
Niche Search: an Evolutionary Algorithm forGlobal OptimisationJo~ao Pedro PedrosoCentre for Operations Research and Econometrics34 Voie du Roman Pays,B-1348 Louvain-la-Neuve, BelgiumAbstract. In this paper we describe niche search, a genetic-based opti-misation approach which is characterised by an evolutionary search ontwo layers: the individual layer (which is comparable to search describedin other genetic algorithms), and the niche layer.Neither of these searches is directed: both individuals and niches evolvebased on the selection of the �ttest.The numerical results obtained by niche search are quite promising, asour implementation has successfully handled all the tests carried out.The computational performance is considerably better than that of otheralgorithms of the same family analysed in the literature.1 OverviewNiche search is a genetic algorithm version for whose conception special attentionhas been paid to the aspects that follow.First, encode the reproduction operations that occur in nature, at the cellularand molecular level, more precisely and completely than the implementationproposed in the canonical genetic algorithm (CGA). In particular, it is proposeda simulation of themeiosis process in the reproduction of our arti�cial organisms.Meiosis is the main source of diversity in nature (for sexual reproduction), andis absent in the CGA.Second, the overall population of individuals | the ecosystem | is assembledinto di�erent groups, each of them occupying a particular niche. This parallelswhat happens in nature: individuals of a given species are in general not foundneither alone nor assembled in the same global pool. Furthermore, the parame-ters that control the reproduction (mutation probability, crossover probability,etc.) may vary from place to place, as may vary the way in which di�erent speciesexploit di�erent parameters. In the approach proposed, each niche is supplied itsown set of these parameters by the ecosystem, in an arbitrary and endogenousway.Finally, selection and reproduction act not only at the level of individuals,but also at the level of groups of individuals (niches). Individuals must competein order to survive among their similars; niches must also compete between themfor resources in the environment. Competition and selection between individualsof a particular niche is similar to what is proposed in the CGA; competition



between niches is, to the best of our knowledge, proposed here the �rst time.Niche selection means that, at each generation, there are some poorly adaptedniches which may disappear; niches whose adaptation is good remain.Hence, niche search captures issues concerning evolution on both individualorganisms and groups, or organisations of individuals. A diagram showing thegeneral structure of the algorithm is presented in �gure 1. The innovation, fromthe point of view of numerical optimisation, is that the adaptation of the maincontrol parameters of the algorithm is made through an evolutionary approach| in contrast to what happens in evolutionary systems (ESs) and in evolutionaryprogramming (EP), where auto adaption is directed by the program, based onthe status of the system at each iteration. Our approach is also di�erent fromthe one proposed by the multilevel genetic algorithm [8, 4].
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Fig. 1. Overview of the data structures and operators for niche search.2 Niche search2.1 The ecosystem and niches' evolutionWhat characterises a niche in an ecosystem is its set of individuals and theparameters of the environment where the niche is located (the reproduction fac-tors). Parameters are imposed to the niches externally (and randomly) by theecosystem; nothing directs niches to �nd the \best" reproduction parameters.Niches for which the parameters are good are likely to adapt faster to the pres-sures of the environment, and hence remain alive; those whose parameters arebad, are likely to adapt slower, and possibly extinguish.



Reproduction parameters imposed to the niches are: probability and intensityof mutation of the genes; probability and intensity of occurrence of crossover inthe chromosome replication, and a selectivity factor (a factor that speci�es howcompetitive an individual must be in relation to the average in order to havea favoured reproduction probability). Notice that the CGA corresponds to asingle niche, where these parameters are set exogenously. The performance ofthat algorithm for di�cult problems deeply depends on them; in niche search,they are endogenous, resulting from of an \evolutionary search".Evolution at the niches level is based on the following operators (which par-allel the operators found at the individual level):Niche selection. Poorly adapted niches are likely to be extinguished, whilstbetter adapted ones remain.Niche recombination. Niches which disappear are replaced by new ones; theseemerge as a selection of individuals that \migrated" from existing niches.Niche mutation. The parameters that characterise each niche are randomlychanged (mutated) at each generation. This operator is inspired by the factthat the equivalent parameters continuously change the in natural life.Pseudo programming code explaining the global operation of the niche searchalgorithm is presented in �gure 2.2.2 Niches and individual's evolutionInside each niche, individuals are submitted to competition between their simi-lars | i.e., with the other individuals of the niche. Selection and reproductioninside a niche follow the scheme proposed in the CGA, except in the followingfactors:1. If a new niche, created with the reproduction parameters that the ecosystemsupplies, is better than the progenitor niche, it can breed again (up to amaximum number of times) in the same \generation". The biological inter-pretation for this, is that when natural conditions are better, organisms tendto reproduce more and faster.2. Not every new population generated is accepted. If both the average andthe best individual are worse that their counterparts in the progenitor niche,then, with some probability, the o�spring niche is rejected, and the old nicheremains unchanged for the next generation1.3. We allow for the possibility of representing the chromosome of an individualby data structures other than bit strings. Our implementation supports bothbit string and oating point genotypes.1 The natural interpretation for this in intuitive. Notice that this equivalent to whathappens in Simulated Annealing: there, new solutions are accepted whenever thereis an improvement, and may are rejected, with a given probability, when they areworse.



