
Heuristics and Exact Methods for
Number Partitioning

João Pedro Pedroso and Mikio Kubo

Technical Report Series: DCC-2008-3

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

2

Heuristics and Exact Methods for Number Partitioning

João Pedro Pedroso and Mikio Kubo

February 2008

Abstract

Number partitioning is a classical NP-hard combinatorial optimization problem, whose so-
lution is challenging for both exact and approximative methods. This work presents a new
algorithm for number partitioning, based on ideas drawn from branch-and-bound, breadth first
search, and beam search. A new set of benchmark instances for this problem is also proposed.
The behavior of the new method on this and other test beds is analyzed and compared to other
well known heuristics and exact algorithms.

1 Introduction

The number partitioning problem (NPP) is a classical NP-hard problem of combinatorial opti-
mization, with important applications in areas like public key encryption and task scheduling.
It has been studied under many perspectives, from the theoretical analysis of “easy-hard” phase
transition observed in combinatorial problems, to its approximative solution with heuristics and
metaheuristics.

The NPP is the following: given a set (or possibly a multiset) of N positive integers A =
{a1, a2, . . . , aN}, find a partition P ⊆ {1, . . . , N} that minimizes the discrepancy

E(P) =

∣∣∣∣∣∑
i∈P

ai −
∑
i 6∈P

ai

∣∣∣∣∣ .
Partitions such that E = 0 or E = 1 are called perfect partitions. A decision problem

related to the NPP is that of determining if there is a perfect partition. This problem is
NP-complete: polynomial transformations from Satisfiability→3-Satisfiability→3-Dimensional
Matching→Partition (decision problem), are presented in [7]. Therefore, the NPP is NP-hard.

An important characteristic of this problem is that its computational complexity depends on
the type of input numbers a1, a2, . . . , aN . If aj are all positive integers bound by a constant A,
then the discrepancy E can take on at most NA different values, and the size of the search space
is O(NA); a so-called pseudo-polynomial time algorithm is presented in [7] for this case. However,
a concise representation of the input is of length only O(N logA), and NA is not bounded by
any polynomial function of that quantity. This property implies that NP-hardness of the NPP
depends on exponentially large input numbers (or exponentially high precision, if the aj ’s are
real numbers). It is also connected to a phenomenon known as phase transition, describing an
abrupt change in the time required for solving the problem at a particular size of the input. If the
numbers aj are independently and identically distributed random numbers bounded by A = 2κN ,
the solution time abruptly raises at a particular value κ = κc; this is due to the fact that there
is a high probability of having perfect partitions for κ < κc, and this probability is close to 0 for
κ > κc. See [13] for a short introduction to this property.

Concerning the optimum value of the discrepancy, in [10] it was shown that for a random
instance IN , with N real valued items drawn independently from a uniform distribution in [0, 1),
the optimum discrepancy opt(In) has an expected value O(

√
N/2N).

Practical applications of the NPP include multiprocessor scheduling [4], public key cryptog-
raphy [12], and the assignment of tasks in low-power application-specific integrated circuits [5].
The application of metaheuristics to the solution of this problem was initially analyzed in [8],
where the difficulty of finding an appropriate neighborhood structure was reported. Different
strategies were tried in [1] (a different formulation of tabu search) and [2] (a memetic algorithm

1

with the recombination operator based on weight-matching); we use their results as a term for
comparison.

The contributions of this paper are the following:

• In section 2.3 we describe a new branch-and-bound method, based on breadth-first search,
with a variant for controlled incomplete search.

• In section 2.3.1 we propose the use of a diving approach for determining an upper-bound
for each node in breadth-first branch-and-bound.

• An extended test for checking if the lower bound was reached in branch-and-bound, allowing
in some cases to prove earlier that an optimum was reached, is presented in section 2.3.2.

• Results obtained by two incomplete branch-and-bound methods are presented in section 3,
and compared to other heuristics, using convenient metrics described in section 3.1.

• We propose a set of challenging benchmark instances, which can be used as a term for
comparison in future works, in section 3.2.

2 Solution approaches

2.1 Simple heuristics

As the NPP is an NP-hard problem, exact solution with known algorithms is only possible for
small instances. For other instances, approximative but fast heuristics are commonly used.

One possible greedy heuristic approach, known as the longest processing time heuristics for
the multi-processor scheduling problem, consists of placing the largest unassigned number into
the subset with the smallest sum thus far, until all the numbers are assigned. For this algorithm,
the worst situation occurs when the two subsets are balanced before assigning the last number.
If the input numbers aj are real values uniformly drawn from [0, 1), this heuristics leads to a
discrepancy O(N−1). As the algorithm requires sorting the numbers, its complexity is dominated
by the sorting algorithm; thus, it runs in O(N logN) time.

We will use throughout this paper the example provided in [11], consisting of the instance
A = {8, 7, 6, 5, 4}. When applied to this set, the greedy heuristics leads to the partitions {8, 5, 4}
and {7, 6} with discrepancy 4.

