
An evolutionary solver for linear integer

programming

João Pedro Pedroso
Riken Brain Science Institute

Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
e-mail: jpp@brain.riken.go.jp

BSIS Technical Report No.98-7
August 1998

Abstract

In this paper we introduce an evolutionary algorithm for the solution
of linear integer programs. The strategy is based on the separation of the
variables into the integer subset and the continuous subset; the integer
variables are fixed by the evolutionary system, and the continuous ones
are determined in function of them, by a linear program solver.

We report results obtained for some standard benchmark problems,
and compare them with those obtained by branch-and-bound. The per-
formance of the evolutionary algorithm is promising. Good feasible so-
lutions were generally obtained, and in some of the difficult benchmark
tests it outperformed branch-and-bound.

1 Introduction

Integer linear programming problems are widely described in the combinatorial
optimisation literature, and include many well-known and important applica-
tions. Typical problems of this type include lot sizing, scheduling, facility loca-
tion, vehicle routing, and more; see for example [6, 1]. The problem consists of
optimising a linear function subject to a set of linear constraints, in the pres-
ence of integer and, possibly, continuous variables. If the subset of continuous
variables is empty, the problem is called pure integer (IP). In the more general
case, where there are also continuous variables, the problem is usually called
mixed integer (MIP).

The general formulation of a mixed integer linear program is

max
x,y
{cx+ hy : Ax+Gy ≤ b, x ∈ ZZn+, y ∈ IRp

+} (1)

where ZZn+ is the set of nonnegative integral n-dimensional vectors and IRp
+ is the

set of nonnegative p-dimensional vectors. A and G are m×n and m×p matrices,
respectively, where m is the number of constraints. The integer variables are x,
and the continuous variables are y.

1

1.1 The evolutionary structure

The main idea for the conception of the algorithm described here is that if the
integer variables of a MIP are fixed, what remains to solve is a standard LP
problem; this can be done exactly and efficiently, for example by the simplex
algorithm or by interior point methods. We are therefore able to make the
integer variables evolve through an evolutionary algorithm (EA); after they are
fixed by the EA, we can determine the continuous variables in function of them.

1.2 Branch-and-bound.

The most well known algorithm for solving MIPs is branch-and-bound (B&B)
(for a detailed description see, for example, [6]). This algorithm starts with a
continuous relaxation of the MIP, and proceeds with a systematic division of
the domain of the relaxed problem, until the optimal solution is found. There
are two main advantages of the B&B algorithm. The first and most important
is that its solution is optimal (or there are no feasible solutions); the other is
that some nodes of the B&B exploration graph can be pruned, and therefore the
algorithm’s speed and memory requirement improved. These are two important
reasons to dissuade the application of an EA for the same purpose: EAs cannot
prove that the solution found is optimal, and in what concerns convergence
the best that can be proved is that, for elitist EAs, we obtain a sequence of
evaluations which converges to the optimal objective value as the number of
generations tends to infinity.

We believe that it is nevertheless worthy to try to use an EA for this type
of problems, because of two other important reasons. The first is that it is
easy to incorporate in the EA a problem-specific local search method, possibly
working on primal solutions, taking advantage of the problem structure; this
could provide a speedup of one order of magnitude. The second reason is that
in some cases B&B fails to find a good feasible solution, sufficient for most
practical applications, in a reasonable computational time. It can be hoped
that an EA does better than B&B in these cases.

1.3 Benchmark problems

Instances of integer linear problems correspond to specifications of the data:
the matrices A and G, and the vectors b, c and h in equation 1. The most
commonly used representation of instances of these problems is through MPS
files. The format of these files has the advantage of being standard, and hence
readable by most of the solvers; the disadvantage being that it can not provide
information concerning the specific characteristics of the problem.

We have tested the EA with a subset of the benchmark problems that are
available in the MIPLIB [3]. These problems range from the moderately easy
to the very difficult, for the solution techniques available nowadays.