set t := 0 Start with an initial time.set ecosystem(t) := InitEcosystem() Initialise the ecosystem:niches(t) = CreateNiches(t) Create the desired number of niches for the runInitParameters(niches(t)) Randomly initialise the parameters that characterise each niche:crossover probability, mutation probability, etc.InitialisePopulation(niches(t)) Randomly initialise the population of each niche.Evaluate(niches(t)) Evaluate the �tness of all the niches in the initial population. We propose anevaluation based on two parameters: the average �tness of the niches' population and the �tness of itsbest individual, and we use the sum of these factors as the niche's overall evaluation.iterate Start the evolution process.strong(t) := SelectStrong(ecosystem(t)) Select the niches that will survive to the nextgeneration.weak(t) := SelectWeak(ecosystem(t)) Select the niches that may extinguish.newniches(t) := Recombination(weak(t),strong(t)) With some probability, replace thepopulations of weak niches by a selection of individuals from the union of that niche with a strongone.InitParameters(newniches(t)) Randomly initialise the parameters of the created niches.Evaluate(newniches(t)) Evaluate the new niches.niches(t+1) := Selection(niches(t), new(t)) The new ecosystem is a selection of the bestniches. In our implementation, we simply replace the the weak niches by the new ones.MutateParameters(niches(t+1)) With some probability, randomly perturb the parameters ofeach niche.Breed(niches(t+1)) Create a new generation of individuals in each of the niches.t := t + 1 Increase the time counter.until Terminated() Termination criteria: time.display solution Solution is the best individual found.Fig. 2. Niche Search: pseudo code for the outer level4. Niche search provides two parameters for mutation and two parameters forcrossover, for controlling mating between individuals. One speci�es the prob-ability of occurrence of these operators, and the other determines its inten-sity.The possibility of representing genotypes di�erent from bit strings was sug-gested by several authors. In [5], the bit string representation receives consider-able criticism: the precision of solutions represented by bit strings is considerablylimited for a low number of bits, and the convergence for a large number of bits israther slow. The success of the direct oating point representation of the pheno-types in ESs and EP also suggests the possibility of representing the chromosomeas a oating point; in our implementation, oating point genotypes are valuesin the interval [0; 1], whose phenotype can be assessed by scaling these values tothe region de�ned by the lower and upper bound of the corresponding variable.Mutation of individuals is based on two parameters: the mutation probability(which speci�es the probability of a given chromosome being mutated) and themutation intensity. This last, controls the magnitude of the mutation. In bitstrings, this corresponds to the likelihood of any of the genes of the chromosomesu�ering a mutation. In oating point genomes this corresponds to a measure of



the deviation that a mutation may produce, in relation to the original value.On the same way, two parameters control the crossover: the crossover prob-ability and the crossover intensity. On bit strings, higher intensity increasesthe number of potential mutation points (and hence the amount of \shu�ing"between the two chromosomes). On oating point strings, crossover intensityspeci�es the likelihood of obtaining a solution which is intermediary betweenthe two original values, instead of the value of either of them unchanged.For pseudo programming code explaining the evolution process inside a niche,please refer to �gure 3.g := 0 Initialise the \subgeneration" counter.subpopulation(g) := population(t) Select subpopulation for o�spring production, i.e. the subset ofthe niche's elements that will be able to mate. ( t is the global generation counter, in the ecosystem)iterate Start the evolution process.parents(g) := Selection(subpopulation(g)) Select parents for o�spring production, e.g.through roulette wheel selection.o�spring(g) := Recombination(parents(g)) Recombine the genomes of two selectedparents, through the meiosis operator (�gure 4).o�spring(g) := Mutation(o�spring(g)) With some probability, randomly perturb each of thechromosomes of each individual.Evaluate(o�spring(g)) Evaluate the objective of all the individuals in the niche's population.Penalise and scale; obtain the �tnesses.subpopulation(g+1) := o�spring(g) New subpopulation: the o�spring of the previous one.g := g + 1 Increase the subgeneration counter.population(t+1) := ChooseOne(population(t),subpopulation(g)) Update theniche's population. Always select the subpopulation is its performance is better; if the performance isworse, accept it with some probability.until Terminated() Termination criteria: maximum subgenerations achieved, or evaluation of currentsubpopulation is worse than evaluation of last subgeneration's one.Fig. 3. Niche search: pseudo code for the inner evolution (breeding) of a niche. Thisprocedure is executed at each generation step of the ecosystem (the Breed() step, in�gure 2).
2.3 Other di�erences between niche search and other GAsMeiosis In niche search, the usual mutation and crossover operators on thegenetic structure are complemented by a meiosis process, which is absent inother GAs. It performed as described in �gure 4.We view the meiosis operator as a considerable improvement over other GAsfor the treatment of problems of larger dimension. The standard approach onGAs for multidimensional optimisation is to assemble all the components of avector into a single chromosome string, loosing therefore the \independence"between the several chromosomes that our system provides, throught the asso-ciation of each variable to a particular chromosome.



