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Abstract In this paper we introduce a GRASP for the solution of general linear
integer problems. The strategy is based on the separation of the set of
variables into the integer subset and the continuous subset. The integer
variables are fixed by GRASP and replaced in the original linear prob-
lem. If the original problem had continuous variables, it becomes a pure
continuous problem, which can be solved by a linear program solver to
determine the objective value corresponding to the fixed variables. If the
original problem was a pure integer problem, simple algebraic manipu-
lations can be used to determine the objective value that corresponds to
the fixed variables. When we assign values to integer variables that lead
to an impossible linear problem, the evaluation of the corresponding so-
lution is given by the sum of infeasibilities, together with an infeasibility
flag.

We report results obtained for some standard benchmark problems,
and compare them to those obtained by branch-and-bound and to those
obtained by an evolutionary solver.
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1. Introduction
A wide variety of practical problems can be solved using integer lin-

ear programming. Typical problems of this type include lot sizing,
scheduling, facility location, vehicle routing, and more; see for exam-
ple (Nemhauser and Wolsey 1988, Wolsey 1998).
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In this paper we introduce a GRASP (greedy randomized adaptive
search procedure) for the solution of general linear integer programs.
The strategy is based on the separation of the set of variables into the
integer subset and the continuous subset (if some). The procedure starts
by solving the linear programming (LP) relaxation of the problem. Val-
ues for the integer variables are then chosen, through a semi-greedy
construction heuristic based on rounding around the LP relaxation, and
fixed. The continuous variables (if some) can then be determined in func-
tion of them, by solving a linear program where all the integer variables
have been fixed by GRASP. Afterwards, local search improvements are
made on this solution; these improvements still correspond to changes
made exclusively on integer variables, after which the continuous vari-
ables are recomputed through the solution of an LP. When the linear
program leads to a feasible solution, the evaluation of the choice of the
variables is determined directly by the objective function. If the choice
of the variables induces an infeasible problem, its evaluation is measured
by the sum of infeasibilities.

2. Background
In this paper we focus on the problem of optimizing a linear function

subject to a set of linear constraints, in the presence of integer and,
possibly, continuous variables. The more general case, where there are
integer and continuous variables, is usually called mixed integer (MIP).

The general formulation of a mixed integer linear program is

max
x,y

{cx + hy : Ax + Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+}, (1.1)

where Zn
+ is the set of nonnegative, n-dimensional integral vectors, and

Rp
+ is the set of nonnegative, p-dimensional real vectors. A and G are m×

n and m×p matrices, respectively, where m is the number of constraints.
There are n integer variables (x), and p continuous variables (y).

If the subset of continuous variables is empty, the problem is called
pure integer (IP); its formulation is

max
x
{cx : Ax ≤ b, x ∈ Zn

+}. (1.2)

In general, there are additional bound restrictions on the integer vari-
ables, stating that li ≤ xi ≤ ui, for i = 1, . . . , n.

The main idea for the conception of the algorithm described in this
paper is provided in (Pedroso 1998; 2002). It consists of fixing the in-
teger variables of a linear integer program by a meta-heuristic—in this
case GRASP. For MIP, by replacing these variables on the original for-
mulation, we obtain a pure, continuous LP, whose solution provides an
evaluation of the fixed variables. On the case of pure IP, we can com-
pute directly the corresponding objective. We can also directly check
feasibility, and compute the constraints’ violation.
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Notice that this algorithm, as opposed to branch-and-bound, does not
work with the solution of continuous relaxations of the initial problem.
The solution of LPs is only required for determining the value of the con-
tinuous variables, and of the objective that corresponds to a particular
instantiation of the integer variables.

Instances of integer linear problems correspond to specifications of
the data: the matrix A and the vectors b and c in Equations 1.1 and 1.2
for IPs, and also the matrix G and the vector h for MIPs. The most
commonly used representation of instances of these problems is through
MPS files, which is the format used on this GRASP implementation.
We have tested GRASP with a subset of the benchmark problems that
are available in this format in the MIPLIB (Bixby et al. 1998).

3. GRASP
GRASP (Feo and Resende 1989; 1995, Pitsoulis and Resende 2002,

Resende and Ribeiro 2001) is a meta-heuristic based on a multi-start
procedure where each iteration has two phases: construction and local
search. In the construction phase, a solution is built, one element at a
time. At each step of this phase, the candidate elements that can be
incorporated to the partial solution are ranked according to a greedy
function. The evaluation of these elements leads to the creation of a
restricted candidate list (RCL), where a selection of good variables, ac-
cording to the corresponding value of the greedy function, are inserted.
At each step, one element of the RCL is randomly selected and incor-
porated into the partial solution (this is the probabilistic component of
the heuristic). The candidate list and the advantages associated with
every element are updated (adaptive component of the heuristic). The
number of elements of the RCL is very important for GRASP: if the
RCL is restricted to a single element, then only one, purely greedy solu-
tion will be produced; if the size of the RCL is not restricted, GRASP
produces random solutions. The mean and the variance of the objective
value of the solutions built are directly affected by the cardinality of the
RCL: if the RCL has more elements, then more different solutions will
be produced, implying a larger variance.

The solutions generated in the construction phase generally are not
local optima, with respect to some neighborhood. Hence, they can often
be improved by means of a local search procedure. The local search phase
starts with the constructed solution and applies iterative improvements
until a locally optimal solution is found.

The construction and improvement phases are repeated a specified
number of times. The best solution over all these GRASP iterations is
returned as the result.