2 The evolutionary operators

Evolutionary algorithms function by maintaining a set of solutions, generally
called a population, and making these solutions evolve through operations that
mimic the natural evolution: reproduction, and selection of the fittest. Some of

2

these operators where customised for the concrete type of problems that we are
dealing with; we focus on each of them in the following sections.

2.1 Representation of the solutions

The part of the solution that is determined by the EA is the subset of integer
variables, x in equation 1. Integer variables are fixed by the EA, leading to an
LP with only the continuous variables, y, free; these are determined afterwards
by solving a linear problem.

We use the term individual to mean a solution of the original mixed-integer
problem, and the term genome to mean the subset of integer variables of that
solution. The solution corresponding to a particular individual is represented
in the EA by its genome, an n-dimensional vector x̄EA = (x̄EA1 . . . x̄EAn); we call
each x̄EAk a chromosome.

An individual i kept in the algorithm’s population is hence represented by
the vector of integer variables x̄EA

i

, and the corresponding vector of continuous
variables ȳi is determined by an LP solver, at the time of its evaluation.

2.2 Evaluation of individuals

The solutions that are kept by the algorithm—or, in other words, the individuals
that compose the population—may be feasible or not. For the algorithm to
function appropriately it has to be able to deal with both feasible and infeasible
individuals coexisting in the population.

In the process of evaluation of an individual, we first formulate an LP by
fixing all the variables of the MIP at the values of the individual’s genome:

z = max
y
{cx̄EA + hy : Gy ≤ b−Ax̄EA, y ∈ IRp

+} (2)

We are now able to solve this (purely continuous) linear problem using a
standard algorithm, like the simplex.

2.2.1 Feasible solutions

If problem 2 is feasible, the evaluation (fitness) attributed to the corresponding
individual is the objective value z, and the individual is labelled feasible. We
denote this fitness by z̄EA, a data structure consisting of the objective value and
a flag stating that the solution is feasible.

2.2.2 Infeasible solutions

If problem 2 is infeasible, we formulate another LP for the minimisation of
the infeasibilities. This is accomplished by setting up artificial variables and
minimising their sum (a procedure that is identical to the phase I of the simplex
algorithm):

ζ = min
s
{
m∑
k=1

sk : Gy ≤ b−Ax̄EA + s, y ∈ IRp
+ , s ∈ IRm

+} (3)

where m is the number of constraints.

3

The evaluation attributed to such an individual is the value ζ of the optimal
objective of the LP of equation 3, and the individual is labelled infeasible. The
fitness data structure z̄EA consists of the value ζ and an infeasibility flag.

2.2.3 Comparison and selection of individuals

For the selection of individuals, we have to provide a way for comparing them,
independently of the corresponding solutions being feasible or not. What we
propose is to rank the solutions, so that: feasible solutions are always better
than infeasible ones, feasible solutions are ranked among them according to
the objective of the MIP problem, and infeasible solutions are ranked among
them according to the sum of infeasibilities (i.e., according to a measure of
their distance from the feasible set). For this purpose, we define an operator to
compare two individuals. We say that z̄EA

i � z̄EAj

(i is better than j) iff:

• i is feasible and j is infeasible;

• i and j are feasible, and zi > zj (i has a better objective);

• i and j are infeasible, and ζi < ζj (i is closer to the feasible region than j).

As there is the possibility that both feasible and infeasible individuals coexist
in the population, their fitness cannot be attributed as in common EAs, based
only on the value of an objective function. Therefore, selection of an individual
has to be (directly or indirectly) based on its ranking in the population, which
can be determined through the comparison operator defined above (see also
section 3.2).

2.3 Initialisation

The population that it used at the beginning an evolutionary process is usually
determined randomly, in such a way that the initial diversity is very large. In
the case of MIP, it is appealing to bias the initial solutions, so that they are
distributed in regions of the search space that are likely to be more interesting.
A way to provide this bias, inspired in an algorithm provided in [5], is to firstly
solve the LP relaxation of the problem, and then round the solutions obtained
to one of the closest integers. The probabilities for rounding up or down each of
the variables are given by the distance from the fractional solution to its closest
integer points.