input(mother,father) The originating (diploid) cell contains two copies of each of the chromosomes;one coming from the father and the other coming from the mother.for c = 1 to NumerOfChromosomes() do Start the meiosis process.origin := RandomChoose(FromMother(),FromFather()) Randomly select thechromosome; either from the father's or from the mother's copy.if origin ?= FromMother()source(c) := mother(c) This chromosome comes from the mother.genome(c) := Crossover(source(c), father(c)) With some probability, crossover withthe other chromosome occurs.else source(c) := father(c) This chromosome comes from the father.genome(c) := Crossover(source(c), mother(c)) With some probability, crossoverwith the other chromosome occurs.end ifdone Until all chromosomes in the genome are done.return genome Haploid cell (gamete) is created.Fig. 4. Niche search: the meiosis process.Time adaption The aim of niche search is to produce the best and mostaccurate achievable solution in a limited amount of generations. In order to getmore precise solutions at the evolution goes on, we propose a way of graduallydecreasing the intensity of the perturbations that the search operators produce.This allows a re�nement of the solution obtained, as the number of performedgenerations gets closer the total number of generations. We named this featuretime adaption.Time adaption is optional: for any particular run, the user can select if itis performed or not. If not, the mutation and crossover intensities and the se-lectivity level are the same from the beginning until the end of a program run.This is what generally happens in other implementations of GAs. If there is timeadaption, the intensity parameters are adapted at each generation, as follows:{ mutation intensity decreases proportionally to the time elapsed, startingwith the value of the corresponding parameter set by the ecosystem andbeing close to zero at the end of the evolutionary run;{ crossover intensity and selectivity level start with values close to zero andincrease proportionally to the time elapsed, being close to the values set bythe ecosystem at the end.This adaptation of the parameters allows for an increasing perfection of theindividuals, leading to o�spring that are closer and closer to their progenitors; atthe end, the diversity in each of the niches is rather small. We expect to be, then,close to achieving species perfectly adapted to the environment. From anotherpoint of view, we expect to be close to the global optimum of the objectivefunction.The time adaption factor may take on di�erent functions of the elapsed



generations. Time adaption may be the most important factor for explainingthe high precision of the solutions that niche search obtains.Fitness: objective function and penalisation When the solution corre-sponding to a particular individual is outside the feasible region, the evaluationis composed of the objective function plus a penalty, which is supposed to be avalue proportional to the severity of the infeasibility.This value of the �tness for penalised individuals is the objective minus avalue proportional to the penalty. It is computed as follows:f 0(x) = f(x)� (M �m) � (1 + p(x) � t) (1)where f 0 is the �tness, f is the objective function, M and m are respectively themaximum and minimum �tness for all the individuals in the population of theecosystem at the current generation, p(x) is the penalty, t is proportional to thenumber of generations elapsed.Fitnesses determined this way guarantee that if there is any feasible solution,its �tness is higher than that of any infeasible one. As a consequence, if there isa feasible solution in the population, the \elite" will be feasible.Computing the �tness this way allows infeasible individuals to survive at thebeginning, while being progressively eliminated with the evolution process. Thismethod proves to be quite interesting, specially when the optimum is found ina very narrow feasible region.Generalised power law scaling Another di�erence between the niche searchimplementation and other GAs concerns the scaling operation.The scaling method that we propose avoids the constraint, usual in otherscaling procedures, that the objective functions must be positive in all the searchdomain. Another advantage is that it is independent of the absolute value of the�tness: adding a constant to all the �tnesses does not produce any change in thescaled value.Scaled �tnesses are obtained as follow:f 00(x) = ��+�f 0(x) �mM �m � � (1� �)�� (2)where f 00(x) is the scaled �tness, f 0(x) is the (penalised) �tness, � = 1=N , mand M are minimum and maximum (also penalised) �tnesses in the niche, � isthe scaling power.The �rst step consists on the normalisation of all the �tness values into theinterval [1=N; 1], where N is the number of elements in the niche. The secondstep consists on elevating this value to a power, greater or equal to zero, which isthe scaling power. If there is time adaption, this value is itself the product of theselectivity parameter of the niche by the time adaption factor. Time adaptionmakes the niches more and more selective, as time goes on: at the beginning theselection is almost purely stochastic, whilst at the end a much increased weightis put on the best individuals.The scaled �tness of the individual is used at the time of the selection.



