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Abstract. Equilibrium in Economics has been seldom addressed in a
situation where some variables are discrete. This work introduces a prob-
lem related to lot-sizing with several players, and analyses some strategies
which are likely to be found in real world games. An illustration with
a simple example is presented, with concerns about the difficulty of the
problem and computation possibilities.

1 Introduction

Market equilibrium is a classical problem arising in Economics, with applications
ranging from the analysis of market power to the simulation of new types of
regulation. The most studied versions involve agents that choose a (continuous)
variable; a Nash equilibrium occurs when no firm can do better by unilaterally
changing its strategy. When the variable being played is the quantity, this is
usually called a Cournot equilibrium when all firms play simultaneously; when
a leader firm moves first, and follower firms move afterwords, this is called a
Stackelberg equilibrium (see e.g. [1] for an introduction).

Much less attention has been drawn to those games where some variables
in this competition are discrete. In this case, the computation of equilibria is a
much harder task; actually, determining the optimal strategy for a single player
is itself an NP-complete problem in many situations.

Let us start with the description of the market we will deal with in this paper.
The demand is forecast with complete certainty for a number of coming periods.
A firm has the possibility of producing in a given period or not; demand is met
in each period with goods either produced or existing in inventory. There are
fixed (setup) and inventory costs, and the production capacity is limited. The
variables for each firm are, thus:

– decide whether to produce or not, for each period in the planning horizon;
– choose the quantity to place in the market in each period.

If the demand is independent of the price (i.e. it is a fixed amount) and there is
only one firm, this leads to the well known lot-sizing problem [2]. We are more
interested in the case where demand is dependent of the price; this dependence



will be captured by modelling demand as a linear function of the price (or, equiv-
alently, price as a linear function of the quantity put in the market). This leads
to a lot-sizing variant where the firm, instead of simply meeting the demand,
must decide what quantity to put in the market. Price is, thus, a function of the
total quantity, i.e., the quantity played summed for all the firms.

2 Some interesting markets

2.1 Example

For the sake of clarity, we will use an example throughout this paper.
Demand is different from period to period, and is modelled by:

Pt(Qt) = max(at − btQt, 0), for t = 1, . . . , T, (1)

where t is the period, T is the total number of periods, at, bt are parameters of
the model, and Qt ≥ 0 is the total quantity placed in the market in period t.

The decision variables concern producing or not in each period, as well as the
amount to produce, and the amount to place in the market. Let y be the vector of
setup, binary variables, where yt is 1 if there is production during period t, and 0
otherwise. Variables xt and qt are, respectively, the corresponding manufactured
amount and the quantity placed in the market in t, and the quantity held in
inventory at the end of the period t is ht; these are non-negative, continuous
variables. The bill of materials can be written as:

ht−1 + xt = qt + ht, for t = 1, . . . , T. (2)

We assume that there is a limit K on the capacity available on each period, and
production can only occur if machines have been setup; this implies that

xt ≤ Kyt, for t = 1, . . . , T. (3)

Let us denote the fixed production costs by F and the unit inventory costs
by H. For a given production plan the total costs are:

C(y, h) =

T∑
t=1

(Fyt +Hht).

We will provide a numerical example, allowing to draw conclusions for simple
situations. Demand is enough for at least one firm to be able to produce with
profit on the first half of the horizon, and larger for the second half. Inventory
costs are such that it is worthy to produce some periods in advance (when
demand justifies it), but too early production is discouraged by them.

We assume throughout this paper that firms know each others’ costs and
capacities (i.e., technology is known).



2.2 Monopoly

In the monopoly case, all the variables are under the control of the firm. In this
case, market quantities are those decided by the monopolist, Qt = qMt , and the
corresponding price is given by Equation 1.

The profit is therefore given by

Π =

T∑
t=1

[
qMt Pt(q

M
t ) − (Fyt +Hht)

]
. (4)

For a single period, the optimal result for this model is well known; maximum
profit is obtained when the derivatives with respect to the quantity are zero,
which for linear demand leads to optimal quantities

q∗M =
a

2b
.

