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Abstract

In a restructured electricity sector, day-ahead markets can be modeled
as a game where some players - the producers - submit their proposals.
To analyze the companies’ behavior we have used the concept of Nash
equilibrium as a solution in these multi-agent interaction problems. In this
paper, we present methods that we have developed in order to compute
Nash equilibria: the adjustment process and the relaxation algorithm.
The advantages of these approaches are highlighted and compared with
those available in the literature.

Keywords: Electricity Market; Nash Equilibria; Adjustment Process;
Relaxation Algorithm; Combinatorial Optimization.

1 Introduction

Since the beginning of the 70’s, all over the world, the energy sector has
undergone regulatory and operational changes; this has been analyzed e.g. in
Gomes [2005] and Saraiva et al. [2002].

At the end of the 19th century, electricity started to be generated, trans-
ported and distributed through low power networks, within restricted geo-
graphic areas. Then, larger companies were created which typically corre-
sponded to vertically integrated entities and there was no competition in this
sector. This kind of organization in the electricity sector implied that: the con-
sumers could not choose an electricity company to be supplied from, the prices
were defined in an administrative and sometimes unclear way, and planning ac-
tivities were made with less complexity than today (also because the economic
environment was less volatile). Therefore, before the oil crisis (1973), electric-
ity companies easily made forecasts, since risk or uncertainty were not prior
concerns.
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This situation changed in the beginning of the 70’s: high inflation and inter-
est rates made the economic environment more volatile. Adding to this fact, the
evolution of technology turned possible the deregulation of the electricity sector
and its vertical unbundling. Thus, new companies were established and mar-
ket mechanisms were implemented in order to create conditions for competition
(Saraiva et al. [2002]). There was a transition from a monopolistic (centralised
markets) to an oligopolistic situation (pool markets); each time, more compa-
nies’ optimal revenues depend on the strategies of their competitors. The idea
of this new approach is to move from a centralized operation to a competitive
one(Conejo and Prieto [2001]).

Nowadays, many electricity markets are a pool-based auction for the pur-
chase and sale of power. These new market rules have as aim: stimulate competi-
tion, contribute to lower electricity prices, induce economic growth and transmit
an appropriate incentive for investment and new entry. However, the appropri-
ate rules are still an ongoing research topic. In this work, we will focus in the
Iberian day-ahead market mechanisms, aiming at understanding and analyzing
possible market outcomes.

To analyze the companies’ behavior in an electricity pool market, we apply
game theory, in particular the notion of Nash equilibria (NE). We look at this
pool-based auction as a non cooperative game, in which producers are the play-
ers that have to choose a strategy (a proposal) to submit. Here, their goal is
to submit bids in such a way that their profits are maximized. Hence, in the
electricity pool market, we are interested in finding equilibrium strategies for
the producers, since an equilibrium is the best answer that each producer may
have in this non-cooperative game.

Because of the complexity of the pool market structures and network con-
straints, the theoretical studies in this area do not reveal to be very practical.
So, recently, in an attempt to predict market prices and market outcomes, more
complex models have been used, but, many times they do not allow perform-
ing analytical studies. Techniques from evolutionary programming (Barforoushi
et al. [2010] and Son and Baldick [2004]) and mathematical programming (Hobbs
et al. [2000] and Pereira et al. [2005]) were used in these new models. For ex-
ample, Pozo et al. [2010] and Pereira et al. [2005] study strategic bidding in
electricity pool markets, with elastic and inelastic demand respectively, through
mathematical programming. The authors Pozo and Contreras [2011] considered
the case of constant, stochastic demand. They used the methodology of Pereira
et al. [2005] to eliminate the bilinear terms of the generation companies’ profit
maximization problem, using a piecewise linear function and binary variables.
They also contributed with a procedure that aims at finding all Nash equilibria
in pure strategies. There, the proposals’ space of strategies is discretized (un-
like in our work), so they are able to focus on the use of methods to compute
Nash equilibria in games with a finite strategies. However, as reported by the
authors Lee and Baldick [2003], the discretization of the space of strategies can
artificially eliminate some true Nash equilibria and add some equilibria that do
not exist in the original game. Moreover, in order to have a good approxima-
tion of a game, the game with the discretized space of strategies would have a
large number of strategies which dramatically increases the running time of the
algorithms to solve the approximate game.