If we denote the solution of the LP relaxation by xLP = (xLP1 . . . xLPn), each
element of the initial population will be determined as follows. For all the
chromosomes k ∈ {1, . . . , n}, the corresponding variable x̄EAk is rounded down
with probability

P (x̄EAk = bxLPk c) = xLPk − bxLPk c

or rounded up with probability 1− P (x̄EAk = bxLPk c).

2.4 The genetic operators

The generation of a new individual from two parents is composed of three steps:
recombination (meiosis and crossover), possibly followed by mutation, followed

4

by local search. Each of the genetic operators is controlled by two parameters:
probability of occurrence and intensity of the operation.

We use the following notation: νp, χp, µp, are the probabilities of meiosis,
crossover, and mutation, respectively; νs, χs, µs are their respective intensities.
The distribution of the perturbations added by mutation is δ(s) = 1− rs

2
, were

s is the intensity and r is a random number uniformly distributed in [0, 1]. The
value of δ(s) is scaled, so that it covers the whole region between the value x̄EAk
and its bounds.

The process of reproduction for creating a new genome x̄EA from two parents
x̄EA

f

and x̄EA
m

is presented in figure 1.

select parents (x̄EAf
, x̄EAm

)

procedure Reproduce(x̄EAf
, x̄EAm

)

if r < νp Do the meiosis with probability νp

for k = 1 to n do

set p := r(n− k + 1)(1− νs) Determine the size of the “path” to select from one
of the parents (inversely proportional to the intensity of meiosis)

if r < 1/2 With 50% probability, copy from the father (x̄EAf
)

for l = 1 to p do
if r < χp With some probability do crossover,

set x̄EA
k := x̄EAf

k + (x̄EAm

k − x̄EAf

k) χsr with intensity χs

else

set x̄EA
k := x̄EAf

k No crossover, exact copy of x̄EAf

k

done

else With 50% probability, copy from the mother (x̄EAm
)

. . . (swap the roles of x̄EAf
and x̄EAm

)

end if

done

else In this case, no meiosis occurs:

set x̄EA := x̄EAf
, or x̄EA := x̄EAm

copy exactly x̄EAf
or x̄EAm

, with same probability

end if

for k = 1 to n do Now, do the mutation: for each element of x̄EA,

if r < µp with probability µp, add mutation

set x̄EA
k :=round(x̄EA

k ± δ(µs)) of intensity µs, and round to nearest integer.

done

end procedure

Figure 1: Pseudo programming code for the genetic operations.

The recombination process produces a linear combination of the genomes
of two individuals selected from the population, and is based on two sub-
operations: meiosis and crossover. Given two progenitor genomes, the meio-
sis consists of selecting ”paths”, or sequences of x̄EAk ’s, alternately from each
of them, to create a new genome. The greater the meiosis intensity (νs), the
smaller these paths are likely to be. Crossover consists of, for each of the chromo-
somes (indices of the genome vector), perturbing the value obtained by meiosis

5

in the direction of its value for the other progenitor. The smaller the crossover
intensity parameter is, the closer the produced chromosome is to that of one of
the parents.

The mutation adds a random perturbation to the genome created this way.
For each mutation we randomly choose, with identical probability, to add or
subtract δ(s) to the value of the chromosome, where s is the intensity, or mag-
nitude of the mutation. We then round the value to the closest integer.

Local search tries to improve the newly created individual’s performance by
hill climbing in its neighbourhood, as described below.

2.5 Local search

We propose a rather rough—but general—local search method, for hill climbing
in the integer variables space. This search is performed whenever a new individ-
ual is created. It is based on what is called hunt search, originally conceived for
locating values in an ordered table. The idea is to check for improvements in the
objective when each of the n integer variables x̄EAk is independently perturbed,
with a geometrically increasing step.

