
Chapter 11

TABU SEARCH FOR MIXED INTEGER
PROGRAMMING

João Pedro Pedroso
Departamento de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 823 4150-180 Porto, Portugal. jpp@ncc.up.pt

Abstract This paper introduces tabu search for the solution of general linear integer prob-
lems. Search is done on integer variables; if there are continuous variables,
their corresponding value is determined through the solution of a linear program,
which is also used to evaluate the integer solution.The complete tabu search pro-
cedure includes an intensification and diversification procedure, whose effects
are analysed on a set of benchmark problems.

Keywords: Tabu search, Linear Integer Programming, Mixed Integer Programming

1. Introduction

In this work we focus on a tabu search for the problem of optimizing a linear
function subject to a set of linear constraints, in the presence of integer and,
possibly, continuous variables. If the subset of continuous variables is empty,
the problem is calledpure integer(IP). In the more general case, where there are
also continuous variables, the problem is usually calledmixed integer(MIP).

The mathematical programming formulation of a mixed integer linear pro-
gram is

z = min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Zn
+, y ∈ Rp

+} (11.1)

whereZn
+ is the set of nonnegative, integraln-dimensional vectors andRp

+

is the set of nonnegative, realp-dimensional vectors.A andG arem × n
andm × p matrices, respectively, wherem is the number of constraints. The
integer variables arex, and the continuous variables arey. We assume that
there are additional bound restrictions on the integer variables:li ≤ xi ≤ ui,
for i = 1, . . . , n.

The strategy proposed consists of fixing the integer variablesxby tabu search,
and obtaining the corresponding objectivez and continuous variablesy by
solving a linear programming (LP) problem (this idea has been introduced
in Pedroso (1998), Pedroso (2002), Neto and Pedroso (2003)). We are therefore



2

using tabu search to fix only integer variables, as the continuous ones can be
unambiguously determined in function of them.

In the process of evaluation of a solution, we first formulate an LP by fixing
all the variables of the MIP at the values determined by tabu search:

z = min
y
{cx + hy : Ax + Gy ≥ b, x = x̄, y ∈ Rp

+} (11.2)

We are now able to solve this (purely continuous) linear problem using the
simplex algorithm. If it is feasible, the evaluation given tox̄ is the objective
valuez; as the solution is feasible, we set the sum of violations,ζ, to zero. If this
problem is infeasible, we setζ equal the total constraint violations (obtained at
the end of phase I of the simplex algorithm). Notice that for IPs, after fixing the
integer variables the remaining problem has no free variables; some LP solvers
might not provide the correct values ofz or ζ for the fixed variables.

We say that a solution structurei is betterthan another structurej if ζi < ζj ,
or ζi = ζj andzi < zj (for minimization problems).

The initial solution is obtained by rounding the integer variables around
their optimal values on LP relaxations. Tabu search starts operating on this
solution by making changes exclusively on the integer variables, after which
the continuous variables are recomputed through LP solutions.

Modifications of the solution are made using a simple neighborhood struc-
ture: incrementing or decrementing one unit to the value of an integer variable
of the MIP. This neighborhood for solutionx is the set of solutions which differ
from x on one elementxi, whose value is one unit above or belowxi. Hence
x′ is a neighbor solution ofx if x′

i = xi + 1, or x′
i = xi − 1, for one indexi,

andx′
j = xj for all indicesj 6= i.

Moves are tabu if they involve a variable which has been changed recently.
An aspiration criterion allows tabu moves to be accepted if they lead to the best
solution found so far. This is the basic tabu search, based only on short term
memory, as described in Glover (1989).

As suggested in Glover (1990), we complement this simple tabu search with
intensification and diversification. Intensification allows non-tabu variables to
be fixed by branch-and-bound (B&B). Diversification creates new solutions
based on LP relaxations, but keeping a part of the current solution unchanged.

We have tested the tabu search with a subset of benchmark problems that
are available, in theMPS format, in the Bixby et al. (1998), MIPLIB (1996).
Results obtained by tabu search are compared to the solution of B&B. We have
used a publicly available implementation of this algorithm, theGLPK software
package. This was used also as the LP simplex solver on tabu search, as well as
the B&B solver on the intensification phase, thus allowing a direct comparison
to GLPK in terms of CPU time required for the solution.