In Algorithm 1 we present the structure of a general GRASP algo-
rithm.
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Algorithm 1: A general GRASP algorithm.
GRASP()
(1) while stopping criterion is not satisfied
(2) x := SemiGreedy()
(3) x := LocalSearch(x)
(4) if x∗ is not initialized or x is better than x∗

(5) x∗ := x
(6) return x∗

GRASP has been applied successfully to numerous combinatorial op-
timization problems in different areas, including routing (Kontoravdis
and Bard 1995, Carreto and Baker 2001), scheduling (Feo et al. 1991,
Binato et al. 2001), logic (Resende and Feo 1996, Resende et al. 1997),
assignment (Li et al. 1994, Robertson 2001). An annotated GRASP
bibliography is available in (Festa and Resende 2001).

4. GRASP implementation
In this section we specialize GRASP for the solution of general integer

linear problems. We describe the fundamental aspects taken into account
in the GRASP implementation, which are presented in Algorithm 2.
The parameters of this procedure are the number of iterations, N (used
as a stopping criterion), the largest type of neighborhood, kmax (see
section 4.4), the seed for initializing the random number generator, and
the name of the MPS file containing the instance’s data.

Algorithm 2: A GRASP for integer programming.
GRASP(N, kmax, seed,MPSfile)
(1) read data A, G, b, c, and h from MPSfile
(2) initialize random number generator with seed
(3) for k = 1 to N
(4) x̄ := SemiGreedy(x̄LP )
(5) x̄ := LocalSearch(x̄, kmax)
(6) if x̄∗ is not initialized or x̄ is better than x̄∗

(7) x̄∗ := x̄
(8) return x̄∗

4.1 Representation of the solutions
The part of the solution that is determined by GRASP is the subset

of integer variables x in Equations 1.1 or 1.2. The data structure repre-
senting a solution used by GRASP is therefore an n-dimensional vector
of integers, x̄ = (x̄1 . . . x̄n).
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4.2 Evaluation of solutions
The solutions on which the algorithm works may be feasible or not.

For the algorithm to function appropriately it has to be able to deal
with both feasible and infeasible solutions in the same framework. We
describe next the strategies used for tackling this issue on MIPs and IPs.

4.2.1 Mixed integer programs (MIP). In the process of eval-
uation of a solution, we first formulate an LP by fixing all the variables
of the MIP at the values determined by GRASP:

z = max
y
{cx̄ + hy : Gy ≤ b−Ax̄, y ∈ Rp

+}. (1.3)

We are now able to solve this (purely continuous) linear problem using
a standard algorithm, like the simplex.

Feasible solutions. If problem 1.3 is feasible, the evaluation given
to the corresponding solution is the objective value z, and the solution
is labelled feasible.

Infeasible solutions. If problem 1.3 is infeasible, we formulate an-
other LP for the minimization of the infeasibilities. This is accomplished
by setting up artificial variables and minimizing their sum (a procedure
that is identical to the phase I of the simplex algorithm):

ζ = min
s
{

m∑
k=1

sk : Gy ≤ b−Ax̄ + s, y ∈ Rp
+ , s ∈ Rm

+}, (1.4)

where m is the number of constraints.
The evaluation attributed to such a solution x̄ is the value ζ of the

optimal objective of the LP of Equation 1.4, and the solution is labelled
infeasible.

4.2.2 Pure integer programs (IP). Fixing all the integer
variables in Equation 1.2 leads to no free variables. Feasibility and the
objective value can be inspected directly.

Feasible solutions. If the solution x̄ fixed by GRASP does not
violate any constraint, the evaluation attributed to the corresponding
solution is the objective value z = cx̄, and the solution is labelled feasible.

Infeasible solutions. If x̄ is infeasible, its evaluation is given by
the sum of constraint violations. For problems stated in the canonic
form of Equation 1.2, this is done by determining:

ζ =
m∑

k=1

sk, with sk = max{Akx̄− bk, 0} for k = 1, . . . m. (1.5)
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The evaluation given to the solution is the value ζ and the solution is
labelled infeasible.

4.2.3 Evaluation data structure. For a feasible solution
of an integer linear program, the evaluation is denoted by z̄, a data
structure consisting of the objective value z and a flag stating that the
solution is feasible. For an infeasible solution, z̄ consists of the value ζ
and an infeasibility flag.

4.2.4 Comparison of solutions. We have to provide a way of
comparing solutions, either they are feasible or not. What we propose
is to classify solutions in such a way that:

feasible solutions are always better than infeasible ones;

feasible solutions are ranked among them according to the objec-
tive of the integer linear problem;

infeasible solutions are ranked among them according to the sum
of infeasibilities (i.e., according to a measure of their distance from
the feasible set).

We say that a solution structure i is better than another structure j
if and only if:

ζi < ζj (i is closer to the feasible region than j);

ζi = ζj , and (for maximization) zi > zj (i has a better objective).

4.3 Construction phase
We propose two construction methods, differing in the greedy function

and in the number of elements of the restricted candidate list (RCL).
Both are based on the solution of the LP relaxation, which we denote
by xLP = (xLP

1 , . . . , xLP
n ). We use the term RCL with a meaning slightly

different of the currently used in the GRASP literature. For each index
k ∈ {1, . . . , n} of the variables, we set up a list of the values that we
can potentially assign to it. In a purely greedy construction, we always
assign the integer closest to the value of the LP relaxation, xLP

k . Hence,
the RCL for a variable xk would have a single element, the closest integer
to xLP

k . The RCL for semi-greedy construction has more elements, as
explained below.

In Algorithm 3, we present the construction algorithm. Since there
are n variables in the solution, each construction phase consists of n
steps. The two constructions differ on steps 2 and 3.