The best polynomial time heuristics known to date is the differencing method of Karmarkar
and Karp (the KK heuristics) [9]. It consists of successively replacing the two largest numbers
by the absolute value of their difference and placing those items in separate subsets, but without
actually fixing the subset into which each number will go yet. This heuristics is described in
Algorithm 1, which determines a tree with indices for elements of A as vertices. Each edge in
this tree indicates that the corresponding vertices should be in separate partitions. The decision
concerning fixing which partition each number goes is taken at the end, when there is only one
number left (which is the discrepancy between the two partitions). The partition is obtained
through a 2-coloring of the tree, which can be done in linear time.

Algorithm 1: Karmarkar and Karp heuristics.
KK(A)
(1) create a vertex i, ∀ai ∈ A; add labeli := ai to vertex i
(2) E := {} ←edge set

(3) while there is more than one labeled vertex:
(4) u, v := vertices with the two largest labels
(5) E := E ∪ {{u, v}}
(6) remove label from vertex v
(7) set labelu := labelu− labelv
(8) return discrepancy (last label) and edge set E

When applied to the set A = {8, 7, 6, 5, 4}, the KK heuristics leads to the partitions {8, 6} and
{7, 5, 4} with discrepancy 2, as can be seen in Figure 1; as occurs in this example, the solution
of the KK heuristics is usually better than the greedy solution, but is still suboptimal.

2

1

8

2 7

3

6

4

5

54 →
1

1

2

3

6

4

5

54 →
1

1

2

3

1

4

54 →
1

2

3

1

4

53 →
1

2

34

52

Figure 1: Graph created while applying the KK heuristics to the set {8, 7, 6, 5, 4}. Each edge connects
vertices that will be in different partitions.

8 7 6 5 4

1

6 5 4 1

2

15 6 5 4

3

4 1 1

4

11 4 1

5

9 5 4

6

21 5 4

7

3 1

8

5 1

9

7 1

10

15 1

11

4 4

12

14 4

13

16 4

14

26 4

15

2

16

4

17

6

18

4

19

6

20

8

21

14

22

16

23

0

24

8

25

9

26

17

27

12

28

20

29

22

30

30

31

Figure 2: Search tree for the complete differencing method.

If each input number aj is a real value uniformly drawn from [0, 1) the KK heuristics leads
to an expected discrepancy O(N−α logN), for some positive constant α [16]. This bound is
considered as rather unsatisfying [13], comparing to many other NP-hard problems for which
good approximative algorithms exist.

2.2 Exact methods

On each step of the KK heuristics the two largest numbers are replaced by their difference. On
a complete search algorithm based on the KK heuristics, the alternative of replacing them by
their sum must also be considered, as illustrated with the previous example in Figure 2. As in
the case of the KK heuristics, the construction of the partition is based on a graph where each
vertex corresponds to an element in the initial set. In the case of the exact method, to each leaf
in the branch-and-bound tree there corresponds a graph with two kinds of edges: a set E for
which {u, v} ∈ E if the label of u was replaced by the difference u − v, and a set F such that
{u, v} ∈ F if the label of u was replaced by the sum u+ v.

As in the case of the KK heuristics, the reconstruction of the partition can be made in linear
time, e.g. by means of Algorithm 2. When this algorithm is first called, the parameters A,B
are empty sets, and u is any vertex in 1, . . . , N . Then, u will inserted in set A, and all vertices
connected to u by edges in F will be recursively inserted in A. All vertices connected to u by
edges in E will be recursively inserted in B. At the end, the sets A and B they will hold the two
partitions.

Algorithm 2: Reconstruction of the partitions based on the graph generated by the complete
differencing method.

Reconstruct(E ,F ,A,B, u)
(1) A := A ∪ {u}
(2) foreach v : {u, v} ∈ F : ←add these nodes to A
(3) F := F\{{u, v}}
(4) Reconstruct(E ,F ,A,B, v)
(5) foreach v : {u, v} ∈ E : ←add these nodes to B
(6) E := E\{{u, v}}
(7) Reconstruct(E ,F ,B,A, v)
(8) return partitions A,B

Searching the whole binary tree in the complete differencing algorithm corresponds to ex-
ploring the 2N possible partitions. This exploration can be made breadth first (in Figure 2, one
possibility for doing this corresponds to visiting the nodes in the order 1, 2, 3, . . . , 31), or depth

3

1

8

2 7

3

6

4

5

54 →
1

15

2

3

6

4

5

54 →
1

9

2

34

5

54 →
1

4

2

34

54 →
1

2

34

50

Figure 3: Graph created while applying branch-and-bound to the set {8, 7, 6, 5, 4}. This picture
represents the steps followed for creating the optimal partition, i.e, the path 1 → 3 → 6 → 12 → 24
in Figure 2. Edges connect vertices to be put the same partition, and connect vertices to be
put in different partitions.

first (which, if we decide to try first differencing and then summing in each node, corresponds to
visiting the nodes 1, 2, 4, 8, 16, 17, 9, 18, 19, 5, . . . in Figure 2).