Various libraries provide canned subroutines for tabu search, and some of
these can be adapted to integer programming applications. However, such
libraries operate primarily as sets of building blocks that are not organized to
take particular advantage of considerations relevant to the general MIP setting.
A partial exception is the tabu search component of the COIN-OR open source



Tabu Search for Mixed IntegerProgramming 3

library (see COIN-OR (2004)). However, this component is acknowledged to
be rudimentary and does not attempt to encompass many important elements
of tabu search.

2. A Simple Tabu Search

In this section we introduce a simple tabu search, based only on short term
memory (Algorithm 1). This procedure has one parameter: the number of
iterations,N , which is used as the stopping criterion. The other arguments are
a seed for initializing the random number generator, and the name of theMPS
benchmark file.

The part of the MIP solution that is determined by tabu search is the subset of
integer variablesx in Equation 11.1. The data structure representing a solution
is therefore ann-dimensional vector of integers,x̄ = (x̄1 . . . x̄n).

Algorithm 1: Simple tabu search.
SimpleTabu(N , seed, MPSfile)
(1) read global dataA, G, b, c, andh from MPSfile
(2) initialize random number generator withseed
(3) x̄ := Construct()
(4) x̄∗ := x̄
(5) t := (−n, . . . ,−n)
(6) for i = 1 to N
(7) x̄ := TabuMove(x̄, x̄∗, i, t)
(8) if x̄ is better than̄x∗

(9) x̄∗ := x̄
(10) return x̄∗

2.1 Construction

Construction is based on the solution of the LP relaxation with a set of
variablesF fixed, as stated in equation 11.3 (emptyF leads to the LP relaxation
of the initial problem).

min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Rn
+, y ∈ Rp

+, xi = x̄i ∀ i ∈ F} (11.3)

The solution of this problem is denoted byxLP = (xLP
1 , . . . , xLP

n ); these val-
ues are rounded up or down with some probabilities and fixed, as shown in
Algorithm 2, were we denote byr a continuous random variable with uniform
distribution within[0, 1].

This semi-greedy construction is inspired in an algorithm provided in Lengauer
(1990). It consists of rounding each variablei to an integer next to its value on
the LP relaxation,xLP

i . For all the indicesi ∈ {1, . . . , n}, the variablēxi is
equal to the valuexLP

i rounded down with probability

P (x̄i = bxLP
i c) = dxLP

i e − xLP
i ,



4

Algorithm 2: Semi-greedy solution construction.
Construct()
(1) F := {}
(2) C := {1, . . . , n}
(3) for j = 1 to n
(4) solve Equation 11.3
(5) randomly select indexi from C
(6) if r < xLP

i − bxLP
i c

(7) x̄i := dxLP
i e

(8) else
(9) x̄i := bxLP

i c
(10) F := F ∪ {i}
(11) C := C\{i}
(12) return x̄

or rounded up with probability1 − P (x̄i = bxLP
i c) (lines 6 to 9 of the Algo-

rithm 2).

2.2 Candidate Selection

At each tabu search iteration, the neighborhood of the current solution is
searched and a neighbor solution is selected, as presented in Algorithm 3. The
arguments of this algorithm are the current solutionx̄, the best solution found
x̄∗, the current iterationi, and the tabu vectort. Tabu information is kept in
vectort; tc holds the iteration at which variablec has been updated.

Lines 1 to 5 prevent the case where the search is blocked, all moves being
potentially tabu. In this case a random move is taken: an index is selected
randomly, and a value for that variable is drawn within its bounds, with uniform
distribution. (We denote byR[1, n] a random integer with uniform distribution
within 1, . . . , n.)

The neighborhood is searched by adding a valueδ = ∓1 to each of the
variables1, . . . , n, as long as they are kept within their bounds. We have tested
two search possibilities: breadth first and depth first. With breadth first all
the neighbor solutions are checked, and the best is returned (lines 7 to 15).
With depth first, as soon as a non-tabu solution better than the current solution
is found, it is returned. Results obtained for these two strategies are rather
similar, but there seems to be a slight advantage to breadth-first, which is the
strategy that adopted is this paper. More sophisticated ways of managing choice
rules by means of candidate list strategies are an important topic in tabu search
(see, e.g., Glover and Laguna (1997)), and may offer improvements, but we
elected to keep this aspect of the method at a simple level.