4.3.1 Probabilistic rounding construction. This semi-
greedy construction is inspired in an algorithm provided in (Lengauer
1990). It consists of rounding each variable i to the integer closest to its
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Algorithm 3: Semi-greedy solution construction.
SemiGreedy(x̄LP )
(1) for k = 1 to n
(2) RCL:= {values allowed to x̄k }
(3) select an r ∈ RCL with some probability
(4) x̄k := r
(5) return x̄

value on the LP relaxation, xLP
i , in a randomized way, according to some

rules. The probabilities for rounding up or down each of the variables
are given by the distance from the fractional solution xLP

k to its closest
integer.

For all the indices k ∈ {1, . . . , n}, the variable x̄k is equal to the
corresponding LP relaxation value rounded down with probability

P (x̄k = bxLP
k c) = dxLP

k e − xLP
k ,

or rounded up with probability 1− P (x̄k = bxLP
k c).

The RCL is built with the two values that each variable x̄k can take.

4.3.2 Bi-triangular construction. The goal of this strategy
is to increase the diversification of the solutions. In the previous con-
struction, we only have two possibilities when we round the value of the
LP relaxation of a variable. We here extend this for having the possi-
bility of assigning each variable to any integer between its lower-bound,
lk, and its upper-bound, uk. The RCL is built with these values, and,
again, we give a probability of assignment to each of them based on the
solution of the LP relaxation.

The probability density function that we considered is composed by
two triangles (bi-triangular distribution) and is defined by three param-
eters: the minimum a = lk − 0.5, the maximum b = uk + 0.5, and the
mean c = xLP

k . The values a and b were considered in order to have a
non-zero probability of rounding to lk and uk. The bi-triangular density
function is represented in Figure 1.1.

The area of the left triangle is proportional to the distance between c
and b and the area of the right triangle is proportional to the distance
between a and c. The combined areas must be one, since it is a density
function. The probability density function is given by:

f(x) =


2(b−c)(x−a)
(b−a)(c−a)2

if a ≤ x ≤ c,
2(c−a)(b−x)
(b−a)(b−c)2

if c < x ≤ b,

0 otherwise,
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Figure 1.1. Bi-triangular density function.

and the distribution function is:

F (x) =


0 if x < a,
(b−c)(x−a)2

(b−a)(c−a)2
if a ≤ x ≤ c,

1− (c−a)(b−x)2

(b−a)(b−c)2
if c < x ≤ b,

1 if x > b.

The mean for this distribution is c, which corresponds to the value of
the LP relaxation.

With this construction, the value for each variable xk is obtained by
drawing a random number with this distribution with a = lk − 0.5,
b = uk + 0.5, and c = xLP

k , and then rounding it to the closest integer.

4.4 Local search
Local search tries to improve the quality of a solution by hill climb-

ing on its neighborhood, according to one of the improvement methods
that are described next. For this purpose we propose neighborhoods
that consist of incrementing or decrementing variables, one at a time or
simultaneously. The main idea behind the definition of these neighbor-
hoods is the extension to the case of integer values of the idea presented
in (Resende and Feo 1996) for the case of binary variables. The local
search procedure iterates up to the point where the improvement proce-
dure does not lead to a better solution.

4.4.1 Increment neighborhood. The increment neighbor-
hood of a solution x, N1(x), is composed of solutions which differ from
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x on one element xj , whose value is one unit above or below xj . Hence
y is a neighbor solution of x if for one index i, yi = xi +1, or yi = xi−1,
with yj = xj for all indices j 6= i:

N1(x) = { y ∈ Z : y can be obtained from x by adding or
subtracting one unit to an element of x}.

The idea used on this neighborhood can be extended to the case where
we change more than one variable at the same time. For example, the 2-
increment neighborhood of a solution x, N2(x), is composed of solutions
which differ from x on two elements xi and xj , whose values are one unit
above or below the original ones. Hence y is a neighbor solution of x if
for two indices i, j we have yi = xi + 1 or yi = xi − 1, and yj = xj + 1
or yj = xj − 1, with yl = xl for all indices l 6= i, l 6= j.

More generally, we can define the k-increment neighborhood (for prob-
lems with n ≥ k integer variables) as:

Nk(x) = { y ∈ Z : y can be obtained from x by adding or
subtracting one unit to k of its elements}.

When k increases, the number of neighbors of a solution increases
exponentially. In order to reduce the size of the set of neighbors that is
more frequently explored, we devised the following strategy. Let O be
the set of indices of variables which have coefficients that are different
of zero in the objective function:

O = {i : ci 6= 0, for i = 1, . . . , n}.

Let V (x) be the set of indices of variables (if some) which have coeffi-
cients different of zero on constraints violated by x:

V (x) = {j : aij 6= 0, for i ∈ {constraints violated by x}}.

For a solution x, the subset of neighbors with at least one index
in the sets O (for feasible x) or V (x) (for infeasible x) compose the
neighborhood Nk∗

(x) ⊆ Nk(x) which is explored first. The subset
Nk′

(x) = Nk(x) \ Nk∗
(x) is explored when a local optimum of Nk∗

has been found. Neighborhoods Nk are explored in increasing order on
k.

This strategy for exploring the neighborhoods is called variable neigh-
borhood search (Hansen and Mladenovic 2001). It consists of searching
first restricted neighborhoods which are more likely to contain improving
solutions; when there are no better solutions in a restricted neighbor-
hood, this is enlarged, until having explored the whole, unrestricted
neighborhood.

4.4.2 Improvements. There are two methods for updating
the best solution when searching a particular neighborhood.

The first one, called breadth-first, consists of searching the best solu-
tion y in the entire neighborhood of a solution x. If it is better than
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the current solution x, then x is replaced by y; otherwise, x is a local
optimum. This method will hence search the whole neighborhood of the
current solution, even if improving solutions can be found on the early
exploration of the neighborhood.

