8): best solution found, percent distance
above optimum; expected CPU time required for reaching feasibility, the best solution, and
optimality. (Results based on 20 observations of the algorithm running for 1000 iterations)

9



to be further studied.
We also present results obtained utilizing the commercial solver in appendix E,

table 5. Although there are some exceptions, this solver is generally much faster than
meta-heuristics, although, as the code is not open, we cannot determine why. Differences
might be due to the use of branch-and-cut, the variable choice in branch-and-bound, the
quality of the LP solver, and preprocessing.

7 Conclusion

In the first part of this paper we presented a primal-based, complete enumeration
algorithm for the solution of MIPs. The performance of this algorithm is in most of
the cases comparable to that of branch-and-bound, though in some cases it is much
worse. The choice of a good heuristic for variable selection on the enumeration is likely
to provide interesting results, as there is a very high dependence of the performance of
the algorithm on the enumeration order. This complete enumeration strategy might be
appealing for the solution of non-linear integer and mixed integer problems, as there is
no general, exact optimal branch-and-bound strategy for these cases.

We presented several ideas about partial enumeration and its integration in a meta-
heuristic, with an application for general MIP. To the best of our knowledge, this type of
integration is applied here for the first time; also new, to some extent, is the method of
partially destroying a solution at the end of an iteration for providing a start solution to
the next one. This partial destruction, presently rather blind, should be further studied,
in order to try to actively preserve “good” parts of the solution.

The probabilistic enumeration strategy proposed in this paper provides a way for
quickly solving most of the problems analyzed, even though it is generally not as good as
tabu search on the selected benchmarks. These are the first attempts on the integration
of enumeration in a meta-heuristic, and should therefore be further explored.

The readers interested in more details on the implementation of the strategies pre-
sented in this paper are referred to the C programming code, available in [9].

A Benchmark Problems

The instances of MIP and IP problems used as benchmarks are defined in the [1] and
are presented in Table 3. They were chosen to provide an assortment of MIP structures,
with instances coming from different applications.

B Computational Environment

The computer environment used on this experiment is the following: a Linux Debian
operating system running on a machine with an AMD Athlon processor at 1.0 GHz,
with 512 Gb of RAM. The algorithms of this papar and GLPK were all implemented on
the C programming language.

C Statistics Used

In order to assess the empirical efficiency of tabu search, we provide measures of the
expectation of the CPU time required for finding a feasible solution, the best solution
found, and the optimal solution, for each of the selected MIP problems.

Let t
f
k be the CPU time required for obtaining a feasible solution in iteration k, or

the total CPU time in that iteration if no feasible solution was found. Let to
k and tbk be

identical measures for reaching optimality, and the best solution found by tabu search,
respectively. The number of independent tabu search runs observed for each benchmark

10



Problem Application Number of variables Number of Optimal
name total integer binary constraints solution
bell3a fiber optic net. design 133 71 39 123 878430.32
bell5 fiber optic net. design 104 58 30 91 8966406.49
egout drainage syst. design 141 55 55 98 568.101
enigma unknown 100 100 100 21 0
flugpl airline model 18 11 0 18 1201500
gt2 truck routing 188 188 24 29 21166
lseu unknown 89 89 89 28 1120
mod008 machine load 319 319 319 6 307
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p0033 unknown 33 33 33 16 3089
pk1 unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
pp08acut unknown 240 64 64 246 7350
rgn unknown 180 100 100 24 82.1999
stein27 unknown 27 27 27 118 18
stein45 unknown 45 45 45 331 30
vpm1 unknown 378 168 168 234 20

Table 3: Set of benchmark problems used: application, number of constraints, number of
variables and optimal solutions as reported in MIPLIB.

is denoted by K. Then, the expected CPU time required for reaching feasibility, based
on these K iterations, is:

E[tf ] =

K∑

k=1

t
f
k

rf
,

while

E[tb] =
K∑

k=1

tbk
rb

is the expected CPU time for finding the best tabu search solution, and the expected
CPU time required for reaching optimality is

E[to] =
K∑

k=1

tok
ro

.

For rf = 0 and ro = 0, the sums provide respectively a lower bound on the expectations
of CPU time required for feasibility and optimality.

11



D Tabu search results.

A tabu search approach to the MIP has been presented in [10], on the same computational
setup used here. We transcribe those results, for comparison with the enumeration-based
meta-heuristic.