Elitist niches In order for an evolutionary process to converge to the globaloptimum, it must assure that the best solution found always remains in thepopulation. This is done through elitism.In niche search, the ecosystem keeps the best solution found by all the niches.Further, we implement elitist modes in niches, which allow some of them to keeptheir best solution unchanged in their population.By default, all the niches are non-elitist except two: the one which detains thebest individual, and the one whose average is the best (which can be the previousone). The non-elitist niches can be performing their search in regions quite faraway from the elitist ones; this proves to be a very powerful way of avoiding localoptima. At the same time, the elitist niches perform a more localised search, inthe neighbourhood of their best element.3 Numerical testsAs our implementation provides the �rst results using the niche search approach,we found it necessary to proceed to an extensive set of tests. We relied on testfunctions that are commonly used by the evolutionary computation community,which are supposed to put in evidence the strengths and weaknesses of eachimplementation.We have implemented the all test functions proposed by De Jong in his thesisdissertation [3], Scha�er's binary F6 function [7]. Each of the tests has been runat least 10 times. In none of the runs for each of the tests has the programfailed to obtain the global optimum, in a considerably low number of functionevaluations.The sphere model, and Ackley's test function have also been implemented,the results being reported below. The solutions reported are the average of 10runs performed, and the log of the evolution of the solution is that of an in-termediate run. We have performed more than 100 runs for each of these tests;niche search has always found the global optimum.3.1 Sphere modelThis test consists of an extension of De Jong's �rst test function to 30 variables,with a wider search range:maximise f(x) = �Pni=1 x2ixi 2 [�30; 30] ; n = 30Parameters used by niche search for this test: 750 generations, 3 niches with3 individuals each. Average value of the solution found: �f� = �6:19 � 10�04,j�x�i j � 4:7 � 10�3. Average number of function evaluations per run: 9089.Experimental results for this test function have been provided, for ESs andEP, in [2]. There the model was for 40000 function evaluations, and the valuesobtained were f� � :4 for and ES and f� � 200 for EP. The niche searchmethod reveals, therefore, a considerably improved performance. With 40000evaluations, niche search obtains f� � 1:0 � 10�13, j�x�i j < 1: � 10�07;8i.
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Fig. 7. Experimental run of niche search for the initial iterations of Ackley function'soptimisation: best value obtained as a function of the number of objective evaluations,and best element of a particular niche. This shows how a particular niche can be faraway form the best one during the search process.function evaluations. The mean solution obtained was �f = �3:5 � 10�14, withjxij < 1:4 � 10�14;8i.For a more complete set of benchmark tests, the reader is referred to [6].4 ConclusionNiche search is a genetic-based global optimisation solver that we have designedand implemented, trying to parallel closely the search operators on their biolog-ical equivalents. It is characterised by an evolutionary search on two layers: theindividual layer and the niche layer. Neither of these searches is directed: bothindividuals and niches evolve based on the selection of the �ttest.The fact that di�erent niches perform more localised searches in di�erentregions of the search space strongly increases the probability of avoiding localoptima. The possibility of using time adaption of the search parameters providesa way of improving the precision of the solution obtained, without drawbacksin terms of the global search. A penalisation method which allows for infeasibleindividuals to remain in the population was proposed. The aim of such a methodis to increase the likeliness of �nding the global optimum when it is located innarrow feasible regions; nevertheless, experimental support is not provided.The numerical results obtained by niche search are quite promising, as ourimplementation has successfully handled all the tests carried out. The compu-tational performance is considerably better than that of other algorithms of thesame family analysed in the literature.References1. D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer AcademicPublishers, Boston, 1987.
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