The second method, called depth-first, consists of replacing x when-
ever the neighbor generated, y, is better than x. In this case, the subse-
quent neighbor z is generated from y.

Empirically, the computational time required to obtain a local op-
timum is longer with the first method, and premature convergence is
more likely to occur. Therefore, in this implementation the search is
made depth-first.

4.4.3 Local search algorithm. The local search method is
presented in Algorithm 4. The improvement of a solution is made in the
routine Improve(x, kmax). This procedure, presented in Algorithm 5,
searches first the neighborhood N1∗(x) and returns the first neighbor
better than x found. If no such a neighbor is found, it switches to
N1′(x). When no improving solution is found also in this neighborhood,
the method explores N2(x) (first checking in N2∗(x)), and so on, until
having explored Nkmax .

Algorithm 4: Local search main cycle.
LocalSearch(x, kmax)
(1) s := Improve(x, kmax)
(2) while s 6= x
(3) x := s
(4) s := Improve(x, kmax)
(5) return s

Algorithm 5: Improvements without hunt search.
Improve(x, kmax)
(1) k := 1
(2) while k ≤ kmax

(3) S := Nk∗
(x)

(4) while S 6= {}
(5) s := RandomChoice(S)
(6) if s is better than x
(7) return s
(8) S := S\{s}
(9) S := Nk′

(x)
(10) while S 6= {}
(11) do the same as in steps (5) to (8)
(12) k := k + 1
(13) return x
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Algorithms 6 and 7 present a strategy called hunt search. It was
originally conceived for locating values in an ordered table, and is used
here for quickly exploring large ranges, when lower and upper bounds of
some variable are far apart. The step added to a variable, ∆, is initially
+1 or −1, and is doubled until no improvements are obtained, or until
reaching a bound of the variable.

Algorithm 6: Improvements with hunt search.
Improve(x, kmax)
(1) k := 1
(2) while k ≤ kmax

(3) S := Nk∗
(x)

(4) while S 6= {}
(5) s := RandomChoice(S)
(6) if s is better than x
(7) i := any index such that si 6= xi

(8) ∆ := si − xi

(9) li := lower bound of the variable si

(10) ui := upper bound of the variable si

(11) s := HuntSearch(s, i,∆, li, ui)
(12) return s
(13) S := S\{s}
(14) S := Nk′

(x)
(15) while S 6= {}
(16) do the same as in steps (5) to (13)
(17) k := k + 1
(18) return x

Algorithm 7: Hunt search on a given index.
HuntSearch(x, i,∆, li, ui)
(1) while true
(2) s := x
(3) ∆ := ∆× 2
(4) si := si + ∆
(5) if si + ∆ ≥ ui

(6) si := ui

(7) else if si + ∆ ≤ li
(8) si := li
(9) if s is better than x
(10) x = s
(11) else
(12) return x
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5. Benchmark problems
Languages for mathematical programming are the tools more com-

monly used for specifying a model, and generally allow transforming the
mathematical model into an MPS file. As the heuristic that we describe
can be used for any MIP model that can be specified as a mathematical
program, we have decided to provide the input to the heuristic through
MPS files. GRASP starts by reading an MPS file, and stores the in-
formation contained there into an internal representation. The number
of variables and constraints, their type and bounds, and all the matrix
information is, hence, determined at runtime.

We report results obtained for some standard benchmark problems.
The instances of MIP and IP problems used as benchmarks are defined
in the MIPLIB (Bixby et al. 1998) and are presented in Table 1.1. They
were chosen to provide an assortment of MIP structures, with instances
coming from different applications.

Notice that the MIPLIB problems are minimizations1.

Problem Application Number of variables Number of Optimal
name total integer binary constraints solution

bell3a fiber optic net. design 133 71 39 123 878430.32
bell5 fiber optic net. design 104 58 30 91 8966406.49
egout drainage syst. design 141 55 55 98 568.101
enigma unknown 100 100 100 21 0
flugpl airline model 18 11 0 18 1201500
gt2 truck routing 188 188 24 29 21166
lseu unknown 89 89 89 28 1120
mod008 machine load 319 319 319 6 307
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p0033 unknown 33 33 33 16 3089
pk1 unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
pp08acut unknown 240 64 64 246 7350
rgn unknown 180 100 100 24 82.1999
stein27 unknown 27 27 27 118 18
stein45 unknown 45 45 45 331 30
vpm1 unknown 378 168 168 234 20

Table 1.1. Set of benchmark problems used: application, number of constraints,
number of variables and optimal solutions as reported in MIPLIB.

6. Computational results
We compare the results obtained with GRASP to those obtained

by branch-and-bound (B&B)—the classical algorithm for solving gen-
eral linear integer programs—, and to those obtained by another meta-
heuristic based on evolutionary computation (Pedroso 1998). B&B starts
with a continuous relaxation of the integer linear program and finds the
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optimal solution by a systematic division of the domain of the relaxed
problem. The evolutionary solver is based on ideas similar to those
employed here for solution representation and improvement, but uses
population-based methods.

The software implementing the branch-and-bound algorithm used in
this experiment is called lp solve (Berkelaar and Dirks). It also comprises
a solver for linear programs based on the simplex method, which was
used both on this GRASP implementation and on (Pedroso 1998) for
solving Equations 1.3 and 1.42. Notice that the LPs solved by GRASP
at the time of solution evaluation (if some) are often much simpler than
those solved by B&B; as all the integer variables are fixed, the size of
the LPs may be much smaller. Hence, numerical problems that the LP
solver may show up in B&B, do not arise for LPs formulated by GRASP.
Therefore, the comparison made in terms of objective evaluations/LP
solutions required favors B&B.