The firm will produce if the corresponding profit is positive, i.e., if the revenue
is larger than the fixed cost F .

When there are several periods, the situation is more complex; an illustration
is provided for our example in Table 1. The firm produces a small quantity for
the initial periods, and produces at full capacity after the demand raises. Notice
that this problem is NP-hard even when the quantities are fixed [3] (this is
the “standard” lot-sizing problem, i.e., all that the firm has to do is to meet
demand at minimal cost), so for more realistic examples the computation of
the optimum is not trivial. For obtaining the results presented in this paper
we used the software Couenne [4], which is based on the latest developments in
mixed-integer nonlinear programming [5].

F = 10, H = 1, K = 10 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 5.00 0.00 5.00 1 13.49 8.49 4.99
2 10 1 1 9.50 4.50 5.00 0 0.00 4.00 4.50
3 10 1 0 0.00 0.00 4.50 0 0.00 0.00 4.00
4 10 0.5 1 10.00 0.00 10.00 1 10.00 0.00 10.00
5 10 0.5 1 10.00 0.00 10.00 1 19.00 9.00 10.00
6 10 0.5 1 10.00 0.00 10.00 0 0.00 0.00 9.00

Π = 170.25 Π = 171.75

1 10 0.25 1 10.00 0.00 10.00 1 20.00 0.00 20.00
2 10 0.25 1 10.00 0.00 10.00 1 23.01 3.01 20.00
3 10 0.25 1 10.00 2.00 8.00 1 25.00 10.01 18.00
4 10 0.125 1 10.00 0.00 12.00 1 25.00 3.00 32.01
5 10 0.125 1 10.00 0.00 10.00 1 25.00 0.00 28.00
6 10 0.125 1 10.00 0.00 10.00 1 25.00 0.00 25.00

Π = 429.00 Π = 768.875

Table 1. Optimal results for the monopoly situation, under four parameter sets.



2.3 Oligopoly

Let us now consider the case of several firms operating in the market, an oligopoly.
The difference between the monopoly and the current situation is that now the
total quantity put in the market is no longer the decision of a single firm. This
can be written in the profit for each firm i as:

Πi =

T∑
t=1

qitPt( N∑
j=1

qjt ) − (F iyit +Hihit)

 . (5)

where N is the number of firms operating.

One-period games. For a single period, an equilibrium for this model can
again be derived analytically, and is well known: it is the Cournot equilibrium.
Assuming that the fixed costs are null or low enough, maximum profit is obtained
when the partial derivatives of the profit with respect to the quantity are zero,
for each firm, leading to the system of equations

qi =
a+ b

∑
j 6=i q

j

2b
.

At this point, no firm has incentive to deviate; any unilateral variation will lead
to a smaller profit.

The solution is more complex in the presence of fixed costs. The previous
equilibrium may be a solution with positive profit for all firms in this case too.
When not all firms can produce with profit, i.e., fixed costs F i are larger than
the revenue at the Cournot equilibrium, there may be the case that one firm can
produce with profit, but if any other enters the market, all will have losses.

Another potential equilibrium, seldom analysed, occurs when one firm plays
a large quantity, in order to try to put the others out of the market; this “aggres-
sive” firm plays a large quantity, in such a way that the other companies’ profit
is zero (or negative, if they produce a positive amount). Clearly, if all firms play
this large amount, they all will be worse off; but if one of them succeeds imposing
this quantity, as in a Stackelberg equilibrium, the others’ optimal strategy is no
production.

Yet another possibility in this game occurs when the firms coalesce and max-
imise the sum of the profits of all firms, deciding in another stance how to share
them. This situation is quite similar to the monopoly case.

The multi-period situation is considerably more complex. We present next
some results for equilibria with a single move for all periods; an iterated version
will be developed in section 3.

Multi-period duopoly: a case study. For illustrating the duopoly case we
take the same production and demand parameters used for the monopoly exam-
ple, and analyse the behaviour of a market with two firms.