In Hasan and Galiana [2010] it is proposed a fast computation of Nash equi-
libria in pure strategies by observing their properties; in that work, discretiza-
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tion is not required. In Bajpai and Singh [2007], a particle swarm optimization
method is used in order to maximize a generating company profit, while we will
compute the strategies that maximize the profits simultaneously for each of the
firms.

To approach this problem, we built two methods, the adjustment process
(AP) and the relaxation algorithm (RA), which reveal to be very practical to
find Nash equilibria. When these methods converge, a Nash equilibrium in pure
strategies is found. Therefore, we contribute with procedures that could help
regulators to monitor the prices and generating companies (GENCOs) to refine
their bids. Moreover, the detail used in our model has not been considered yet.

This paper is organized as follows: Section 2 presents the electricity market
model, Section 3 clarifies the concept of Nash equilibrium and explains the
developed approaches to achieve them, Section 4 treats some examples and
Section 5 presents our future work in this problem.

2 Iberian Market Model

In this section, our model will be described and notation fixed. The adopted
model is based in the structure of the day-ahead electricity markets, which exist
in many regions such as the Iberian Peninsula, Nord Pool, Brazil (see Pereira
et al. [2005] or Barroso et al. [2006]), and Greece (see Bakirtzis et al. [2007]).

Our goal is to predict the outcomes of a given energy market; some of the
details will not be considered, in order to make the model tractable. Transmis-
sion constraints will not be taken into account: a single node or zone is assumed.
This occurs in some day-ahead markets such as in Portugal, Spain, UK, Sweden,
China, Colombia, Peru and Brazil (see Barroso et al. [2006]).

In the pool market, consumers and producers submit their proposals to buy
and sell electricity. In general, each day is divided in 24 periods of 1 hour,
so there are 24 auctions. In this work, just one trading hour will be modeled.
Consumers will not be considered as players since they typically have no market
power. In our formulation, demand elasticity will be modeled by a parameter;
this has the advantage of being a realistic approach. The demand, represented
by a straight line segment P = mQ + b, is characterized by the real constants
m < 0, in $/(MWh)2, and b > 0, in $/MWh. In other words, variations in
the price P , induce small variations in the quantity Q. In most of the works
developed in this area, the demand is assumed as completely inelastic, so we
are also contributing with a more realistic approach.

On the other hand, GENCOs will be the players of this day-ahead market,
usually also called spot market (see Bakirtzis et al. [2007]). GENCOs simulta-
neously submit their selling proposals in the market, which correspond to pairs
of quantity (MWh) and price ($/MWh).

Let n be the number of the selling proposals. For each hour of the day
we have a table T that contains all the information about the proposals of the
producers and the generation costs. This table has the following form, for each
row j ∈ {1, 2, . . . , n}:

Tj = j sj qj pj cj bj aj Ej

where the proposals are indexed by j = 1, 2, . . . , n, sj is the producer as-
sociated to proposal j, qj is the proposal quantity in MWh, pj is the price in
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$/MWh, cj , bj and aj are associated cost parameters which will be described
later, and Ej is the maximum production level. Then the market operator
(MO), an independent agent, carries out an economic dispatch, ED, once the
price and quantity bids of the producers were submitted. MO wants to find
which proposals should be dispatched so that the demand is satisfied and the
market clearing price Pd is minimized. The market operator organizes the gener-
ation proposals by ascending order of the prices pj and aggregates them, forming
the supply curve. Thus the intersection of this curve with the demand segment
gives the market clearing price Pd and quantity Qd, and the proposals that are
dispatched. In this context, we denote as gj the energy accepted to be produced
for proposal j in the ED. See Figure 1 for an example.
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Firm 2

Firm 3
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Pd =
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Figure 1: Economic Dispatch: the demand parameters are m = − 1
200 and b =

1.2; Firm 1 bids (q1 = 90, p1 = 0.40), Firm 2 bids (q2 = 100, p2 = 0.20) and Firm
3 bids (q3 = 60, p3 = 0.60); Firm 2 proposal is totally accepted (q2 = g2) and
Firm 1 also has the proposal accepted but with produced quantity g1 = 60 < q1.