The algorithm is the presented in figure 2. Note that this local search method
is completely problem-independent, and that its use does not exclude the pos-
sibility of using an additional, problem-specific local search method to speedup
the search.

procedure Local Search(x̄EA)

set x̄LS := x̄EA Start the local search at the individual’s solution

for k = 1 to n, do For all the integer variables (in a random order):

set x̄LS
k := x̄EA

k + 1, z̄up := LPsolution(x̄LS) Evaluate the perturbed solution

set x̄LS
k := x̄EA

k − 1, z̄down := LPsolution(x̄LS) by solving the corresponding LP

if z̄EA � z̄up and z̄EA � z̄down Solution is a local optimum with respect to index k

continue with next k

if z̄up � z̄down Stepping up is better than stepping down

set step := 1

else

set step := −1

while improving z̄EA do

set x̄LS
k := x̄EA

k + step, z̄LS := LPsolution(x̄LS)

if z̄LS � z̄EA An improvement was found:

set x̄EA
k := x̄LS

k , z̄EA := z̄LS update the solution

set step := 2× step Geometrically increase the step

done

done

end procedure

Figure 2: The local search procedure.

6

3 Niche search

Niche search is an evolutionary algorithm where the total population is grouped
into separate niches, each of which evolves independently of the others for some
(sub-)generations. The claim is that this way, as the global evolutionary search
pursues, more localised searches are done inside each of the niches. The algo-
rithm is therefore expected to keep a good compromise between intensification
of the search and diversification of the population. This method has some sim-
ilarities with that described in [7], where competing subpopulations play a role
similar to that of the niches. An application of niche search to a specific com-
binatorial optimisation problem has been shown in [?]; here, it is extended to
the general MIP case.

Niches are subject to competition between them. The bad niches (i.e., those
which have worse populations) tend to extinguish: they are replaced by new
ones, which are formed by elements selected from a “good” niche and the extin-
guishing one. All the parameters that control the genetic operators described in
section 2.4 (mutation intensity and probability, etc.), together with a selectiv-
ity factor, are assigned exogenously and randomly to each newly created niche.
(The selectivity determines how good an individual must be in relation to the
average of the niche in order to have a favoured probability of being selected for
reproducing.)

3.1 Niche search core algorithm

We summarise now the main steps of functioning for the niche search algorithm.
This is the kernel algorithm, which drives the population operations making use
of the solution representation and genetic operators described in the preceding
sections. Niche search is characterised by evolution in two layers: in the higher
layer, there is the evolution of niches, subject to competition between them.
Each iteration of this process is called a niche generation, or simply a generation.
In the lower layer, the individuals that compose each niche evolve inside it,
competing with other individuals of the niche. Each iteration of this lower layer
process is called an individual’s generation, or a subgeneration.

The code describing the evolution of the set of niches, in what we call a niche
generation, is presented in figure 3.

We now turn to the evolution of the individuals inside each of the niches.
Pseudo-programming code describing how individuals breed at each generation
of the inside-niche evolution (i.e., describing what a subgeneration is) is pre-
sented in figure 4. Note that this process is repeated for each of the niches, at
each niche generation.

3.2 Selection in each niche: rank-based fitnesses

As explained in section 2.2, the solution process is divided into two goals: ob-
taining feasibility and optimisation. This has motivated the implementation
of an order-based fitness attribution scheme. The selection of the individuals
that are able to reproduce at each generation is based on a fitness value, called
rank-fitness, that is proportional to their ranking according to the comparison
operator defined in section 2.2.3.

7

set t := 0 Start with an initial time.

niches(t) = CreateNiches(t) Create desired number of niches for the run.

InitParameters(niches(t)) Randomly initialise the parameters that characterise each niche:
crossover probability and intensity, mutation probability and intensity, etc.

InitialisePopulation(niches(t)) Randomly initialise the pop. of each niche.

Evaluate(niches(t)) Evaluate the fitness of all the niches in the initial population. For evaluating a
niche, we used the fitness of its best element (other strategies are also possible).

iterate Start evolution.

Breed(niches(t)) Create a new generation of individuals in each of the niches, through the
lower layer evolution process described below.