For the following results we use fixed-point iteration, and the software Couenne
for optimisation. In each iteration, Firm 1 optimises its quantities based on the
previous output of Firm 2, and vice-versa; details are available in Algorithm 1,
where q̄i are initial values for the quantities played, q̄∗i are the corresponding
values optimised for the competitor’s current value, and qi the decision variables
in each optimization problem; ε is a convergence criterion. Initial quantities for
Firm 2 are zero for all periods, except if otherwise stated.

Algorithm 1: A fix-point iteration for the duopoly equilibrium

initialise q̄1 and q̄21

repeat2

q̄∗1 ← argmax(Π1(q1, q̄2))3

q̄∗2 ← argmax(Π2(q̄∗1, q2))4

∆← |q̄∗1 − q̄1|+ |q̄∗2 − q̄2|5

q̄1 ← q̄∗16

q̄2 ← q̄∗27

until ∆ < ε8

Let us first analyse the case where firms are symmetric, as in the results
presented in Table 2. The first observation is that when the setup decisions
are important, even though the profits at equilibrium are roughly the same,
the quantities played in each period by each of the firms may be considerably
different.

Notice that for small demand, when capacities increase, both firms may be-
come worse off even if the costs are unchanged; this has occurred from the
topmost to the second situations in Table 2. When demand is large enough, this
no longer occurs (third and fourth entries in the table).

It is common to have several equilibria on games with discrete variables; an
illustration with our example is presented in Table 3. This tables shows two
different outcomes of the fixed-point iteration, obtained using different starting
solutions. Both firms are better off in the top scenario, even though no one has
incentive to deviate from the situation in the bottom.

There may also be the case that the capacities are asymmetric; in this case
the firm with larger capacity has a competitive advantage, as shown in Table 4.

Let us now turn to the case where one firm decides to play a quantity such
that the other is put out of the market, as in a Stackelberg equilibrium. The
problem of optimally determining that (leader’s) quantity is not trivial, as a
sub-problem of this is to determine the point where profit becomes non-null in a
minimum cost production plan (this is the follower’s problem). Empirically, this
equilibrium can be determined by increasing the quantity put into the market
by one firm, until the optimal response of the opponents be to produce zero.
Results for this case are presented in Table 5. Note that we are unsure if this is
an equilibrium; we just verified that any slight reduction in Firm 2’s quantities



Firm 1 Firm 2

F = 10, H = 1, K = 10 F = 10, H = 1, K = 10
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 8.37 5.04 3.33 1 6.33 3.00 3.34
2 10 1 0 0.00 2.04 3.00 0 0.00 0.00 3.00
3 10 1 0 0.00 0.00 2.04 1 10.00 6.08 3.92
4 10 0.5 1 10.00 4.41 5.59 0 0.00 0.00 6.08
5 10 0.5 0 0.00 0.00 4.41 1 10.00 3.54 6.46
6 10 0.5 1 8.22 0.00 8.22 0 0.00 0.00 3.54

Π1 = 67.13 Π2 = 65.72

F = 10, H = 1, K = 25 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 8.33 5.00 3.34 1 6.33 3.00 3.34
2 10 1 0 0.00 2.00 3.00 0 0.00 0.00 3.00
3 10 1 0 0.00 0.00 2.00 1 9.33 5.33 4.00
4 10 0.5 1 12.67 5.33 7.34 0 0.00 0.00 5.33
5 10 0.5 0 0.00 0.00 5.33 1 12.66 5.33 7.33
6 10 0.5 1 7.34 0.00 7.34 0 0.00 0.00 5.33

Π1 = 62.15 Π2 = 61.43

F = 10, H = 1, K = 10 F = 10, H = 1, K = 10
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 0.25 1 10.00 0.00 10.00 1 10.00 0.00 10.00
2 10 0.25 1 10.00 0.89 9.11 1 10.00 0.90 9.10
3 10 0.25 1 10.00 3.11 7.78 1 10.00 3.11 7.78
4 10 0.125 1 10.00 0.22 12.89 1 10.00 0.23 12.89
5 10 0.125 1 10.00 0.00 10.22 1 10.00 0.00 10.23
6 10 0.125 1 10.00 0.00 10.00 1 10.00 0.00 10.00