The following function is the quadratic cost of generating unit j when pro-
ducing gj , ∀j = 1, . . . , n:

Fj (gj) =

{
cjg

2
j + bjgj + aj if gj > 0

0 otherwise.
(1)

The parameter aj is the fixed cost of turning on the generating unit j. Note,
that in the literature mentioned before, just marginal cost is considered which
simplifies the problem. The quadratic cost includes the marginal cost approach.
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The revenue for each producer i is given by:

Πi =
∑

j∈{AED:sj=i}

(Pdgj − Fj (gj))

where gj is the energy produced by Firm i = sj in the economic dispatch and
AED is the set of accepted proposals in the economic dispatch. This profit
deeply depends on the strategies of the other players, which makes the problem
complex.

After clearing the market, the information about the submitted proposals is
made publicly available.

Finally, as a tie breaking rule, MO divides proportional quantities proposed
by the firms declaring the same price, in case they are not fully required.

3 Nash Equilibria Computation

Game theory provides important tools in economics. The concept of Nash
equilibrium of a game plays a relevant role in this context. Basically, it is a prob-
ability distribution over the set of strategies of each player, such that nobody
wants to change unilaterally its behavior. If some player changes his strategy
with respect to a Nash equilibrium, his profit would not increase (Fudenberg
and Tirole [1996]).

Definition 3.1. In a game with a setN of n players, a vector pNE =
(
pNE
1 , pNE

2 , . . . , pNE
n

)
,

where pNE
i specifies a probability distribution over the set of strategies of player

i, is a Nash equilibrium if ∀i ∈ {1, 2, . . . , n}:

Πi

(
pNE

)
≥ Πi

(
pi, p

NE
−i
)
∀pi ∈ Si

where Πi is the utility of player i, Si is his space of strategies and pNE
−i =

{pj : j ∈ N, j 6= pi}.

In our case, the strategies of each player are the proposals, so in a Nash
equilibrium, we have the probability of choosing (qj , pj) over the set Sj =
[0, Ej ]× [0, b] (space of strategies), where b is the maximum price at which the
consumers buy electricity (see Section 2 where the demand is defined). A Nash
equilibrium in which each player plays with probability one a certain strategy
is called an equilibrium in pure strategies.

In current electricity markets, the producers have to communicate the mar-
ket operator their proposals for each hour of the following day. We admit that
each producer predicts exactly the demand for each hour and knows the technol-
ogy of his competitors. Our goal is to find the best strategy for each company.

The methods that we use in this paper only provide pure Nash equilibria.
As seen in the related literature, algorithms to find Nash equilibria in day-
ahead markets use a finite strategy approach both in prices and in quantities.
We wanted to avoid this treatment since: for a finite game to be tractable the
number of firms and the space of strategies can not be very large; there is no
guarantee that the equilibria from the finite game are equilibria of the original
game.
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3.1 Adjustment Process

We will apply an adjustment process (AP) to find out the Nash equilibria
of this non-cooperative game. An adjustment process, sometimes refereed as
Gauss-Seidel-type method (Facchinei and Kanzow [2007]), is an iterative process
in which each player adjusts his strategy according to the past iterations. This
is a learning process. It is easy to find examples in which this method diverges
or has chaotic behavior, indicating that this process does not always work.
However, if a solution is found, then it is a Nash equilibrium. In Contreras
et al. [2004] a very similar process is presented, but there the decision variables
are only the quantities.

Our method can be described with the pseudo code of Algorithm 1. In

Algorithm 1 The adjustment process pseudo code.

1: initialise with an information table T , ε > 0, and demand parameters m
and b;

2: let Si be the set of proposals of the producer i and k the number of producers;
3: repeat
4: X ← thrid and fourth column of T ;
5: for i = 1 to k do
6: qSi

, pSi
← arg maxqj ,pj ,j∈Si

∑
sj∈AED∩Si

(Pdgj − Fj (gj));
7: update the third and fourth column of M with qj and pj for j ∈ Si;
8: end for
9: Y ← third and fourth column of T ;

10: ∆← ||Y −X||;
11: until ∆ < ε

short, in each step every producer finds the strategy that maximizes his profit
assuming that the other players are going to follow the strategy of the previous
iteration. The process stops when two iterations are sufficiently close to each
other meaning that the current table T is a Nash equilibrium, because nobody
made a significant change in his behavior. In fact, when ∆ = 0, T is exactly a
Nash Equilibrium. It is important to notice that the maximization process, in
step six, needs a method able to tackle non-smooth functions, as the profit of
the companies is a function with discontinuities.