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optim. runs (E[tf ](s)) runs (E[tf ](s)) runs (E[tf ](s))
bell3a 878430.32 0 0 100 0.24 100 4.38 100 4.38
bell5 8966406.49 0 0 100 8.60 100 38.24 100 38.24
egout 568.1007 0 0 100 0.47 100 6.76 100 6.76
enigma 0 0 0 35 187.51 20 376.66 20 376.66
flugpl 1201500 0 0 100 1.52 100 1.55 100 1.55
gt2 21166 0 0 100 0.65 15 2216.95 15 2216.95
lseu 1120 0 0 100 1.47 10 770.45 10 770.45
mod008 307 0 0 100 0.17 40 1119.57 40 1119.57
modglob 20740508.1 0 0 100 0.16 100 1404.29 100 1404.29
noswot -41 0 4.65 100 8.38 95 239.96 0 À15653.99
p0033 3089 0 0 100 0.17 90 4.10 90 4.10
pk1 15 0 36.36 100 0.03 10 1111.96 0 À2357.09
pp08a 7350 0 0 100 0.11 45 4316.38 45 4316.38
pp08aCUT 7350 0 0 100 0.15 70 766.59 70 766.59
rgn 82.1999 0 0 100 0.03 100 0.73 100 0.73
stein27 18 0 0 100 0.02 100 0.05 100 0.05
stein45 30 0 0 100 0.06 80 66.65 80 66.65
vpm1 20 0 0 100 0.48 95 393.73 95 393.73

Table 4: Tabu search results: best solution found, percent distance above optimum; expected
CPU time required for reaching feasibility, the best solution, and optimality. (Results based
on 20 observations of the algorithm running for 5000 iterations.)

E Results obtained by a commercial solver.

We present here the results obtained by the commercial solver Xpress-MP Optimizer,

Release 13.02, limiting the CPU time to 24 hours maximum.

problem name best z CPU time (s) remarks
bell3a 878430.32 87
bell5* 8988042.65∗ >24h stopped, >24h CPU time
egout 568.1007 0
enigma 0 0
flugpl 1201500 0
gt2 21166 0
lseu 1120 0
mod008 307 0
modglob 20740508.1 0
noswot* -41∗ >24h stopped, >24h CPU time
p0033 3089 0
pk1 11 937
pp08a 7350 31
pp08aCUT 7350 5
rgn 82.1999 0
stein27 18 1
stein45 30 142
vpm1 20 0

Table 5: Results obtained by the commercial Xpress-MP Optimizer, Release 13.02 : solution
found and CPU time reported by the solver. (∗ indicates non-optimal solutions.)

12



References

[1] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Martin W. P.
Savelsbergh. An updated mixed integer programming library. Technical report,
Rice University, 1998. TR98-03.

[2] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[3] Fred Glover. Tabu search—part II. ORSA Journal on Computing, 2:4–32, 1990.

[4] Fred Glover. Parametric tabu search for mixed integer programs. Technical report,
University of Colorado, Leeds School of Business, 2004.

[5] Holger H. Hoos and Thomas Stützle. Stochastic Local Search — Foundations and

Applications. Morgan Kaufmann / Elsevier, 2004.

[6] Jr. L. E. Trotter and C. M. Shetty. An algorithm for the bounded variable integer
programming problem. J. ACM, 21(3):505–513, 1974.

[7] Andrew Makhorin. GLPK – GNU Linear Programming Kit. Free Software
Foundation, www.gnu.org, January 2004. version 4.4.

[8] Internet repository, version 3.0, 1996. www.caam.rice.edu/∼bixby/miplib.

[9] João P. Pedroso. Enumeration methods for MIP: an implementation in
the C programming language. Internet repository, version 1.0, 2004.
www.ncc.up.pt/∼jpp/mipts.

[10] João P. Pedroso. Tabu search for mixed integer programming. In Cesar Rego,
editor, Metaheuristic Optimization via Memory and Evolution: Tabu Search and

Scatter Search. Kluwer Academic Publishers, 2004. (On press).

[11] L.S. Pitsoulis and M.G.C. Resende. Greedy randomized adaptive search procedures.
In P.M. Pardalos and M.G.C. Resende, editors, Handbook of Applied Optimization,
pages 178–183. Oxford University Press, 2002.

[12] Joachim P. Walser. Integer optimization by local search – a domain-independent
approach. Lecture Notes in Artificial Intelligence, LNAI-1637, 1999.

13