Figure 3 illustrates the graph corresponding to the optimal solution, as obtained by the
branch-and-bound algorithm. Edges with the shape connect vertices that will be in the same
partition, and edges connect vertices that will be in different partitions. The optimal solution
is the partition {8, 7} and {6, 5, 4}, which is a perfect partition.

In the worst case, the complete differencing method has exponential time complexity. How-
ever, it is possible to prune parts of the search tree, using the following properties:

1. The KK heuristics is exact for partitioning 4 or less numbers. Thus, when there are only 4
numbers left, only the differencing branch should be taken.

2. If the absolute value of the difference between the largest number and the sum of the others
is 0 or 1, a perfect solution was found, and the algorithm can be stopped.

3. If the difference between the largest number and the sum of the others is greater than 1,
the best solution in this subtree is to place the largest number in one set and all the other
numbers in the other; branching in this subtree can be stopped.

2.3 Proposed methods

Both depth-first and breadth-first branch-and-bound can be used as heuristics, if only a part of
the search tree is explored. Although the idea is rather trivial, and was presented for depth-first
search in [11], it seems to have been neglected in the more recent literature, even though the
results seem to be much better than those of other approximative methods.

The methods we analyze are the following:

DF – depth-first branch-and-bound; in each node, follow first the child corresponding to the
difference and then the one corresponding to the sum. Stop when the limit CPU time has
been used. This method was initially proposed in [11].

BF – breadth-first branch-and-bound; in each depth of the search tree, sort the nodes according
to the number of times there was a sum (i.e., the right side branch was taken) in the branch-
and-bound tree until reaching the node. Stop if the limit CPU time has been used.

The order followed for exploring nodes at the same level of the branch-and-bound tree in
BF is based on a suggestion found in [11], which proposes an exploration of the search tree in
such a way that the minimum deviations from the KK heuristics are tried first. BF can be
parameterized, by limiting the number of nodes that are searched in each depth of the tree; this
is a variant of beam search, proposed for a scheduling problem in [15]. In our implementation, at
each depth we sort the nodes in increasing order according to the number of deviations from the
KK heuristics (i.e., the number of sums that were done from the root to the current node), and
select the first α nodes; the remaining are neglected. Let us consider the example of Figure 2,
without pruning, for BF with α = 3. Then, at root level there will be one node (1), and at
depth 1 there will be nodes 2,3. At depth 2, node 7 will be neglected (as it had 2 sums (i.e.,
the right side branch has been taken two times), more than the other three at this depth. At
depth 3 nodes 8 (zero sums) and nodes 9,10,12 (one sum) are selected, and nodes 11,13,14,15
are neglected.

Algorithm 3 describes the procedure used in the BF branch-and-bound, representing each
branch by the corresponding set of elements. Details concerning keeping the graph structure
required for reconstructing the solution are omitted for clarity; a complete, functional version in
the Python language is provided in [14].

4

Algorithm 3: BF branch-and-bound.
BF(A, α, T)
(1) E∗ = KK(D) ←best discrepancy found so far
(2) B := {A} ←initial single branch is the input set
(3) while B != {} and CPU time used < T
(4) C := {} ←non cut branches
(5) foreach B ∈ B ←B is a sorted list of items
(6) b = largest element of B
(7) r = sum of all items in B\{b}
(8) if |b− r| = 0 or |b− r| = 1
(9) return |b− r| ←found perfect partition
(10) if b ≥ r ←best possible partition is {b},B\{b}
(11) if b− r ≤ E∗ ←improved best found solution
(12) E∗ = b− r
(13) else
(14) C := C ∪ {B} ←keep B branch alive
(15) B := {} ←prepare new set or branches
(16) C := {α elements of C with less sums in their path}
(17) foreach B ∈ C
(18) b1 := largest element of B
(19) b2 := second-largest element of B
(20) C := {b1 − b2} ∪ B\{b1, b2} ←differencing branch
(21) D := {b1 + b2} ∪ B\{b1, b2} ←summing branch
(22) B := B ∪ {C,D} ←add the two new branches
(23) if E = KK(D) ←left-side dive (KK heuristics)
(24) if E < E∗ ←update best found solution
(25) E∗ = E
(26) return E∗

2.3.1 Diving

When using BF branch-and-bound on large problems, with large values of α, the leaves of the
branch-and-bound tree may not be reached within the allowed CPU time; in this case we still
want to have a solution at the moment the process is interrupted. As a solution (and, thus, an
upper bound, also used for pruning) is useful at any stage of the search, we implement a variant of
diving for obtaining it. Diving is common, for example, in mixed-integer programming, where the
solution of a linear programming relaxation is used for selecting a path in the branch-and-bound
tree (see e.g. [3], for a description of several variants of diving in the context of mixed-integer
programming).

In the context of the NPP, an interesting diving variant corresponds to computing the KK
heuristics’ solution at each node. This stands for selecting the differencing (left-side) branch in
each node, until reaching a leaf; we call this strategy left-side diving. In general the quality of
this heuristic solution is very good, and the computational cost for determining it is reasonable.