The most important step in our adjustment process is the maximization of
the producers’s profits. To solve this problem, we have used the MATLAB
implementation of a global optimization method developed by Ismael Vaz and
Lúıs Vicente, see Vaz and Vicente [2007]. In this method, called PSwarm, we
only need to evaluate the objective function values resulting from pattern search
and particle swarm, so this is exactly what we needed in our adjustment process.

3.2 Relaxation Algorithm

The relaxation algorithm is similar to the AP, but it uses the Nikaido-Isoda
function (N-I function). This function transforms the difficult problem of com-
puting a Nash equilibrium in to a far simpler optimization problem (Krawczyk
and Zuccollo [2006]).

Definition 3.2. Let Πsj be the payoff function for player sj and S a collective
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strategy space. The Nikaido-Isoda function ψ : S × S −→ R is defined as:

ψ (x, y) =
∑
sj∈F

[
Πsj

(
ysj |x

)
−Πsj (x)

]
The N-I function can be interpreted as the improvement that a player will

received by changing his action from xsj to ysj while all other players continue
to play according to x. So ψ (x, y) represents the sum of these improvements.

Note that ψ (x, x) = 0, then the maximum value that this function can take
for a given x is nonnegative. When either x or y are a Nash equilibrium, the
N-I function is everywhere non-positive since no player can improve his payoff.
Therefore, when the N-I function can not be made significantly positive for a
given y we have approximately reached a Nash equilibrium. This fact is used
to define a stopping criteria for the relaxation algorithm that is an ε > 0 such
that when

maximize
y∈S

ψ (xs, y) < ε

the Nash equilibrium would be achieved with a sufficient degree of precision.
The relaxation algorithm is an iterative process for finding NE. As in the

adjustment process, the relaxation algorithm is initialized with a feasible infor-
mation table and in each step the N-I function is maximized. When the stopping
criteria ε is achieved, the algorithm stops.

An important remark about the RA should be made in this context. In
the way that the RA was described, there is a high probability that it would
not converge for our electricity market problem. Therefore, we made a crucial
adaptation. Note that when a strategy of a generating company has profit zero,
there are others strategies that also lead to zero profit and these equivalent
strategies (in terms of profit) are a problem for the convergence of the RA. In
order to overcome this convergence problem, we add in each iteration of the
RA a cycle that calculates the previous and current profit of each generating
company. For each generating company with profit zero in these consecutive
steps, we do not update its strategies.

4 Results

Finally, we will see the effectiveness of our algorithms in the game that
electricity markets represent. We added another stopping criteria for AP and
for the RA, in order to force these algorithms to stop. This new stopping criteria
corresponds to a maximum number of iterations.

The computations were made in a computer with an Intel Core Duo CPU
processor at 2.20GHz, running Microsoft Windows XP.

In this section, we are going to study two cases: a simple oligopoly market
and a duopoly market for which we will progressively increase the number of
generating units in order to see the limitations of our approach.

4.1 Case study: Oligopoly Market

We will consider a pool market with five generating companies. All GEN-
COs, except Producer C and E, have two generating units. Let the initial

7



information table be Table 1 and let the demand be modeled by

P = 150− 150

2000
Q.

The adjustment process and the relaxation algorithm where applied in 10 in-

j sj qj pj cj × 106 bj × 106 aj Ej

1 Producer A 300 26 20 400 24 300
2 Producer A 300 27 30 300 24.5 300
3 Producer B 550 57 30 400 54 550
4 Producer B 150 61 10 450 60 150
5 Producer C 300 40 100 600 30 300
6 Producer D 300 48 66 65 40 300
7 Producer D 400 50 54 35 45 400
8 Producer E 200 49 24 25 47 200

Table 1: Initial information matrix.

dependent runs, using this initial table. Recall that our methods are stochastic,
since the optimization procedure PSwarm is stochastic.

For the AP a solution was found in an average of 27 iterations and 336
seconds. In the second algorithm a solution was found in an average of 103
iterations and 424 seconds. Here, the solutions found were equivalent, in the
sense that all of them lead to the same economic dispatch. For instance, a final
information table of the adjustment process was Table 2. The final value of ∆

j sj qj pj cj × 106 bj × 106 aj Ej

1 Producer A 300.0000 0.4000× 10−3 20 400 24 300
2 Producer A 300.0000 0.3000× 10−3 30 300 24.5 300
3 Producer B 412.9585 7.5032 30 400 54 550
4 Producer B 97.8811 71.6682 10 450 60 150
5 Producer C 300.0000 0.6000× 10−3 100 600 30 300
6 Producer D 300.0000 0.6500× 10−4 66 65 40 300
7 Producer D 400.0000 0.3500× 10−4 54 35 45 400
8 Producer E 200.0000 0.2500× 10−4 24 25 47 200

Table 2: Final information matrix reached by the AP.