Evaluate(niches(t)) Evaluate the new niches.

set weak(t) := SelectWeak(niches(t)) Select niches that will extinguish.

set strong(t) := SelectStrong(niches(t)) Select niches that will be used for generating
new niches.

set newniches(t) := Recombination(weak(t),strong(t)) Create a new niche for
replacing each of the extinguishing ones. The recombination strategy used is to create a

population formed of the union of the weak niche with a strong one. Then, replace the
individuals of the weak niche by a selection of the best individuals from that population.

InitParameters(newniches(t)) Assign random parameters to new niches.

Evaluate(newniches(t)) Evaluate the new niches.

Extinguish(weak(t), niches(t)) Remove weak niches from the population

Insert(newniches(t), niches(t)) and include the newly created ones.

set niches(t+1) := niches(t)

set t := t + 1 Increase the time counter.

until Terminated() Termination criteria: number of generations completed.

display solution Solution is the best individual found.

Figure 3: Niche search: evolution of niches.

Procedure Breed(niches(t))

for all niche in niches(t) do (t is the niche generation counter).

set g := 0 Initialise the “subgeneration” counter.

set population(g) := niche Set the reference population: (only) the elements of the niche
that is now breeding.

iterate Start evolution.

for all element in offspring(g) do

p1 = Selection(population(g)) Select parents for reproduction (in our imple-

p2 = Selection(population(g)) mentation through roulette wheel selection).

set element := Reproduce(p1, p2) Create the offspring using the

done operators described in (section 2.5).

Evaluate(offspring(g)) Evaluate the objective of all the individuals in the niche’s
population. Scale to obtain the fitnesses (section 3.2).

set population(g+1) := offspring(g) Future population is the offspring.

set g := g + 1 Increase the subgeneration counter.

until Terminated() Termination criteria: best individual has not improved.

set niche := population(g) Update niche’s population. This niche is now ready to start

done competition with the others.

end procedure

Figure 4: Niche search: evolution inside the niches.

8

In niche search there is a parameter of each niche, called the selectivity,
that controls the probability of selection of each individual in relation to their
competitors. If this parameter is very low, then the probability of selection of
the best individuals is only slightly greater than the probability of selection of
the worst; if it is high, then the best individuals have a much greater probability
of selection, what means that the “genetic information” of the worse ones is not
likely to propagate to the future generations.

In a niche with n elements, the best of them is assigned a rank-fitness of 1
(i.e., n/n), the second-best (n−1)/n, up to the worse, whose rank-fitness is 1/n.
We then elevate this value to a power, greater or equal to zero—the selectivity
parameter of the niche—to obtain the scaled-fitness of each individual. The
selection is then performed through roulette wheel selection, giving to each
individual a probability of selection proportional to its scaled-fitness (see, for
example, [4] for a description of roulette wheel selection).

3.3 Elitism

Elitism determines whether the best solution found so far by the algorithm is
kept in the population or not. Elitism generally intensifies the search in the
region of the best solution. As mentioned before, niche search keeps several
groups, or niches, evolving with some independence. Each of these groups may
be elitist (keeping its best element in its population) or not.

Our objectives are two fold: we want the search to be as deep as possible
around good regions, but we do not want to neglect other possible regions.
The strategy that we devised for accomplishing this is the following. Niches
whose best individual is different of the best individual of other niches are
elitist, but when several niches have an identical best individual (and this occurs
frequently), only one of them is elitist. With this strategy we hope to have an
intensified search on regions with good solutions, and at the same time enforce
a good degree of diversification.

4 Numerical results

The instances of MIP problems used as benchmarks are defined in the MI-
PLIB [3]. The evolutionary system starts by reading an MPS file, and stores
the information contained there into an internal representation. The number of
variables and constraints, their type and bounds, and all the matrix information
is, hence, determined at runtime.

Note that the LPs solved by the EA are often much simpler than those solved
by B&B; as all the integer variables are fixed, its size may be much smaller (for
a large proportion of integer variables). Therefore, it is not surprising that
numerical problems that the LP solver may show up in B&B, generally do not
arise for LPs formulated by the EA.