The tabu tenure (the number of iterations during which an changed variable
remains tabu) is generally a parameter of tabu search. In order keep simplify the
parameterization, we decided to consider it a random value between 1 and the
number of integer variables,n. Such value,d, is drawn independently for each



Tabu Search for Mixed IntegerProgramming 5

Algorithm 3: Search of a candidate at each tabu search iteration.
TabuMove(x̄, x̄∗, k, t)
(1) if k − ti > n ∀ i
(2) c := R[1, n]
(3) x̄c := R[lc, uc]
(4) tc := k
(5) return x̄
(6) v := x̄
(7) for i = 1 to n
(8) s := x̄
(9) d := R[1, n]
(10) foreach δ ∈ {−1,+1}
(11) si := x̄i + δ
(12) if si ∈ [li, ui] and s better thanv
(13) if k − ti > d or s better than̄x∗

(14) v := s
(15) c := i
(16) x̄ := v
(17) tc := k
(18) return x̄

variable (line 9); this might additionally lead to different search paths when
escaping the same local optimum, in case this situation arises.

2.3 Results

The set of benchmark problems and the statistical measures used to report
solutions are presented in appendix 11.A.3.

Results obtained by this simple tabu search, presented in table 11.1 are en-
couraging, as good solutions were found to problems which could not be easily
solved by B&B (please see next section for B&B results). Still, for many prob-
lems the optimal solution was not found. This simple tabu search is many times
trapped in regions from which it cannot easily escape, wasting large amounts
of time. As we will see in the next section, this can be dramatically improved
with intensification and diversification procedures.

3. Intensification and Diversification

We now introduce intensification and diversification procedures to comple-
ment the simple tabu search presented in the previous section. These are es-
sential to the performance of the algorithm; in many situations they can save a
large amount of computational time, both by speeding up the search in case of
being far from a local optima, or by moving the tabu search to different regions
when it is trapped somewhere it cannot easily escape.



6

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optimum runs (E[tf ] (s)) runs (E[tf ] (s)) runs (E[tf ] (s))
bell3a 878430.32 0 0 100 0.23 75 50.32 75 50.32
bell5 9011612.98 0 0.50 30 212.01 5 1688.15 0�1764.32
egout 568.1007 0 0 100 0.47 100 7.56 100 7.56
enigma 0 0.0278 n/a 0�1638.69 5 1559.63 0�1638.69
flugpl 1201500 0 0 30 19.54 15 42.85 15 42.85
gt2 23518 0 11.11 100 0.67 5 4506.53 0�4659.14
lseu 1218 0 8.75 45 95.75 5 1441.24 0�1512.53
mod008 307 0 0 100 0.17 5 10751.22 5 10751.22
modglob 20757757.11 0 0.08 100 0.18 5 26546.63 0�27873.20
noswot -41 0 4.65 95 13.06 20 928.09 0�4667.98
p0033 3347 0 8.35 20 55.55 15 78.70 0�272.96
pk1 17 0 54.54 100 0.03 5 2009.57 0�2046.81
pp08a 7350 0 0 100 0.11 25 1439.24 25 1439.24
pp08aCUT 7350 0 0 100 0.15 20 3090.42 20 3090.42
rgn 82.1999 0 0 100 0.03 100 6.13 100 6.13
stein27 18 0 0 100 0.01 100 0.05 100 0.05
stein45 30 0 0 100 0.06 80 66.39 80 66.39
vpm1 20 0 0 100 0.52 5 12149.37 5 12149.37

Table 11.1. Simple tabu search: best solution found, percent distance above optimum; expected
CPU time required for reaching feasibility, the best solution, and optimality. (Results based on
20 observations of the algorithm running for5000 iterations.)