(distance between consecutive iterations) was equal to zero in all the experiments
made, which means that PSwarm is not able to improve this solution. Therefore,
it is expected that this represents an equilibrium. Observing the economic
dispatch of this solution, we can conclude that this is indeed a NE. The economic
dispatch of Table 2 is Table 3. Note that the only proposal that is not accepted
is proposal 4, which is the one with the highest fixed cost, and that Pd = 7.50320
is the optimal price for proposal 3 of Producer B. The profit due to proposal 3
is: (

p3 − b
m

−Q
)
p3 − c3

(
p3 − b
m

−Q
)2

− b3
(
p3 − b
m

−Q
)
− a3,

where Q is the sum of the quantities that were accepted, except the dispatch
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j sj gj pj
8 Producer E 200.0000 0.2500× 10−4

7 Producer D 400.0000 0.3500× 10−4

6 Producer D 300.0000 40.6500× 10−4

2 Producer A 300.0000 0.3000× 10−3

1 Producer A 300.0000 0.4000× 10−3

5 Producer C 300.0000 0.6000× 10−3

3 Producer B 412.9585 7.5032

Table 3: Economic dispatch of the information Table 2.

quantity of proposal 3. A stationary point of this function is:

p3 =
2c3b+ 2c3Qm− bm− b3m−Qm2

2 (c3 −m)
≈ 7.503199

to which corresponds a quantity Q = 1800. Therefore, the information Table 2
is an equilibrium of this instance.

4.2 Case study: Duopoly Market

In what follows only the duopoly situation will be considered. Our aim
is to increase the number of generating units of each firm, until our methods
stop converging in a limited time. We should note that we consider for all
computations the same PSwarm parameters, however for larger instances more
time should be given to PSwarm.

In these instances, the optimization steps are difficult, and as the instances
grow it becomes very hard to prove that a final information table is an equilib-
rium. A practical method for checking if we have found an equilibrium is the
following. If PSwarm is not able to improve the solutions in the final optimiza-
tion step, then with high probability it has found an optimum and the solution
is likely to be a NE.

As the running time for these experiments became rather high, from now on
we will do only one observation of the algorithms for each instance.

Consider a pool market with two generating companies: Producer A and
Producer B. Let the demand be modeled as

P = 150− 150

2000
Q.

Let the initial information Table be 4.
We will start by solving the case where Producer A only has the generating

units 1, 2, 3 and 4, and Producer B has the generating units 11, 12, 13 and 14 -
Case 1. The computed NE are in Table 5. The solution given by the RA is not
an equilibrium, since applying the adjustment process to its solution, it does not
stop in the first iteration, so producers have benefit in changing their strategies.
On the other hand the solution of the AP seems to be a Nash equilibrium.
Furthermore the market clearing price (Pd = p3) coincides with the stationary
point:

p3 =
2c3b+ 2c3Qm− bm− b3m−Qm2

2 (c3 −m)
≈ 30.01219
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j sj qj pj cj × 106 bj × 106 aj Ej

1 Producer A 300 26 20 400 24 300
2 Producer A 300 27 30 300 24.5 300
3 Producer A 550 57 30 400 54 550
4 Producer A 150 61 10 450 60 150
5 Producer A 200 22 2 3000 20 200
6 Producer A 180 26 10 120 34 180
7 Producer A 50 27 30 300 23.5 50
8 Producer A 350 57 35 600 38 350
9 Producer A 250 61 12 400 36 250
10 Producer A 150 22 2 800 29.1 150
11 Producer B 300 40 100 600 30 300
12 Producer B 300 48 66 65 40 300
13 Producer B 400 50 54 35 45 400
14 Producer B 200 49 24 25 47 200
15 Producer B 100 21 20 100 21 100
16 Producer B 125 10 500 800 10 125
17 Producer B 220 25 30 310 35 220
18 Producer B 200 28 28 400 35.2 200
19 Producer B 110 20 10 450 30.1 110
20 Producer B 60 19 1 300 20 60

Table 4: Initial information matrix.

where Q = 1200, as before. Therefore, we are strongly convinced that this is an
equilibrium; the optimization process is not able to improve the solution, and
the stationary conditions are met.