4.1 Branch-and-bound

In our implementation we have used a publicly available LP solver called lp solve [2]
for the solution of the linear programs. This solver also comprises an implemen-
tation of the B&B algorithm, that was used for producing results to compare

9

with the evolutionary algorithm.
The B&B scheme consists on depth-first search, branching on the first non-

integer variable. Results obtained using B&B on the series of benchmark prob-
lems selected are provided in table 1. The maximum number of LPs solved
in B&B was limited to 50 million; in cases where this was exceeded, the best
solution found within that limit is reported.

Problem Best solution Number of Remarks
name found LPs solved
bell3a 878430.316 438737 Optimal
bell5 8966406.492 2159885 Optimal
egout 562.27 55057 Solution incorrect (rounding problems?)
enigma 0 9321 Optimal
flugpl 1201500 2179 Optimal
gt2 – – Failed (unknown error)
lseu 1120 252075 Optimal
mod008 307 2848139 Optimal
modglob 27124594.43 >50000000 Stopped (excessive CPU time)
noswot -23.0 (infeas.) 3042 Failed (numerical instability?)
p0033 3089 7409 Optimal
pk1 12 704208 Failed (numerical instability)
pp08a 9880 >50000000 Stopped (excessive CPU time)
pp08acut 7900 >50000000 Stopped (excessive CPU time)
rgn 82.2 4747 Optimal
stein27 18 12031 Optimal
stein45 30 235087 Optimal
vpm1 21 1685443 Failed (numerical instability?)

Table 1: Solutions obtained for branch-and-bound.

4.2 Evolutionary algorithm

Niche search was used to make 5 niches, each with 5 individuals, evolve for
250 niche generations. In each of these generations, the population of each
niche would reproduce until no improvements in its best element were observed.
Although tuning up the population and generation numbers would likely lead
to better results, we have made not attempt to do so, and used the same values
for all the problems.

The MIPLIB minimisation problems were converted into maximisations.
In table 2 we report the optimal solutions, as stated in the MIPLIB, and the

range of the final solutions determined in an experiment with 25 independent
runs of niche search for each of the benchmark problems. For more than 50%
of the tests, the optimal solution could be determined. The EA failed to sys-
tematically find a feasible solution only for the enigma problem. The average
number of LPs that were solved until obtaining the solutions for niche search
reported is written on the rightmost column.

In order to assess the empirical efficiency of the algorithm, we provide a

10

Problem Optimal Niche search solutions (25 runs)
name solution Worst Mean Best Avg.#LPs

bell3a -878430.32 -1502340 -929125.2 -881935 312455
bell5 -8966406.49 -9342570 -9121121.2 -9030450 597709
egout -568.101 -575.983 -568.73156 -568.101 48843
enigma -0.0 -24 (infeas.) -15.2 (infeas.) -7 (infeas.) 252582
flugpl -1201500 -1240500 -1209300 -1201500 37478
gt2 -21166.0 -42006 -32375.84 -22342 1249782
lseu -1120 -1542 -1270.12 -1120 232348
mod008 -307 -349 -317.04 -307 154303
modglob -20740508 -20740508 -20740508 -20740508 99478
noswot +43 29 39.56 41 401825
p0033 -3089 -3188 -3097.64 -3089 25785
pk1 -11 -29 -23.6 -19 93031
pp08a -7350 -7390 -7358.8 -7350 45780
pp08acut -7350 -7350 -7350 -7350 45582
rgn -82.1999 -82.2 -82.2 -82.2 8050
stein27 -18 -18 -18 -18 286
stein45 -30 -31 -30.04 -30 43108
vpm1 -20 -20 -20 -20 7397

Table 2: Optimal solutions of the benchmark problems reported in MIPLIB,
solutions obtained in an experiment with 25 independent runs of niche search,
and average number of LPs solved for obtaining them.