Π1 = 321.375 Π2 = 321.368

F = 10, H = 1, K = 25 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 0.25 1 13.34 0.00 13.34 1 13.34 0.00 13.34
2 10 0.25 1 13.34 0.00 13.34 1 13.34 0.00 13.34
3 10 0.25 1 13.34 0.00 13.34 1 13.34 0.00 13.34
4 10 0.125 1 25.00 0.00 25.00 1 25.00 0.00 25.00
5 10 0.125 1 25.00 0.00 25.00 1 25.00 0.00 25.00
6 10 0.125 1 25.00 0.00 25.00 1 25.00 0.00 25.00

Π1 = 354.558 Π2 = 354.55

Table 2. Results for a duopoly: Cournot equilibria for the lot-sizing problem.

Firm 1 Firm 2

F = 10, H = 1, K = 10 F = 10, H = 1, K = 10
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 8.37 5.04 3.33 1 6.33 3.00 3.34
2 10 1 0 0.00 2.04 3.00 0 0.00 0.00 3.00
3 10 1 0 0.00 0.00 2.04 1 10.00 6.08 3.92
4 10 0.5 1 10.00 4.41 5.59 0 0.00 0.00 6.08
5 10 0.5 0 0.00 0.00 4.41 1 10.00 3.54 6.46
6 10 0.5 1 8.22 0.00 8.22 0 0.00 0.00 3.54

Π1 = 67.13 Π2 = 65.72
1 10 1 1 9.00 5.67 3.33 1 9.01 5.67 3.34
2 10 1 0 0.00 2.67 3.00 0 0.00 2.67 3.00
3 10 1 0 0.00 0.00 2.67 0 0.00 0.00 2.67
4 10 0.5 1 8.00 0.66 7.34 1 10.00 4.67 5.33
5 10 0.5 1 10.00 4.00 6.67 0 0.00 0.00 4.67
6 10 0.5 0 0.00 0.00 4.00 1 8.00 0.00 8.00

Π1 = 64.30 Π2 = 64.34

Table 3. Different equilibria obtained for the same parameter set.



Firm 1 Firm 2

F = 10, H = 1, K = 10 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 8.33 5.00 3.33 1 6.33 3.00 3.33
2 10 1 0 0.00 2.00 3.00 0 0.00 0.00 3.00
3 10 1 0 0.00 0.00 2.00 1 9.34 5.34 3.99
4 10 0.5 1 7.33 0.00 7.32 0 0.00 0.00 5.34
5 10 0.5 1 10.00 4.67 5.34 1 13.99 6.67 7.32
6 10 0.5 0 0.00 0.00 4.67 0 0.00 0.00 6.67

Π1 = 56.11 Π2 = 69.46

Table 4. Equilibrium with asymmetric capacities.

induce Firm 1 to play, resulting in a large decrease on Firm 2’s profit. In the
situation presented, Firm 1 has no incentive to play a positive amount, as it
would result in losses.

Firm 1 Firm 2

F = 10, H = 1, K = 25 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 0 0.000 0.000 0.000 1 10.888 5.449 5.439
2 10 1 0 0.000 0.000 0.000 0 0.000 0.000 5.449
3 10 1 0 0.000 0.000 0.000 1 5.469 0.000 5.469
4 10 0.5 0 0.000 0.000 0.000 1 13.409 0.000 13.409
5 10 0.5 0 0.000 0.000 0.000 1 12.889 0.000 12.889
6 10 0.5 0 0.000 0.000 0.000 1 12.769 0.000 12.769

Π1 = 0 Π2 = 155.119

Table 5. Equilibrium when firm 2 defects (plays a quantity such that firm 1’s optimal
response is to play zero).