In Algorithm 3 left-side diving is done in line 23; this is only necessary for the right side
child of each node, as for the left side branch the diving solution is the same as the one of the
parent. After a left-side diving, a new upper-bound may have been found, and thus the best
found solution may have to be updated (line 24).

2.3.2 Testing optimality

Both branch-and-bound algorithms may provide proven optimal solutions. DF is exact if the
whole search tree can be searched within the allowed time. As for BF, it is exact if all the nodes
of each depth are explored (excluding those that could be cut) within the allowed time. This is
possible only for small instances. On both variants, if a solution with discrepancy equal to the
lower bound (i.e., a perfect partition) is found, it is also a proven optimum.

Usually, the test for a perfect solution is done only when, at some point of the search, the
largest element of the set is larger than the sum of the others [11]. In this case, the best solution
that can be obtained is placing the largest element in one partition and all the others in the other.

5

If the difference between those values is zero or one, an optimal solution was found. However,
an optimum was also found, for the same reason, if the largest element is smaller in one unit
than the sum of the others; the algorithm can successfully stop in this case too. This extended
test is implemented in both DF and BF variants; for the latter, it corresponds to lines 8 and 9
of Algorithm 3.

3 Computational results

3.1 Metrics used for reporting results

As the numbers used in all challenging instances of the NPP are extremely large, they are very
difficult to read. For analyzing the results of the algorithms, and comparing them to other
algorithms found in the literature, we propose using the following metrics:

η(n) = log2(n+ 1). (1)

The value η(n) is a convenient and visually effective way of presenting very large values of n. It
also preserves the output for perfect partitions: for discrepancies E = 0 and E = 1, the respective
values η(E) are still 0 and 1.

3.2 Benchmark instances

For the analysis of the behavior of the algorithms presented we propose a series of benchmark
instances, with numbers generated randomly. We shall start by introducing the formula that
determines the phase transition [13], for numbers aj bounded by A = 2κN :

κc = 1− log2N − log2(π/6)

2N
.

According to [6] there is an expected exponential number of perfect partitions for κ < κc, and
no expected perfect partition for κ > κc.

We generated instances with several different sizes, ranging from sets A with ten elements
(N = 10) to a thousand (N = 1000). The first series of instances, named easy, consists of sets
with numbers drawn below the critical point: for an instance with N elements, each number was
drawn with N/2 random bits. The second series, named hard consists of numbers with N random
bits, thus above the critical point. Therefore, there is a high probability that there exist many
perfect partitions in the easy instances, and a low probability that there is a perfect partition in
the hard series.

Notice that the numbers in the instances generated are very large; except for the smaller
instances, they do not fit in the size of an integer in usual CPUs, and thus require software
capable of dealing with very large numbers (we used the Python language, which automatically
adapts the precision used in the computations, as required for avoiding integer overflow).

For the purpose of comparison, we also used instances created by independently generating
D decimal digits and concatenating them, as proposed in [2]. We call these the D instances.

All the instances used are available in [14]; the algorithms used and the complete output of
this computational experience are also available there.

The computer environment used in this experiment is the following: a machine with an AMD
Athlon(tm) XP 2800+ at 2 GHz with 512 KB of cache, and 1 GB of RAM, with the Linux Debian
operating system version 2.6.22. The algorithms were implemented in the Python language, and
were run under version 2.5.2.

3.3 Results for the easy and hard instances

In Table 1 we report the results obtained by the greedy and the KK heuristics and those of DF
branch-and-bound. As expected, KK is better than greedy, and DF is several orders of magnitude
better than KK. For the easy instances, an optimal solution was found by DF for sizes up to
N = 70; greater sizes likely have perfect partitions, but they could not be found in the allowed
CPU time. For hard instances, optimal partitions were found up to instances with 30 elements.

Table 2 reports the results obtained by BF branch-and-bound for several values of the
parameter α. If this parameter is small, BF terminates very quickly, but as expected the solution

6

Greedy KK DF branch-and-bound
Type N η η η CPU # nodes
easy 10 2.3219 1.5850 1.5850∗ 0.00 31

20 3.8074 3.5850 1∗ 0.00 26
30 10.691 1.5850 0∗ 0.00 419
40 10.438 4.8580 0∗ 0.08 11209
50 19.05 6.3750 0∗ 0.04 5526
60 21.604 7.8455 1∗ 0.36 46188
70 29.214 15.856 0∗ 120.1 14912636
80 28.828 18.874 1.5850 3600 436000000
90 39.593 23.956 2.3219 3600 438000000

100 38.887 23.570 5.0444 3600 439300000
200 88.664 74.029 48.140 3600 404900000
300 142.75 114.26 96.262 3600 378600000
400 189.66 163.44 141.43 3600 354500000
500 240.98 211.31 191.10 3600 318600000
600 288.78 258.86 241.03 3600 300100000
700 337.79 307.70 286.07 3600 278200000
800 390.32 355.13 339.05 3600 244900000
900 437.15 403.69 383.30 3600 224100000