3.1 Intensification

The complete intensification strategy is presented in Algorithm 4. It consists
of fixing all the variables which are tabu (those belonging to setF , determined
in line 1 of Algorithm 4), releasing all the non-tabu variables, and solving the
remaining MIP on these:

min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Zn
+, y ∈ Rp

+, xk = x̄k ∀ k ∈ F} (11.4)

The rationale behind this procedure is the following: most of the difficult MIP
became easy to solve (or at least much easier than the original problem) if a set
of important variables are fixed (a fuller development of this type of strategy
can be found in Glover (1977), and a related discussion appears in Fischetti and
Lodi (2003)). What we are doing here is to say that important variables at a
given point of the search are those which are tabu (i.e., those which have been
updated recently).

For some strongly constrained instances, the problem 11.4 might have no
feasible LP relaxation. In this case, we randomly remove variables from the
setF , until the LP relaxation becomes feasible (lines 2 to 4). On the other end,
the MIP problem of Equation 11.4 might still be very difficult to solve; in order
to avoid wasting too much time on its solution, we limit the time spent on it.
This limit could be parameterized; but, in order to keep the discussion of results
free of parameters, we decided to allow an amount of time equal to the number
of integer variables,n, in seconds. (Actually, this is a rather poor choice: in
our machine, in most of the cases either a good solution is found in about one



Tabu Search for Mixed IntegerProgramming 7

Algorithm 4: Intensification.
Intensify(x, t, i)
(1) F := {k : i− tk > n}
(2) while Equation 11.3 is not feasible
(3) randomly select indexk fromF
(4) F := F\{k}
(5) solve Equation 11.4 (allow search forn seconds, max.)
(6) if no integer solution was found
(7) return x
(8) letx′ be the solution of Equation 11.4
(9) return x′

second, or it is not found inn seconds; but let us keep it as proposed for the
sake of simplicity. Notice also that a way of improving this parameterization
would be to use a dynamic strategy, allowing more time to intensification when
it appears to be rewarding, as is current practice in tabu search.)

3.2 Diversification

The diversification procedure is similar to construction, but it keeps a part
of the current solution structure unchanged. This procedure, presented in Al-
gorithm 5 starts by drawing a random integerl, between 1 and the number of
integer variablesn. It will then randomly selectl variables to remove (lines 4
to 7), and fix them (in a random order), by means of the rounding technique
described in section 2.1 (lines 8 to 16).

With this procedure, on average 50% of the current solution structure will
be kept after diversification; additionally, the reconstructed part will still have
the high quality provided by the rounding procedure.

3.3 The Complete Tabu Search

Diversification and intensification have to be carefully combined in order to
do a good team work inside tabu search. The main procedure, presented in
Algorithm 6, starts with a construction (as in the case of simple tabu). This
initiates the first “diversification stream”. A simple, short term memory tabu
search starts with this solution (lines 15, 16), and pursues until, at a certain point
of the search on this stream, there will be an intensification (lines 9, 10). After
doing at least one intensification, and having no improvements for a certain
number of tabu search iterations, there will be a diversification (lines 11 to 14);
this starts the next diversification stream.

In order to do this search in a “parameter-free” fashion, we propose the fol-
lowing: do an intensification aftern (the number of integer variables) iterations
with no improvement on the best solution found on the current diversification
stream. An intensification starts with the best solution found on the current di-
versification stream, not with the current solution. Aftern + 1 non-improving
tabu search iterations (hence after doing at least one intensification), do a di-



8

Algorithm 5: Diversification: partial solution destruction and recon-
struction.

Diversify(x)
(1) F := {1, . . . , n}
(2) C := {}
(3) l = R[1, n]
(4) for k = 1 to l
(5) randomly select indexk fromF
(6) F := F\{k}
(7) C := C ∪ {k}
(8) for k = 1 to l
(9) solve Equation 11.3
(10) randomly select indexk from C
(11) if r < xLP

k − bxLP
k c

(12) xk := dxLP
k e

(13) else
(14) xk := bxLP

k c
(15) F := F ∪ {k}
(16) C := C\{k}
(17) return x̄

versification. On Algorithm 6, the number of iterations with no improvement
on the current stream’s best solution is computed as variableq, in lines 14 and
17 to 23.