Clearly, if Firm 1 would play the same quantities as a Firm 2, it would result
in large losses for both firms. This example serves as an introduction to a different
type of game, where firms may collaborate (play Cournot’s quantities) or defect.
This makes a bridge between games in market equilibria and 2-person games like
the Prisoner’s Dilemma. In this context, due to the existence of several periods,
repeated games are particularly interesting; we will turn to their analysis in the
next section.

3 Iterated games

One may consider that the decisions for all the periods have to be taken in
advance, and the corresponding quantities fixed for all the planning horizon.
However, it is much more natural to consider that at the begin of each period
there is a commitment only regarding the quantity to produce on that period,
and that the moves concerning later periods remain open. This situation leads to
an interesting game between the firms, where in each period a firm may decide
to cooperate with the others, or to defect.

In many situations, the computation of a Nash equilibrium in the presence
of discrete variables is NP-hard [6, 7]. As for our problem, even the monopoly



case is NP-hard. The equilibria computed in the previous section for the duopoly
case are based on the assumption that each firm knows the production decisions
of the other for the whole planning horizon. If that information is not available
(as usual in real-world cases), the problem becomes more complicated. As we
have seen, the solutions are many times asymmetric; there is no easy strategy
for deciding on the role of each firm if the future periods’ moves are not known.
Indeed, we are not aware of an optimal strategy for this general case.

In order to complete the illustration, we go back to the example and provide
results for a simple strategy, on a two-firm game, equivalent of a well known
strategy in the iterated Prisoners’ Dilemma [8]:

1. On the first period cooperate: play an optimal (non-defecting) quantity given
by equation 5 if it leads to a positive profit, or null quantity otherwise.

2. On the subsequent periods:

(a) if in the previous period the opponent cooperated, cooperate too: play a
Cournot’s quantity;

(b) otherwise, retaliate: play a large quantity, such that the other firms’
optimal reaction would be producing zero quantity.

Notice that, as in some instances there are several possibilities for Cournot
equilibria, the above strategy may be ambiguous. This can be observed on Ta-
ble 6. Even though in the best situation the Cournot equilibrium with future
information is obtained (top), other (inferior) situations may also arise (middle
and bottom); firms have no information to decide which plays what in asym-
metric moves.

Firm 1 Firm 2

F = 10, H = 1, K = 25 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 8.33 5.00 3.34 1 6.33 3.00 3.34
2 10 1 0 0.00 2.00 3.00 0 0.00 0.00 3.00
3 10 1 0 0.00 0.00 2.00 1 9.33 5.33 4.00
4 10 0.5 1 12.67 5.33 7.34 0 0.00 0.00 5.33
5 10 0.5 0 0.00 0.00 5.33 1 12.66 5.33 7.33
6 10 0.5 1 7.34 0.00 7.34 0 0.00 0.00 5.33

Π1 = 62.15 Π2 = 61.43

1 10 1 1 6.33 3.00 3.34 1 6.33 3.00 3.34
2 10 1 0 0.00 0.00 3.00 0 0.00 0.00 3.00
3 10 1 1 9.33 5.33 4.00 1 9.33 5.33 4.00
4 10 0.5 0 0.00 0.00 5.33 0 0.00 0.00 5.33
5 10 0.5 1 12.66 5.33 7.33 1 12.66 5.33 7.33
6 10 0.5 0 0.00 0.00 5.33 0 0.00 0.00 5.33

Π1 = 56.70 Π2 = 56.70

1 10 1 1 8.33 5.00 3.34 1 8.33 5.00 3.34
2 10 1 0 0.00 2.00 3.00 0 0.00 2.00 3.00
3 10 1 0 0.00 0.00 2.00 0 0.00 0.00 2.00
4 10 0.5 1 12.67 5.33 7.34 1 12.67 5.33 7.34
5 10 0.5 0 0.00 0.00 5.33 0 0.00 0.00 5.33
6 10 0.5 1 7.34 0.00 7.34 1 7.34 0.00 7.34

Π1 = 56.78 Π2 = 56.78

Table 6. Results for repeated games: both firms cooperate.