1000 488.50 449.50 431.33 3600 214000000
hard 10 7.9425 3.8074 1∗ 0.00 39

20 13.496 8.0334 4.1699∗ 0.06 10206
30 21.962 16.393 3.8074∗ 27.21 3474759
40 32.624 25.010 2.3219 3600 459600000
50 43.953 31.380 15.732 3600 455300000
60 50.982 40.329 20.758 3600 455600000
70 62.215 50.729 32.536 3600 446200000
80 73.694 60.534 37.779 3600 436600000
90 82.726 70.787 49.325 3600 439600000

100 91.725 73.369 56.115 3600 444300000
200 191.58 171.81 151.91 3600 392800000
300 288.80 265.77 247.07 3600 363700000
400 391.38 366.18 343.36 3600 335200000
500 490.52 461.60 438.79 3600 304800000
600 587.09 557.09 539.13 3600 279500000
700 687.86 659.50 637.70 3600 254900000
800 788.01 751.27 731.98 3600 236100000
900 887.70 853.36 834.95 3600 219700000

1000 987.81 952.47 932.55 3600 200100000

Table 1: η(E) for greedy and the KK heuristics, and DF branch-and-bound. CPU time for branch-
and-bound (in seconds) and number of visited nodes (the greedy and KK heuristics run in less than
0.01 seconds of CPU time for all the instances). Instances solved to proven optimality are marked
with an asterisk.

7

is not good. For larger values, the solutions are frequently better than those of DF, but not
consistently. It seems that the optimal value of α is large for small instances, and tends to be
smaller for larger instances. This probably occurs because for the larger instances too much time
is spent on low depths of the tree, and the execution is terminated early, due to reaching the
CPU limit. Possibly, fine tuning BF with a dynamic value of α would lead to better performance
(we feared over-fitting, and did not attempt fine tuning). Table 3 reports the number of nodes
visited when applying BF branch-and-bound.

BF branch-and-bound
α = 10 α = 100 α = 1000 α = 10000 α = 100000

Type N η CPU η CPU η CPU η CPU η CPU
easy 10 1.5850∗ 0.01 1.5850∗ 0.00 1.5850∗ 0.00 1.5850∗ 0.00 1.5850∗ 0.00

20 1∗ 0.00 1∗ 0.00 1∗ 0.00 1∗ 0.00 1∗ 0.00
30 0∗ 0.00 0∗ 0.00 0∗ 0.00 0∗ 0.00 0∗ 0.00
40 0∗ 0.01 0∗ 0.02 0∗ 0.02 0∗ 0.02 0∗ 0.02
50 1.5850 0.04 0∗ 0.07 0∗ 0.31 0∗ 0.38 0∗ 0.37
60 4 0.05 2 0.50 1∗ 0.93 1∗ 0.55 1∗ 0.56
70 6.4094 0.08 1.5850 0.74 0∗ 4.79 0∗ 45.79 0∗ 24.58
80 9.5294 0.10 6.1085 0.92 4.6439 11.10 1.5850 131.9 0∗ 2947.
90 15.401 0.12 9.0084 1.15 8.3083 14.09 4.0875 169.8 2.3219 3600

100 19.388 0.14 14.329 1.42 11.018 17.57 7.9484 215.4 7.5925 3600
200 60.017 0.54 57.685 5.66 53.842 74.89 49.536 987.0 49.322 3600
300 105.27 1.20 101.23 12.99 98.644 170.91 95.347 2248. 89.487 3600
400 151.14 2.16 149.29 23.93 146.03 312.73 136.22 3600 141.43 3600
500 197.36 3.42 193.21 38.51 191.41 505.30 186.85 3600 190.80 3600
600 247.77 5.04 242.89 57.37 240.70 748.57 239.09 3600 237.99 3600
700 292.55 7.15 291.52 80.22 288.62 1042.19 283.05 3600 283.05 3600
800 341.50 9.57 338.70 107.67 334.63 1379.31 334.63 3600 335.16 3600
900 390.13 12.40 387.88 139.30 383.08 1768.60 384.28 3600 385.40 1536.a

1000 436.50 15.72 434.44 174.47 430.19 2194.57 431.72 3600 431.35 723.2a

hard 10 1∗ 0.00 1∗ 0.00 1∗ 0.00 1∗ 0.00 1∗ 0.00
20 4.1699 0.01 4.1699 0.04 4.1699 0.34 4.1699∗ 1.57 4.1699∗ 1.62
30 11.036 0.02 5.6439 0.13 5.1699 1.34 3.8074 12.82 3.8074 240.9
40 18.399 0.03 13.731 0.25 10.465 2.71 10.259 28.67 7.9366 655.2
50 25.911 0.04 23.201 0.38 20.011 4.33 18.278 48.02 15.562 1186.
60 31.402 0.06 28.252 0.52 26.773 6.21 24.771 71.13 21.191 1848.
70 40.767 0.08 39.614 0.72 33.241 8.54 27.883 100.3 27.883 2680.
80 49.642 0.10 48.029 0.96 42.904 11.41 42.489 139.4 39.152 3600
90 62.467 0.12 56.371 1.20 52.050 14.88 52.050 183.2 47.679 3600