This section begins presenting the results obtained using B&B. Statis-
tical measures used in order to assess the empirical efficiency of GRASP
are defined next. Follow the results obtained using GRASP, and a com-
parison of results of GRASP, B&B, and an evolutionary algorithm.

6.1 Results obtained using branch-and-bound
The results obtained using B&B on the series of benchmark prob-

lems selected are provided in the Table 1.2. The maximum number of
LPs solved in B&B was limited to 100 million; in cases where this was
exceeded, the best solution found within that limit is reported.

Problem Best solution Number of LPs CPU Remarks
name found solved time

bell3a 878430.32 438587 170.55 Optimal solution
bell5 8966406.49 420499 81.61 Optimal solution
egout 562.273 55057 6.06 Incorrect solution
enigma 0 8947 1.8 Optimal solution
flugpl 1201500 1588 0.06 Optimal solution
gt2 - - - Failed (unknown error)
lseu 1120 236207 23.97 Optimal solution
mod008 307 2848585 844.09 Optimal solution
modglob 26308600 > 1.00E+08 47678 Stopped
noswot -25 3753 3.72 Incorrect solution
p0033 3089 7393 0.25 Optimal solution
pk1 11 3710343 2467.23 Optimal solution
pp08a 9770 > 1.00E+08 29924 Stopped
pp08acut 8110 > 1.00E+08 161880 Stopped
rgn 82.1999 4963 1.2 Optimal solution
stein27 18 11985 2.62 Optimal solution
stein45 30 236453 218.57 Optimal solution
vpm1 22 18354 24.95 Incorrect solution

Table 1.2. Results obtained using branch-and-bound: best solution found, number
of LPs solved and CPU time.
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6.2 Statistical measures
In order to assess the empirical efficiency of GRASP, we provide mea-

sures of the expectation of the number of LP solutions and CPU time
required for finding a feasible solution, the best solution found, and the
optimal solution, for MIP problems. These measures are similar for IP
problems, but instead of being developed in terms of the number of LP
solutions, they are made in terms of the number of calls to the objective
function (Equations 1.2 or 1.5).

The number of GRASP independent iterations (or runs) for each
benchmark problem in a given experiment is denoted by N .

6.2.1 Measures in terms of the number of LP solutions.
Let rf , rb and ro be the number of runs in which a feasible, the

best, and the optimal solution were found, respectively. Let nf
k be the

number of objective evaluations required for obtaining a feasible solution
in iteration k, or the total number of evaluations in that run if no feasible
solution was found. Identical measures for reaching optimality and the
best solution found by GRASP are denoted by no

k and nb
k, respectively.

Then, the expected number of evaluations for reaching feasibility, based
on these N iterations, is:

E[nf ] =
N∑

k=1

nf
k

rf
.

Equivalently, the expected number of evaluations for reaching the best
GRASP solution is

E[nb] =
N∑

k=1

nb
k

rb
,

and the expected number of evaluations for reaching optimality is

E[no] =
N∑

k=1

no
k

ro
.

In case ro = 0, the sum of the evaluations of the total experiment (N
iterations) provides a lower bound on the expectations for optimality.
The same for feasibility, when rf = 0.

6.2.2 Measures in terms of CPU time. Let tfk be the CPU
time required for obtaining a feasible solution in iteration k, or the total
CPU time in that iteration if no feasible solution was found. Let tok and
tbk be identical measures for reaching optimality, and the best solution
found by GRASP, respectively. Then, the expected CPU time required
for reaching feasibility, based on these N iterations, is:

E[tf ] =
N∑

k=1

tfk
rf

,
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while

E[tb] =
N∑

k=1

tbk
rb

is the expected CPU time for finding the best GRASP solution, and the
expected CPU time required for reaching optimality is

E[to] =
N∑

k=1

tok
ro

.

For rf = 0 and ro = 0, the sums provide respectively a lower bound on
the expectations of CPU time required for feasibility and optimality.

6.3 Results obtained using GRASP
In this section we provide a series of results comparing the several

strategies that were implemented: the two construction methods, the
k-increment neighborhood (Nk) for k = 1 and k = 2, explored with and
without hunt search.

The computer environment used on this experiment is the following:
a Linux Debian operating system running on a machine with an AMD
Athlon processor at 1.4 GHz, with 512 Gb of RAM. GRASP was imple-
mented on the C++ programming language.

6.3.1 Hunt search. We started making an experiment for
assessing the validity of hunt search (HS), with 1000 GRASP iterations
with the 1-increment neighborhood (N1), and 100 iterations with the
2-increment neighborhood (N2) (the total time spent in each of the
two cases is roughly the same). We used both probabilistic rounding
construction (PRC) and bi-triangular construction (BTC).

We report results obtained for instances with non-binary integer variables—
bell3a, bell5, flugpl, gt2 and noswot (hunt search does not apply when
all the integer variables are binary). Table 1.3 reports the percent dis-
tance from the best solution found to the optimal solution3, for N1 and
N2, respectively (“-” means that the best solution found is not feasi-
ble). Table 1.4 reports the expected number of LP solutions/evaluations
for obtaining feasibility. The same results for obtaining optimality are
reported in Table 1.5.

Comparing these two strategies (GRASP with and without hunt search),
we conclude that, in general, hunt search slightly improves the results.
This improvement is more significant for the bi-triangular construction:
as the constructed solutions are more likely to be far away from local
optima, hunt search has more potential for operating.

In the experiments that follow, GRASP was implemented with hunt
search.
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Probabilistic rounding Bi-triangular
Problem name without HS with HS without HS with HS Neighborhood

bell3a 0.4676 0.2762 1.171 1.325
bell5 1.365 - - -
flugpl - - - - N1

gt2 - 198.8 222.9 151.8
noswot 4.651 4.651 4.651 4.651

bell3a 0 0 0 0
bell5 0.4012 - - -
flugpl - - - - N2

gt2 141.9 94.06 154.4 102.5
noswot 4.651 4.651 4.651 4.651

Table 1.3. Percent distance above optimum observed with and without hunt search,
for N1 (on 1000 iterations) and N2 (on 100 iterations), and for both construction
methods: probabilistic rounding and bi-triangular.