Problem name rf/R E[nf] ro/R E[no] Best algorithm
bell3a 100% 2053 0% >18246645 B&B
bell5 100% 33748 0% >18024642 B&B
egout 100% 423 92% 133764 EA
enigma 0% >11876637 0% >>11876637 B&B
flugpl 100% 29048 80% 91004 B&B
gt2 100% 6383 0% >37665907 EA
lseu 100% 1985 4% 10269416 B&B
mod008 100% 17 48% 2557585 EA?
modglob 100% 3 100% 99478 EA
noswot 100% 33627 0% >34335094 EA
p0033 100% 8350 80% 93571 B&B
pk1 100% 3 0% >6259152 EA
pp08a 100% 49 72% 177969 EA
pp08acut 100% 33 100% 45582 EA
rgn 100% 21 100% 8050 B&B
stein27 100% 41 100% 286 EA
stein45 100% 61 96% 54791 EA
vpm1 100% 123 100% 7397 EA

Table 3: Niche search: number of successes and expected number of LP solutions
for finding a feasible and the optimal solution, respectively, and performance
comparison with B&B.

11

measure of the expectation of the number of LP solutions required for finding a
feasible and the optimal solution. Let R be the number of runs per benchmark
problem in a given experiment, and rf and ro be the number of runs in which a
feasible and the optimal solution are found, respectively. Let nfi be the number
of LP solutions that were required for obtaining a feasible solution in run i, or
the total number of LPs solved in that run if no feasible solution was found.
Similarly, let noi be the number of LP solutions required for reaching optimality,
or the total number of LPs solved in i if no optimal solution was found. Then, the
expected number of LPs for reaching feasibility, based on these R observations,
is:

E[nf] =
R∑
i=1

nfi
rf

Equivalently, the expected number of LPs for reaching optimality is

E[no] =
R∑
i=1

noi
ro

These values are reported for each of the benchmark problems in table 3. On
the case of ro = 0, the sum of the LP solutions of the total experiment (R
runs) provides a lower bound on the expectations for optimality. The same for
feasibility, when rf = 0. These are the values reported in table 3 for those
situations. In this table we also make a comparison of B&B and the EA. The
judgement is based on the reliability and on the expected number of LPs required
for optimality, for each of the algorithms.

For some problems (e.g. pp08a) the EA quickly obtained a good solution,
even though B&B has failed. For other (e.g. modglob, mod008), a feasible solu-
tion was easily found at the beginning of the EA, suggesting its possible use as a
method for obtaining a feasible solution to speedup B&B. Some benchmarks—
especially enigma—were easily solved by B&B, even though the EA had prob-
lems tackling them.

In figure 5 is plotted a log of the evolution of the population’s best solution
in a typical run of the EA, for the case of the pp08a problem. The curve at the
beginning of the process corresponds to infeasible solutions; a feasible solution
is found in the middle of the process. In most of the cases, these two phases
of the search can be distinctly observed: first minimising the infeasibilities and
then, when a feasible solution is found, optimising the objective.

In order to assert the importance of each of the operators used in the evo-
lutionary system, we executed some experiments for assessing their efficiency.
These experiments consisted on keeping track of which of the operators were
responsible for improvements on the solutions, and of analysing the behaviour
of the algorithm in their absence. They showed that the three genetic operators,
the local search, and the initialisation procedure, where all necessary for a good
performance of the algorithm.

We also made a series of runs with only one niche, increasing the number of
generations so that the maximum number of LP solutions was approximately
the same as the one used for the results reported in this section. The solutions
obtained provided an empirical confirmation of the importance of the separation
of the population in niches. With a single niche the algorithm decreased its
performance, both in terms of the number of runs that lead to feasibility and

12

Figure 5: Typical log of the evolution of the solution with the number of LPs
solved, in this case for the pp08a benchmark. A feasible solution was found at
around the 70th LP solved. Dotted line for infeasible solutions (left side y axis),
continuous line for feasible ones (right side y axis).

optimality, and in terms of the number of calls to the LP solver that were
required for obtaining an equivalent final solution.

5 Conclusion

In this paper we present an evolutionary algorithm for the solution of integer
linear programs based on the separation of the variables into the integer part
and the continuous part. The integer variables are fixed by the evolutionary
system, and replaced in the original LP, leading to a pure continuous problem.
The optimisation of this LP determines the continuous variables corresponding
to that integer solution, and the objective value leads to the solution’s fitness.