100 66.840 0.14 66.083 1.44 61.353 18.55 59.336 228.9 56.405 3600
200 160.12 0.54 156.92 5.73 151.98 75.68 149.55 931.9 147.40 3600
300 254.18 1.21 251.97 13.34 249.20 177.61 246.30 2277. 246.07 3600
400 351.53 2.24 348.71 24.73 345.96 325.70 336.98 3600 336.98 3600
500 447.02 3.60 444.80 39.78 439.79 523.94 440.22 3600 440.08 3600
600 546.98 5.33 539.91 59.18 539.10 775.33 529.36 3600 535.04 3600
700 645.11 7.62 637.06 83.67 637.06 1081.70 636.66 3600 637.05 3600
800 741.80 10.23 740.40 112.34 732.60 1431.81 733.63 3600 734.42 1449.a

900 840.31 13.34 837.28 147.31 833.08 1879.33 833.69 3600 835.22 641.2a

1000 938.04 17.08 932.40 185.67 932.40 2380.38 930.16 3600 934.47 156.2a

Table 2: Results for BF: η(E) and CPU time (in seconds). Instances solved to proven optimality
are marked with an asterisk. Runs labelled (a) were interrupted at the reported CPU time, due to
insufficient memory.

The evolution of the best solution found with respect to the CPU time used by DF and several

8

Type N BB BF branch-and-bound
α = 10 α = 100 α = 1000 α = 10000 α = 100000

easy 10 31 35 35 35 35 35
20 26 3 3 3 3 3
30 419 6 6 6 6 6
40 11209 106 360 388 388 388
50 5526 871 1217 5109 6205 6205
60 46188 1071 10055 11606 7267 7267
70 14912636 1271 12055 53765 463485 207642
80 436000000 1471 14055 134047 1272767 10225868
90 438000000 1671 16055 154047 1472767 11062143

100 439300000 1871 18055 174047 1672767 10462143
200 404900000 3871 38055 374047 3672767 7462143
300 378600000 5871 58055 574047 5672767 6062143
400 354500000 7871 78055 774047 6292767 4862143
500 318600000 9871 98055 974047 4832767 3862143
600 300100000 11871 118055 1174047 4072767 3262143
700 278200000 13871 138055 1374047 3452767 2862143
800 244900000 15871 158055 1574047 2972767 2462143
900 224100000 17871 178055 1774047 2572767 531071∗

1000 214000000 19871 198055 1974047 2232767 231071∗

hard 10 39 3 3 3 3 3
20 10206 271 2051 12965 34669 34669
30 3474759 471 4055 34013 269405 1950223
40 459600000 669 6055 54047 472667 4055187
50 455300000 871 8055 74047 672767 6062139
60 455600000 1071 10055 94047 872767 8062143
70 446200000 1271 12055 114047 1072767 10062143
80 436600000 1471 14055 134047 1272767 11062143
90 439600000 1671 16055 154047 1472767 10062143

100 444300000 1871 18055 174047 1672767 9662143
200 392800000 3871 38055 374047 3672767 7862143
300 363700000 5871 58055 574047 5672767 6062143
400 335200000 7871 78055 774047 6012767 4862143
500 304800000 9871 98055 974047 4712767 3862143
600 279500000 11871 118055 1174047 3992767 3262143
700 254900000 13871 138055 1374047 3332767 2862143
800 236100000 15871 158055 1574047 2852767 531071a

900 219700000 17871 178055 1774047 2472767 231071a

1000 200100000 19869 198055 1974047 2112767 65535a

Table 3: Number of nodes visited on branch-and-bound. Runs labelled (a) were interrupted due to
insufficient memory.

9

possibilities of BF seem to indicate a slight advantage of BF for small CPU times, as shown in
Figures 4 and 5. Hard instances of the NPP are well known for being extremely difficult to
solve. Our results corroborate this observation: for the hardest instances, there seems to be no
big difference between any of the variants. The best solution is found by different strategies,
depending on the instance and on the CPU time allowed to solution. (BF provides several
different solutions, for different values of α; in some situations, this is an advantage.)

3.4 Results for the D instances.

Table 4 contains the results for tabu search and memetic algorithms reported in [2], and results
obtained by branch-and-bound with the CPU time limited to 600 seconds. The latter are for
different random instances, though they were generated with the same distribution. Even though
the instances are different, the table shows a clear advantage of limited branch-and-bound over
tabu search and the memetic algorithm.

Tabu search was reported to run for 109 iterations, and each the memetic algorithms for
approximately the same amount of CPU time. For branch-and-bound the maximum (average)
number of nodes was 77.4 million (39.4 million) for DF, and 8.0 million (4.5 million) for BF;
thus, likely there was much less CPU used by branch-and-bound than by tabu search and the
memetic algorithms.