3.4 Results

We present results obtained by the complete tabu search algorithm, in ta-
ble 11.2. Comparing these with the results of simple tabu the importance of
intensification and diversification becomes clear; the solution quality is consid-
erably improved, and the CPU time required to solving the problems is much
reduced.

The results obtained utilizing the B&B implementation ofGLPKon the series
of benchmark problems selected are provided in the Table 11.3. The maximum
CPU time allowed is 24 hours; in case this limit was exceeded, the best solution
found within the limit is reported.GLPK uses a heuristic by Driebeck and
Tomlin to choose a variable for branching, and the best projection heuristic for
backtracking (see Makhorin (2004) for further details).

The analysis of tables 11.2 and 11.3 shows that for most of the benchmark
instances, tabu search requires substantially less CPU for obtaining the optimal
solution than B&B (though the times reported for B&B are for the complete
solution of the problem, not only finding the optimal solution). Two of the
problems for which B&B could not find an optimal solution in 24 hours of CPU
time (gt2 and modglob) were solved by tabu search in a reasonable amount of
time.



Tabu Search for Mixed IntegerProgramming 9

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optim. runs (E[tf ](s)) runs (E[tf ](s)) runs (E[tf ](s))
bell3a 878430.32 0 0 100 0.24 100 4.38 100 4.38
bell5 8966406.49 0 0 100 8.60 100 38.24 100 38.24
egout 568.1007 0 0 100 0.47 100 6.76 100 6.76
enigma 0 0 0 35 187.51 20 376.66 20 376.66
flugpl 1201500 0 0 100 1.52 100 1.55 100 1.55
gt2 21166 0 0 100 0.65 15 2216.95 15 2216.95
lseu 1120 0 0 100 1.47 10 770.45 10 770.45
mod008 307 0 0 100 0.17 40 1119.57 40 1119.57
modglob 20740508.1 0 0 100 0.16 100 1404.29 100 1404.29
noswot -41 0 4.65 100 8.38 95 239.96 0�15653.99
p0033 3089 0 0 100 0.17 90 4.10 90 4.10
pk1 15 0 36.36 100 0.03 10 1111.96 0�2357.09
pp08a 7350 0 0 100 0.11 45 4316.38 45 4316.38
pp08aCUT 7350 0 0 100 0.15 70 766.59 70 766.59
rgn 82.1999 0 0 100 0.03 100 0.73 100 0.73
stein27 18 0 0 100 0.02 100 0.05 100 0.05
stein45 30 0 0 100 0.06 80 66.65 80 66.65
vpm1 20 0 0 100 0.48 95 393.73 95 393.73

Table 11.2. Complete tabu search: best solution found, percent distance above optimum; ex-
pected CPU time required for reaching feasibility, the best solution, and optimality. (Results
based on 20 observations of the algorithm running for5000 iterations.)

problem name best z CPU time (s) remarks
bell3a 878430.32 134.7
bell5 8966406.49 143.3
egout 568.1007 3.6
enigma 0 14.1
flugpl 1201500 1.3
gt2 30161∗ 93822.3 stopped,>24h CPU time
lseu 1120 96.6
mod008 307 51.0
modglob 20815372.17∗ 93839.7 stopped,>24h CPU time
noswot -41∗ 137.9 stopped, numerical instability
p0033 3089 1.1
pk1 11 49713.9
pp08a 7350 93823.4 stopped,>24h CPU time
pp08aCUT 7350 93822.3 stopped,>24h CPU time
rgn 82.12 4.1
stein27 18 3.9
stein45 30 269.3
vpm1 20 10261.8

Table 11.3. Results obtained by branch-and-bound, usingGLPK - version4.4: solution found
and CPU time. (∗ indicates non-optimal solutions.)