The results obtained for some of the standard benchmark problems were
compared to those obtained by B&B. The performance of the evolutionary al-
gorithm is promising. In some of the benchmark tests it outperformed B&B,
either by requiring less LP solutions to systematically reach the optimum, or
by succeeding in determining a good feasible—sometimes optimal—solution in
cases where B&B failed.

The success of the algorithm in finding good feasible solutions with limited
computational resources for most of the benchmark problems testify its poten-
tialities for real-world, practical applications.

The algorithm proposed does not take into account any particular structure
of the problems (it is based only on the information contained in MPS files;
nothing about the specific kind of problem dealt with is taken into account). For

13

obtaining more competitive results, a problem-specific local search, exploiting
the particular structure of the problem, should be additionally implemented.

The discrepancy between the results obtained by the EA and by B&B sug-
gests that these algorithms are probably good complements of each other, and
the integration of both approaches in a single tool seems to be a promising
research direction.

An advantage, not yet exploited, of this evolutionary algorithm is that the
models that it can tackle may include non-linearities, as long as a linear problem
can be obtained by fixing some variables. These nonlinear variables would also
be fixed by the evolutionary structure, at the time of fixing the integer ones, in
such a way that the resulting problem is linear and continuous.

6 Acknowledgements

This work was supported by the European Union Science and Technology Fel-
lowship Programme in Japan.

A Appendix

A.1 Implementation details

With the aim of warranting the possibility of reproduction of the results pre-
sented in this paper, we provide some details on the implementation of the niche
search algorithm.

A.1.1 Avoiding re-evaluation

Sometimes the genetic operations do not lead to a different individual, the
solution generated is identical to one of the parents. In this case, the newly
generated individual will also carry the LP solution information from the parent,
and is not re-evaluated. Local search was already done on the neighbourhood of
the solution corresponding to the identical parent, and hence it is not performed
again.

A.1.2 Niche recombination

Whenever a niche is “extinct”, a new one, with new parameters, is created (see
figure 3), in what we call niche recombination. This process starts by selecting
the best niche, subject to the restriction that its best element is not present
in other niches. We then make the union of this niche’s population with the
population of the extinguishing one, and select the best distinct elements from
this pool into the new niche. If the pool is not diverse enough, the number of
distinct elements is less than the population of the new niche. In this case, the
remaining individuals are initialised as described in section 2.3.

A.1.3 Parameters used

At each generation the number of niches that may extinguish is 35% of the total.
The probability of extinction is 35%. All the other parameters (the probability

14

and intensity of meiosis, crossover and mutation, and the selectivity) are dif-
ferent for each niche. They are assigned randomly, with uniform distribution,
whenever a new niche is created: at the begin of the evolution, or in a niche
recombination.

References

[1] Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons, 1997.

[2] Michel R. Berkelaar and Jeroen Dirks. lp solve - a solver for linear pro-
gramming problems with a callable subroutine library. Internet repository,
version 2.2. ftp://ftp.es.ele.tue.nl/pub/lp solve.

[3] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Martin W. P.
Savelsbergh. An updated mixed integer programming library. Technical
report, Rice University, 1998. TR98-03.

[4] David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, 1989.

[5] Oktay Günlük. A branch-and-cut algorithm for capacitated network design
problems. Technical report, School of Operations Research and Industrial
Engineering, Cornell University, New York, 1996.

[6] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial
Optimization. Wiley-Interscience in Discrete Mathematics and Optimiza-
tion. John Wiley & Sons, New York, 1988.

[7] Dirk Schlierkamp-Voosen and Heinz Mühlenbein. Strategy adaptation by
competing subpopulations. In Y. Davidor, H.-P. Schwefel, and R. Männer,
editors, Parallel Problem Solving from Nature - PPSN III, volume 866 of
Lecture Notes in Computer Science, pages 199–208, Berlin, 1994. Springer.

15