The instances generated for the previous comparison were also used for giving more insight of
the behavior of BF branch-and-bound, for different values of α, in Table 5. The results confirm
a general tendency for obtaining better solutions when the parameter α in BF search increases.
There are some exceptions; the most intriguing one is for B=12, N=95, where for α = 10000
the search could find a prove optimum for all instances (by reaching the lower bound of 0 or 1),
though a broader search with α = 100000 could not find the optimum for one of the instances.
Notice that there is a difference between the results for branch-and-bound reported in Tables 4
and 5, as η(E) for the average E is different of the average η(E); the latter is more meaningful,
but we do not have it available for the results reported in the literature.

There are also results reported in [1] for a different formulation of tabu search, based on re-
casting the NPP as an unconstrained quadratic binary program. However, the results presented
there are for instances with 25 and 75 elements drawn randomly from the interval (50,100); we
could find no instance generated this way for which branch-and-bound would not find an optimal
solution in less than a second (all these instances are easy, and thus are likely to have many
perfect solutions).

4 Conclusion

We propose the use of limited branch-and-bound as heuristics for the solution of the number
partitioning problem. We present two versions: a depth-first version, as proposed in [11], which
is interrupted when the CPU time reaches a specified limit, and a breadth first version, borrowing
ideas from beam search [15], with a limit in the CPU used as well as in the number of nodes
explored on each depth of the branch-and-bound tree.

For breadth-first branch-and-bound, we implemented a diving method which consists of taking
the left-side, differencing branch until reaching a leaf. Left-side diving allows the search to quickly
obtain an upper bound for every node; furthermore, as its computation is relatively inexpensive,
it can be done systematically. This diving strategy corresponds to applying the Karmarkar and
Karp heuristics as a guide until reaching the bottom of the branch-and-bound tree. The concept
is general, and it is not sufficiently explored in the literature; we believe that the same idea
can be successfully applied for improving branch-and-bound on other problems for which good
heuristics exist.

The results for interrupted execution of the two branch-and-bound algorithms are very good,
as compared to other approximative methods found in the literature. The idea of combining a
good polynomial-time approximation algorithm and making it complete, also introduced in [11],
is very promising and seems to be still seldom used. The parameterized breadth-first branch-
and-bound has the advantage of allowing a certain diversification of the solutions obtained, by
changing the parameter. This frequently leads to better solutions than those obtained by depth-
first search.

10

Figure 4: Evolution of the best found solution with respect to the CPU time for several variants of
branch-and-bound — easy instances.

11

Figure 5: Evolution of the best found solution with respect to the CPU time for several variants of
branch-and-bound — hard instances.

12

N Tabu Memetic DF BF
D=10 15 20.768 20.768 20.157 (10) 20.157 (10)

25 11.627 11.627 10.474 (10) 10.474 (0)
35 3.585 3.322 2.5110 (5) 3.6439 (1)
45 3.585 2.585 1.2016 (7) 0.58496 (10)
55 2.807 1.585 0.76553 (9) 0.58496 (10)
65 3.700 2.322 0.58496 (10) 0.58496 (10)
75 2.807 1.000 0.58496 (10) 0.58496 (10)
85 2.807 1.585 0.48543 (10) 0.48543 (10)
95 2.807 2.000 0.84800 (10) 0.84800 (10)

105 2.322 1.585 0.76553 (10) 0.76553 (10)
D=12 15 27.508 27.508 27.795 (10) 27.795 (10)

25 17.896 17.896 17.627 (10) 17.627 (0)
35 9.856 9.775 8.5137 (1) 9.9427 (0)
45 9.592 8.155 6.3291 (0) 5.6088 (0)
55 10.006 8.214 5.2327 (1) 3.2928 (2)
65 9.690 8.077 4.6949 (1) 2.2928 (3)
75 8.904 8.622 2.9635 (4) 1.8480 (4)
85 9.236 8.443 1.9635 (4) 0.76553 (8)
95 8.238 7.658 1.0704 (8) 0.92600 (9)

105 8.362 8.087 0.92600 (8) 0.58496 (10)
D=14 15 34.075 34.075 34.299 (10) 34.299 (10)

25 24.548 24.396 25.201 (10) 25.201 (0)
35 17.674 15.837 14.513 (2) 16.706 (0)
45 15.799 14.914 13.301 (0) 12.600 (0)
55 15.362 15.164 10.359 (0) 10.592 (0)
65 15.614 15.472 10.122 (0) 8.4179 (0)
75 16.250 15.066 8.4128 (0) 6.6381 (0)
85 15.693 14.645 7.9606 (0) 6.3092 (0)
95 15.080 14.405 6.7184 (0) 4.9495 (0)

105 14.698 14.268 6.4611 (0) 5.3327 (0)

Table 4: Results for tabu search and a memetic algorithm as reported in [2]: η(E), where E is the
average result obtained on 10 random instances; (for the memetic algorithms, in each entry (N,D)
we report the best of the solutions obtained in four proposed alternatives). The same measure for DF
and BF branch-and-bound, with the CPU limited to 600 seconds, on 10 similar (but not identical)
random instances. BF was run with α = 100000. The number in parenthesis indicates the number
of instances for which the solution was proven optimal.