10

Algorithm 6: A complete tabu search.
TabuSearch(N , seed, MPSfile)
(1) read global dataA, G, b, c, andh from MPSfile
(2) initialize random number generator withseed
(3) x̄ := Construct()
(4) x̄∗ := x̄
(5) x̄′ := x̄
(6) q = 0
(7) t := (−n, . . . ,−n)
(8) for i = 1 to N
(9) if q = n
(10) x̄ := Intensify(x̄, t, i)
(11) else if q > n
(12) x̄ := Diversify(x̄)
(13) x̄′ := x̄
(14) q = 0
(15) else
(16) x̄ := TabuMove(x̄, x̄∗, i, t)
(17) if x̄ is better than̄x∗

(18) x̄∗ := x̄
(19) if x̄ is better than̄x′

(20) x̄′ := x̄
(21) q = 0
(22) else
(23) q := q + 1
(24) return x̄∗

We also present the results obtained utilizing the commercial solverXpress-
MP Optimizer, Release 13.02, again limiting the CPU time to 24 hours maxi-
mum. Although there are some exceptions, this solver is generally much faster
than our implementation of tabu search, but, as the code is not open, we do not
know why. A part of the differences could be explained by the quality of the LP
solver. Another part could be due to the use of branch-and-cut. Finally, some
differences could be due to preprocessing; in our opinion, this is probably the
improvement on tabu search that could bring more important rewards.

4. Conclusion

The literature in meta-heuristics reports many tabu search applications to
specific problems. In this paper we present a version to solve general integer
linear problems. In this domain, the most commonly used algorithm is branch-
and-bound. This algorithm converges to the optimal solution, but might be
unusable in practical situations due to the large amounts of time or memory
required for solving some problems.



Tabu Search for Mixed IntegerProgramming 11

problem name best z CPU time (s) remarks
bell3a 878430.32 87
bell5* 8988042.65∗ >24h stopped,>24h CPU time
egout 568.1007 0
enigma 0 0
flugpl 1201500 0
gt2 21166 0
lseu 1120 0
mod008 307 0
modglob 20740508.1 0
noswot* -41∗ >24h stopped,>24h CPU time
p0033 3089 0
pk1 11 937
pp08a 7350 31
pp08aCUT 7350 5
rgn 82.1999 0
stein27 18 1
stein45 30 142
vpm1 20 0

Table 11.4. Results obtained by the commercialXpress-MP Optimizer, Release 13.02: solution
found and CPU time reported by the solver. (∗ indicates non-optimal solutions.)

The tabu search proposed in this paper provides a way for quickly solving
to optimality most of the problems analyzed. In terms of time required for
reaching the optimal (or a good) solution, comparison with the branch-and-
bound algorithm implemented in theGLPK favors tabu search. Comparison
with the commercial solverXpress-MP Optimizerin general is not favorable
to tabu search, although there are some exceptions. Probably, preprocessing
is playing an important role inXpress-MP’s performance; actually, we believe
that preprocessing is the most promising research direction for improving tabu
search performance.

Our tabu search implementation, utilizing theGLPK routines, is publicly
available Pedroso (2004); the reader is kindly invited to use it. The implemen-
tation withGLPK is very simple: tabu search routines are just a few hundreds of
C programming lines, which can be easily adapted to more specific situations.

The strategy proposed in this work makes it straightforward to apply tabu
search to any model that can be specified in mathematical programming, and
thus opens a wide range of applications for tabu search within a single frame-
work. Tabu search can be used to provide an initial solution for starting a
branch-and-bound process; it can also be used for improving an integer solution
found by a branch-and-bound which had to be interrupted due to computational
time limitations.

We emphasize our implementation is not the only one possible. Three types
of procedures for applying tabu search to MIP problems are discussed in Glover
(1990), utilizing strategies somewhat different than those proposed here. To our
knowledge, none of these alternatives has been implemented and tested. Ad-
ditional considerations for applying tabu search to mixed integer programming



12

are discussed in Glover and Laguna (1997), including tabu branching proce-
dures and associated ideas of branching on created variables that provide an
opportunity to generate stronger branches than those traditionally employed. It
is hoped that the present work, which appears to mark the first effort to inves-
tigate tabu search in the general MIP setting, will spur additional explorations
of this topic.

Appendix

1. Benchmark Problems
The instances of MIP and IP problems used as benchmarks are defined in the Bixby et al.

(1998) and are presented in Table 11.A.1. They were chosen to provide an assortment of MIP
structures, with instances coming from different applications.