Now, consider that Producer A has the generating units 1, 2, 3, 4, and 5,
and Producer B has the generating units 11, 12, 13, 14 and 15 - Case 2. Here,
for the computed NE of the AP, Producer A has profit of about 9137 $ and
Producer B has profit of about 33923 $. On the other hand, for the computed
NE of the RA, Producer A has profit of about 18698 $ and Producer B of about
37367 $. Thus, we found two possible outcomes. The most predictable outcome
is the one computed by the RA, since the profit of each producer is higher in
the solution of the RA than in the solution of the AP (among the equilibria
found). This instance may have more than two Nash equilibria, but with the
initial information table used, only two potential Nash equilibria were found.

Notice that, as usually happens with fixed point algorithms and with non
linear optimization, the starting point is important for obtaining convergence;
as the situations get more complex, this becomes a crucial factor. Here, we were
able to find a solution but the running time of our algorithms would considerably
decrease if our initial solution was close to an equilibrium.

Case 3 consists of Producer A having the generating units from 1 to 10 and
Producer B has the generating units 11, 12, 13, 14 and 15. Once again, two
different NE were computed. The computed NE of the AP gives a profit of about
9126 $ to Producer A and 33921 $ to Producer B, and the RA solution gives a
profit of approximately 18664 $ to Producer A and approximately 37334 $ to
Producer B. This last equilibrium is more interesting than the one computed
by AP, since both producers have a higher profit.
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Finally, in Case 4, Producer A has the generating units from 1 to 10 and
Producer B has the generating units from 11 to 20. Here, we considered a
maximum of 800 iterations for each of the developed methods. The adjustment
process and the relaxation algorithm were not able to converge in 800 steps,
so their final output was not an equilibrium. Obviously, one of the reasons
for not obtaining convergence is the starting point. Therefore, we tried another
initial information table. In order to try to obtain convergence we simplified our
problem setting: cj = bj = 0 for j = 1, . . . , 20, this means, just fixed costs are
considered. Again, neither of our two methods was able to converge in this case.
However, if cj = aj = 0 for j = 1, . . . , 20 our methods easily converge, showing
the complexity that fixed costs introduce in the problem. This solution is not
helpful as starting solution to the previous cases; the fixed costs significantly
change the situation. We also tried to adapt the parameters of PSwarm, to no
avail. Without further improvements this instance seems to be above the limits
of our algorithms.
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5 Conclusions

In order to solve real instances of the Iberian day-ahead market, a practical
method to compute NE is imperative, since the problem is extremely complex to
be treated analytically. In an attempt to deal with this problem we have built
two procedures: the adjustment process (AP) and the relaxation algorithm
(RA). We have been able to tackle small to medium instances which, despite
not being real problems size, allowed us to find equilibria and the numerous
traps that may appear during the search phases. Both methods are iterative
and in each step they follow the same idea of adjusting the players’ strategies.

The simple case with constant marginal costs was already treated in the
literature, though using a discretization of the space of strategies; the methods
proposed here work without changing the space of strategies. The size of the
test instances solved in our work is similar to those solved in the literature.
Moreover, we were able to tackle small instances considering a more realistic
structure of the productions costs (quadratic costs), providing a contribution
in this area. In the literature this problem is often formulated in mathematical
programming in order to be solved by general purpose mixed-integer optimiza-
tion solvers. However, mathematical optimization solvers are not able to find
optimal solutions x of the form x = y − ε, where ε is infinitesimal, and during
this work we have seen the importance of considering such strategies for some
instances.

Concerning future development, a possible direction is the improvement of
the optimization procedures, and another one is the refinement of the AP and
the RA. We always used the strategies of the last iteration in the AP and RA,
but the use of an estimation based on all the past iterations may have some
good properties in the convergence of the methods. In addition, the explo-
ration of the structure of the problem, as we made in the RA adaptation (we
keep some strategies unchanged into the following iteration in order to improve
convergence), is likely to lead to further advances.

In conclusion, we gave a small contribution in this area, but many problems
remain open.
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