Probabilistic rounding Bi-triangular
Problem name without HS with HS without HS with HS Neighborhood

bell3a 60.11 27.45 178.01 43.92
bell5 730448 >174782 >3957140 >187457
flugpl >44720 >47649 >112475 >78854 N1

gt2 >521465 14450 189306 9538
noswot 68.29 79.26 40.11 37.14

bell3a 60.54 27.77 181.63 39.47
bell5 331254 >226731 >624409 >213884
flugpl >24328 >24857 >35634 >33071 N2

gt2 57324 8990 39384 6948
noswot 190.46 163.01 90.56 36.32

Table 1.4. Expected number of objective evaluations for finding a feasible solution
with and without hunt search, for N1 and N2, and for both construction methods:
probabilistic rounding and bi-triangular.

Probabilistic rounding Bi-triangular
Problem name without HS with HS without HS with HS Neighborhood

bell3a >205578 >351353 >1964395 >612769
bell5 >730591 >174782 >3957140 >187457
flugpl >44720 >47649 >112475 >78854 N1

gt2 >521465 >506547 >568958 >539824
noswot >294254 >439764 >643568 >342003

bell3a 6513 10630 17147 33637
bell5 >352317 >226731 >624409 >213884
flugpl >24328 >24857 >35634 >33071 N2

gt2 >4752588 >5594115 >4824420 >5563503
noswot >765014 >876859 >871802 >778050

Table 1.5. Expected number of objective evaluations for finding an optimal solution
with and without hunt search, for N1 and N2, and for both construction methods:
probabilistic rounding and bi-triangular.
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6.3.2 Construction methods. The next experiment was
conceived in order to assess the influence of the construction method
in the GRASP performance, and to choose one of the methods for later
comparison with other methods. The results presented are based on a
sample obtained with 1000 GRASP iterations for N1, and 100 iterations
for N2.

In Tables 1.6 and 1.7 we compare probabilistic rounding to bi-triangular
construction. The comparison is made in terms of the percent distance
above optimum, and on the expected number of LP solutions for reach-
ing feasibility and optimality.

Neighborhood N1 Neighborhood N2

Problem name PRC BTC PRC BTC

bell3a 0.2762 1.325 0 0
bell5 - - - -
egout 10.12 11.22 0 1.387
enigma - - - -
flugpl - - - -
gt2 198.8 151.8 94.06 102.5
lseu 2.589 4.821 0 1.429
mod008 0 0.3257 0 0
modglob 0.09060 0.08530 0 0
noswot 4.651 4.651 4.651 4.651
p0033 - - 0.1942 0
pk1 100 100 63.64 45.45
pp08a 1.769 0.1361 0.1361 0.6803
pp08acut 0 0.5442 0.1361 0
rgn 0 0 0 0
stein27 0 0 0 0
stein45 3.33 3.33 3.33 3.33
vpm1 0 0 0 0

Table 1.6. Comparison between probabilistic rounding and bi-triangular construc-
tion: percent distance above optimum observed for neighborhoods N1 (on 1000 iter-
ations) and N2 (on 100 iterations).

The results show that probabilistic rounding is in general preferable to
the bi-triangular construction, if we take into account the computational
burden. Hence, probabilistic rounding is the construction method used
for comparing GRASP to other approaches.

6.3.3 Neighborhoods. We now present results of an exper-
iment conceived for assessing the influence of the neighborhoods used,
and to choose one of N1 and N2 for comparing GRASP to other meth-
ods. As the distinction between these results is less clear than the preced-
ing, they are now based on a larger sample of 10000 GRASP iterations
for N1, and 1000 iterations for N2. The results are reported in the
Tables 1.8 and 1.9.

The results show a superiority of the N2 neighborhood for most of the
instances, both in terms of solution quality and expected evaluations, or
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Feasibility (E[nf ]) Optimality (E[no])
Problem name PRC BTC PRC BTC Neighborhood

bell3a 27.45 43.92 >351353 >612769
bell5 >174782 >187457 �174782 �187457
egout 142.35 148.12 >240030 >244815
enigma >296625 >297595 �296625 �297595
flugpl >47649 >78854 �47649 �78854
gt2 14450 9538 >506547 >539824
lseu 4587.68 3410.4 >208294 >213632
mod008 3.33 3.24 692264 >681598
modglob 1 1 >442000 >444842 N1

noswot 79.26 37.14 >439764 >342003
p0033 >76324 >73073 �76324 �73073
pk1 1 1 >115125 >112925
pp08a 30.01 37.02 >275048 >287272
pp08acut 21.87 27.57 260959 >270440
rgn 12.02 4.94 2774 3337
stein27 12.89 18.85 182.34 201.43
stein45 24.61 35.39 >121756 >134237
vpm1 9.61 9.29 1292.02 931.99

bell3a 27.77 39.47 10630 33637
bell5 >226731 >213884 �226731 �213884
egout 143.17 150.76 490209 >499191
enigma >729342 >698885 �729342 �698885
flugpl >24857 >33071 �24857 �33071
gt2 8989 6948 >5594115 >5563503
lseu 669.22 681 439230 >850069
mod008 3.6 2.91 922149 1008139
modglob 1 1 12724 12564 N2

noswot 163.01 36.32 >876859 >778050
p0033 3439.42 3250.79 >105066 100819
pk1 1 1 >346686 >334838
pp08a 30.39 37.02 >424686 >431121
pp08acut 20.23 29.25 >394332 219656
rgn 12.95 3.82 2275 2415
stein27 13.21 19.22 1109 1027
stein45 24.86 34.79 >111285 >112306
vpm1 9.51 8.18 57224 53631