Problem Application Number of variables Number of Optimal
name total integer binary constraints solution
bell3a fiber optic net. design 133 71 39 123 878430.32
bell5 fiber optic net. design 104 58 30 91 8966406.49
egout drainage syst. design 141 55 55 98 568.101
enigma unknown 100 100 100 21 0
flugpl airline model 18 11 0 18 1201500
gt2 truck routing 188 188 24 29 21166
lseu unknown 89 89 89 28 1120
mod008 machine load 319 319 319 6 307
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p0033 unknown 33 33 33 16 3089
pk1 unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
pp08acut unknown 240 64 64 246 7350
rgn unknown 180 100 100 24 82.1999
stein27 unknown 27 27 27 118 18
stein45 unknown 45 45 45 331 30
vpm1 unknown 378 168 168 234 20

Table 11.A.1. Set of benchmark problems used: application, number of constraints, number of
variables and optimal solutions as reported in MIPLIB.

2. Computational Environment
The computer environment used on this experiment is the following: a Linux Debian operating

system running on a machine with an AMD Athlon processor at 1.0 GHz, with 512 Gb of RAM.
Both tabu search andGLPK were implemented on the C programming language.

3. Statistics Used
In order to assess the empirical efficiency of tabu search, we provide measures of the expec-

tation of the CPU time required for finding a feasible solution, the best solution found, and the
optimal solution, for each of the selected MIP problems.

Let tf
k be the CPU time required for obtaining a feasible solution in iterationk, or the total

CPU time in that iteration if no feasible solution was found. Letto
k andtb

k be identical measures
for reaching optimality, and the best solution found by tabu search, respectively. The number of



Tabu Search for Mixed IntegerProgramming 13

independent tabu search runs observed for each benchmark is denoted byK. Then, the expected
CPU time required for reaching feasibility, based on theseK iterations, is:

E[tf ] =

KX
k=1

tf
k

rf
,

while

E[tb] =

KX
k=1

tb
k

rb

is the expected CPU time for finding the best tabu search solution, and the expected CPU time
required for reaching optimality is

E[to] =

KX
k=1

to
k

ro
.

For rf = 0 andro = 0, the sums provide respectively a lower bound on the expectations of
CPU time required for feasibility and optimality.

References

Bixby, R. E., S. Ceria, C. M. McZeal and M. Savelsbergh (1998) An updated
mixed integer programming library. Technical report, Rice University. TR98-
03.

COIN-OR (2004) COmputational INfrastructure for Operations Research. In-
ternet repository, version 1.0. www.coin-or.org.

Fischetti, M. and A. Lodi (2003) Local branching.Mathematical Programming,
98:23–47.

Glover, F. and M. Laguna (1997)Tabu Search. Kluwer Academic Publishers,
Boston.

Glover, F. (1977) Heuristics for integer programming using surrogate con-
straints.Decision Sciences, 8(1):156–166.

Glover, F. (1989) Tabu search–part I.ORSA Journal on Computing, 1:190–206.
Glover, F. (1990) Tabu search–part II.ORSA Journal on Computing, 2:4–32.
Lengauer, T. (1990)Combinatorial Algorithms for Integrated Circuit Layout,

chapter 8, pages 427–446. Applicable Theory in Computer Science. John
Wiley and Sons.

Makhorin, A. (2004)GLPK – GNU Linear Programming Kit. Free Software
Foundation. version 4.4.

MIPLIB (1996) Internet repository, v. 3.0. www.caam.rice.edu/∼bixby/miplib.
Neto, T. and J. P. Pedroso (2003) Grasp for linear integer programming. In Sousa,

Jorge P. and Resende, Mauricio G. C., editors,METAHEURISTICS: Com-
puter Decision-Making, Combinatorial Optimization Book Series, pages
545–574. Kluwer Academic Publishers.

Pedroso, J. P. (1998) An evolutionary solver for linear integer programming.
BSIS Technical Report 98-7, Riken Brain Science Institute, Wako-shi, Saitama,
Japan.

Pedroso, J. P. (2002) An evolutionary solver for pure integer linear program-
ming. International Transactions in Operational Research, 9(3):337–352.

Pedroso, J. P. (2004) Tabu search for MIP: an implementation in the C program-
ming language. Internet repository, version 1.0. www.ncc.up.pt/∼jpp/mipts.