Much inferior outcomes are obtained if one of the firms decides to defect. A
firm might be tempted to impose a large move; but, as the other firm has no
information about this, it will play either the “cooperate” or the “defect” move,
resulting in large losses for both. Table 7 presents these situations. It should be
noted that, in the cases presented, the last firm defecting is worse off at the end.
This encourages firms to defect, trying to make the other firms drop out of the
market, and have the large profits of Table 5.

Firm 1 Firm 2

F = 10, H = 1, K = 25 F = 10, H = 1, K = 25
Period (t) at bt yt xt ht qt yt xt ht qt

1 10 1 1 10.88 5.44 5.44 1 10.88 5.44 5.44
2 10 1 1 0.00 0.00 5.44 0 0.00 0.00 5.44
3 10 1 0 5.47 0.00 5.47 1 5.47 0.00 5.47
4 10 0.5 1 13.41 0.00 13.41 1 13.41 0.00 13.41
5 10 0.5 1 12.89 0.00 12.89 1 12.89 0.00 12.89
6 10 0.5 1 12.78 0.00 12.78 1 12.78 0.00 12.78

Π1 = −55.44 Π2 = −55.44
1 10 1 1 6.33 3.00 3.34 1 10.88 5.44 5.44
2 10 1 0 0.00 0.00 3.00 0 0.00 0.00 5.44
3 10 1 1 9.33 5.33 4.00 1 5.47 0.00 5.47
4 10 0.5 0 0.00 0.00 5.33 1 13.41 0.00 13.41
5 10 0.5 1 12.66 5.33 7.33 1 12.89 0.00 12.89
6 10 0.5 0 0.00 0.00 5.33 1 12.78 0.00 12.78

Π1 = −23.77 Π2 = −15.01
1 10 1 1 8.33 4.99 3.34 1 10.88 5.44 5.44
2 10 1 1 5.89 5.44 5.44 0 0.00 2.10 3.34
3 10 1 0 0.00 2.10 3.34 1 3.37 0.00 5.47
4 10 0.5 1 11.31 0.00 13.41 1 12.67 5.33 7.34
5 10 0.5 1 12.67 5.33 7.34 1 7.56 0.00 12.89
6 10 0.5 1 7.45 0.00 12.78 1 7.34 0.00 7.34

Π1 = −53.17 Π2 = −45.65
Table 7. Results for repeated games: both firms defect (top), Firm 2 defects and Firm
1 cooperates (middle), or play other firm’s last move (bottom; Firm 2 starts defecting).

4 Conclusions

Recent advances in mixed-integer nonlinear programming software allow the
straightforward computation of optimal solution for problems which were very
difficult to solve some years ago. This allowed us to compute equilibria in a simple
but very interesting market, where a lot-sizing problem is setup in a competitive
context.

The analysis of a simple example puts in evidence that the solution of a lot-
sizing problem may be very different of its usual, constant demand version. This
also extends, in a somewhat different way, recent work on agent-based approaches
for computational equilibria [9] to a recurring, dynamic environment.

When several firms play, the existence of several periods in the lot-sizing
problem makes it natural to have an iterated game where each firm plays one
move per period. We proposed a very simple strategy; more sophisticated ones,



e.g. mixed strategies, are an interesting subject for further research in this topic.
Another direction concerns the analysis of real-world problems under this back-
ground; many markets have points in common with this model (for example,
energy markets, often tackled as equilibrium models [10]). A scenario which is
worthy studying is the one where firms with consecutive losses drop out of the
market, as happens in most real-world cases.

The illustration presented in this paper is also interesting for broadening the
range of situations analysed in the study of equilibria in Economics, putting in
close relation economic equilibrium and computational complexity, two subjects
seldom studied together. Iterated games are often considered excellent teaching
tools [11]; we hope that the one described here will also make a contribution in
this regard.
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Research and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium (2008)

11. Resler, D.: The prisoner’s dilemma tournament revisited. SIGCSE Bull. 28(2)
(1996) 31–36