Table 1.7. Comparison between probabilistic rounding and bi-triangular construc-
tion: expected number of objective evaluations for obtaining feasibility and optimal-
ity, for neighborhoods N1 and N2.
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Problem Best sol. % distance Neigh-

name found to optimum E[nb] E[nf ] E[no] borhood

bell3a 880857 0.2763 116312 26.52 >3376050
bell5 0.31887 (inf.) - 165.10 >1744874 >1744874
egout 615.719 8.382 2391640 141.85 >2391720
enigma 4 (inf.) - 74585.23 >2988675 >2988675
flugpl 0.6 (inf.) - 43411.73 >477819 >477819
gt2 49556 134.1 5068183 14034 >5068412
lseu 1149 2.589 2110868 5119 >2110972
mod008 307 0 2346518 3.42 2346518
modglob 20755100 0.07036 4436169 1.00 >4436268 N1

noswot -41 4.651 3249.46 81.61 >4372469
p0033 3095 0.1942 764869 764869 >764916
pk1 19 72.73 381708 1.00 >1145420
pp08a 7380 0.4082 925905 30.04 >277800
pp08acut 7350 0 435974 21.46 435974
rgn 82.1999 0 2784.93 12.33 2784.93
stein27 18 0 184.03 12.93 184.03
stein45 30 0 93568 24.31 93568
vpm1 20 0 1203 9.90 1202.59

bell3a 878430.32 0 11216 27.14 11216
bell5 9030230 0.7118 2601738 2256575 >2604076
egout 568.101 0 977203 141.48 977203
enigma 4 (inf.) - 671243 >7439411 >7439411
flugpl 0.7 (inf.) - 6861 >248127 >248127
gt2 36131 70.70 55164302 9194 >55183799
lseu 1120 0 1245115 693.27 1245115
mod008 307 0 871031 3.42 871031
modglob 20740508 0 12381 1.00 12381 N2

noswot -41 4.651 24533 140.36 >8714283
p0033 3089 0 1066553 3322 1066553
pk1 16 45.45 435039 1.00 >3492631
pp08a 7350 0 2161662 30.16 2161662
pp08acut 7350 0 4173685 21.18 4173685
rgn 82.1999 0 2469 12.09 2469
stein27 18 0 1130 12.91 1130
stein45 30 0 1110292 23.97 1110292
vpm1 20 0 64719 9.97 64719

Table 1.8. Best solution found, percent distance above optimum, and expected num-
ber of LP solutions for reaching the best solution, feasibility and optimality. Results
obtained with 10000 iterations for N1 and 1000 iterations for N2.
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Problem Neighborhood N1 Neighborhood N2

name E[tb] E[tf ] E[to] E[tb] E[tf ] E[to]

bell3a 299.3 0.08 >8687 34.52 0.08 34.52
bell5 0.3 >3197 >3197 4880 4289 >4884
egout 5547 0.37 >5547 2394 0.38 2394
enigma 7.23 >289.7 >289.7 85 >935.3 >935.3
flugpl 12.82 >141.1 >141.1 2.12 >76.69 >76.69
gt2 392.2 1.09 >392.2 4297 0.5517 >4298
lseu 95.99 0.23 >96 90.72 0.0328 90.72
mod008 552.4 0.001 552.4 298.9 0.0013 298.9
modglob 57039 0.02 >57040 146.7 0.0133 146.7
noswot 3.13 0.10 >4198 28.83 0.1788 >10244
p0033 17.41 17.41 >17.41 25.66 0.074 25.66
pk1 152.9 0.0004 >458.8 181.9 0.0005 >1460
pp08a 5209 0.31 >15627 12571 0.3244 12571
pp08acut 3762 0.4 3762 37617 0.41 37617
rgn 2.93 0.01 2.93 2.77 0.0134 2.77
stein27 0.01 0.0008 0.01 0.08 0.0008 0.077
stein45 19.61 0.01 19.61 248.9 0.0053 248.9
vpm1 6.9 0.1 6.88 415.9 0.1007 415.9

Table 1.9. Comparison of expected CPU time (in seconds) required using neighbor-
hoods N1 and N2, in order to obtain the best solution, feasibility and optimality,
using probabilistic rounding construction.

CPU time, required to obtain them. Therefore, for comparison with
other methods, we decided to use the results obtained with a GRASP
implementation using probabilistic rounding construction, and the N2

neighborhood.

6.3.4 Comparison of GRASP with other methods. For
comparing GRASP to other methods, the criteria used are the best solu-
tion found and its distance to the optimum, the actual or expected num-
ber of LP solutions required, and the actual or expected CPU time used.
A comparison between GRASP and B&B is presented in Table 1.10.
Table 1.11 reports a comparison between GRASP and an evolutionary
solver.

The comparison with B&B indicates that each algorithm works well on
rather different instances: GRASP determines a good feasible solution in
all the cases where B&B failed, and B&B quickly determines the optimal
solution for the two instances where GRASP could not find any feasible
solution (enigma and flugpl). The expected number of LP solutions
and the expected CPU time is many times smaller for GRASP than the
number of LPs and CPU time required by B&B. For larger problems,
like modglob and vpm1 GRASP seems to have some advantage.

The results obtained with the evolutionary solver (ES) were reported
in (Pedroso 1998). The comparison between GRASP and this meta-
heuristic is made in terms of the percent distance to optimum, and the
expected number of LP solutions for reaching feasibility and optimal-
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Problem GRASP B&B GRASP B&B GRASP B&B

name % to opt. % to opt. E[nb] # LPs E[tb] CPU time

bell3a 0 0 11216 438587 34.52 170.56
bell5 0.7118 0 2601738 420499 4880 81.61
egout 0 1.03 977203 55057 2394 6.06
enigma - 0 671243 8947 85 1.8
flugpl - 0 6861 1588 2.12 0.06
gt2 70.70 - 55164302 - 4297 -
lseu 0 0 1245115 236207 90.72 23.97
mod008 0 0 871031 2848585 298.9 844.1
modglob 0 26.85 12381 1.00E+08 146.7 47678
noswot 4.651 40.48 24533 3753 28.83 3.72
p0033 0 0 1066553 7393 25.66 0.25
pk1 45.45 0 435039 3710343 181.9 2467
pp08a 0 32.93 2161662 1.00E+08 12571 29924
pp08acut 0 10.34 4173685 1.00E+08 37617 161880
rgn 0 0 2469 4963 2.77 1.2
stein27 0 0 1130 11985 0.08 2.62
stein45 0 0 1110292 236453 248.9 218.6
vpm1 0 10 64719 18354 415.9 24.95

Table 1.10. Comparison between GRASP and B&B: percent distance above opti-
mum, expected number of LP solutions and CPU time for GRASP to obtain its best
solution, and number of LPs and CPU required by B&B.

Problem % dist. to optimum E[nf ] E[no]
name GRASP ES GRASP ES GRASP ES

bell3a 0 0.3990 27.14 2053 11216 >18246645
bell5 0.712 0.7143 2256575 33738 >2604076 >18024642
egout 0 0 141.48 423 977203 133764
enigma - - >7439411 >11876637 �7439411 �11876637
flugpl - 0 >248127 29048 �248127 91004
gt2 70.70 5.556 9194 6383 >55183799 >37665907
lseu 0 0 693.27 1985 1245115 10269416
mod008 0 0 3.4 17 871031 2557585
modglob 0 0 1 3 12381 99478
noswot 4.651 4.651 140.36 33627 >8714283 >34335094
p0033 0 0 332 8350 1066553 93571
pk1 45.46 72.72 1 3 >3492631 >6259152
pp08a 0 0 30.16 49 2161662 177969
pp08acut 0 0 21.18 33 4173685 45582
rgn 0 0 12.09 21 2469 8050
stein27 0 0 12.91 41 1130 286
stein45 0 0 23.97 61 1110292 54791
vpm1 0 0 9.97 123 64719 7397

Table 1.11. Comparison between GRASP and an evolutionary solver: percent dis-
tance to optimum, and expected number of LP solutions for reaching feasibility and
optimality.
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ity. The results are reported in Table 1.11. Notice that the termination
criteria for GRASP and for the ES are very different, and hence the com-
parison in terms of distance to optimality is not very meaningful. Still,
it shows that the two meta-heuristics have difficulties on roughly the
same instances. This is not surprising, as the ES has an improvement
routine based on a neighborhood similar to N1. On the other hand,
the expected times required for obtaining feasibility and optimality can
be dramatically different, indicating that population-based routines and
recombination are a good complement to moves within the neighbor-
hoods N1 and N2. Instances where the ES is much slower than GRASP
are probably due to the absence of improvements based on N2 on that
solver, or to the lack of diversity generated by construction on GRASP.
(Comparisons based on CPU time were not made, as the ES results were
obtained on very different machines.)

Comparing GRASP to the state-of-the-art commercial solver Xpress-
MP Optimizer, Release 13.02 indicated a clear advantage of that solver,
which in most cases could find an optimal solution one to four orders
of magnitude faster. Still, this solver had problems on some instances:
bell5 and noswot could not be solved in 24 hours of CPU time. For
some other instances (bell3a, pk1, stein27 ), Xpress-MP required more
LP solutions than GRASP.

7. Conclusion
In this paper we present a GRASP for the solution of integer linear

problems. The algorithm starts by reading an MPS file with the in-
stance data. When the problem is a MIP, the integer variables are fixed
by GRASP and replaced in the original problem, leading to a pure con-
tinuous problem. This problem can be solved by a liner program solver,
to evaluate the corresponding fixed variables. When the original prob-
lem is an IP, simple algebraic manipulations can be used to evaluate the
fixed variables.

The algorithm works with feasible and infeasible solutions. If the
solution is feasible, its evaluation is determined directly by the objective
function. If the solution is infeasible, the evaluation is given by the sum
of constraint violations, which is determined by solving an LP (for MIP
problems) or by simple algebraic manipulations (for IP problems).

The results obtained with GRASP for some benchmark problems were
compared to those obtained by B&B and to those obtained by an evo-
lutionary solver. The comparison with B&B shows that GRASP has a
very interesting behavior, as it determines good feasible solutions in the
cases where B&B fails. In the comparison with the evolutionary solver,
we could verify that the population-based methods used there could lead
many times to substantial reductions on the CPU time required to ob-
tain a given solution. On other cases, substantial CPU time reductions
are on the side of GRASP; therefore, no clear conclusion about which
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of the meta-heuristics is better could be drawn. GRASP being simpler,
it might be the appropriate choice if implementation burden is to be
avoided.

Notes
1. The GRASP implementation works for minimization and maximization, by adapting

the meaning of is better (see section 4.2.4).

2. This software has the advantage of being free; on the other hand, it does not have
some important components, like the dual simplex method, which would allow to quickly
reoptimize Equation 1.3 from a dual solution after a change in the right hand side.

3. Let fb be the objective value for the best feasible solution, and fo for the optimal
solution. The percent distance above the optimum is given by

˛̨
100× (fb − fo)/fo

˛̨
.
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