13

DF BF
N α = 1000 α = 10000 α = 100000

D=10 15 19.363 (10) 19.363 (10) 19.363 (10) 19.363 (10)
25 9.8359 (10) 10.541 (0) 9.8359 (0) 9.8359 (0)
35 2.1099 (5) 6.6540 (0) 5.2543 (0) 3.3242 (1)
45 0.91699 (7) 3.8599 (1) 1.9901 (3) 0.50000 (10)
55 0.65850 (9) 2.6402 (0) 0.75850 (8) 0.50000 (10)
65 0.50000 (10) 1.3077 (5) 0.50000 (10) 0.50000 (10)
75 0.50000 (10) 0.50000 (10) 0.50000 (10) 0.50000 (10)
85 0.40000 (10) 0.40000 (10) 0.40000 (10) 0.40000 (10)
95 0.80000 (10) 0.80000 (10) 0.80000 (10) 0.80000 (10)

105 0.70000 (10) 0.70000 (10) 0.70000 (10) 0.70000 (10)
D=12 15 25.896 (10) 25.896 (10) 25.896 (10) 25.896 (10)

25 17.313 (10) 18.117 (0) 17.562 (0) 17.313 (0)
35 7.4071 (1) 12.651 (0) 11.465 (0) 9.5176 (0)
45 5.4617 (0) 9.6355 (0) 7.7449 (0) 5.4163 (0)
55 4.7706 (1) 8.212 (0) 5.7195 (0) 2.8388 (2)
65 4.0577 (1) 5.9499 (0) 3.9299 (1) 1.9747 (3)
75 2.2791 (4) 3.8214 (1) 2.1206 (4) 1.6884 (4)
85 1.5858 (4) 3.7136 (1) 0.77549 (7) 0.61699 (8)
95 0.9585 (8) 1.6615 (4) 0.70000 (10) 0.85850 (9)

105 0.7585 (8) 1.1907 (5) 0.50000 (10) 0.50000 (10)
D=14 15 34.011 (10) 34.011 (10) 34.011 (10) 34.011 (10)

25 24.807 (10) 25.235 (0) 24.932 (0) 24.807 (0)
35 13.347 (2) 20.382 (0) 18.131 (0) 15.932 (0)
45 12.275 (0) 16.114 (0) 13.828 (0) 11.703 (0)
55 9.2294 (0) 14.32 (0) 10.37 (0) 10.158 (0)
65 8.7968 (0) 11.703 (0) 9.3579 (0) 7.5600 (0)
75 7.7004 (0) 11.85 (0) 8.4935 (0) 5.5553 (0)
85 6.8629 (0) 9.2131 (0) 6.4178 (0) 5.5963 (0)
95 6.0543 (0) 8.4292 (0) 5.734 (0) 4.5529 (0)

105 5.5494 (0) 6.6276 (0) 4.7675 (0) 4.9086 (0)

Table 5: Average η(E) for DF and BF branch-and-bound, with the CPU limited to 600 seconds, for
the 10 random D instances. The number in parenthesis indicates the number of instances (out of 10)
for which the solution was proven optimal.

14

For sorting the nodes in each level of the BF search tree we used the number of times that a
summing-branch was followed, from the root to the current node. There are other possibilities;
we did try to use the upper bound computed with the KK heuristics for sorting, but the results
did not improve. Finding a better measure for sorting the nodes at the same level is an interesting
subject open to further research.

The exact solution of the large instances presented in this paper, of both the easy and hard
series, is challenging; we provide the instances’ data, and an upper bound that can be used as a
term for comparison in future works.

References

[1] Bahram Alidaee, Fred Glover, Gary A. Kochenberger, and César Rego. A new modeling
and solution approach for the number partitioning problem. JAMDS, 9(2):113–121, 2005.

[2] Regina Berretta, Carlos Cotta, and Pablo Moscato. Enhancing the performance of memetic
algorithms by using a matching-based recombination algorithm. In Jorge P. Sousa and
Mauricio G. C. Resende, editors, METAHEURISTICS: Computer Decision-Making, pages
65–90, Norwell, MA, USA, 2004. Kluwer Academic Publishers.

[3] Production Planning by Mixed Integer Programming. Yves Pochet and Laurence A. Wolsey.
Springer, 2006.

[4] E. G. Coffman Jr. and G. S. Lueker. Probabilistic Analysis of Packing and Partitioning
Algorithms. John Wiley & Sons, 1991.

[5] Milos Ercegovac, Darko Kirovski, and Miodrag Potkonjak. Low-power behavioral synthesis
optimization using multiple precision arithmetic. In DAC ’99: Proceedings of the 36th
ACM/IEEE conference on Design automation, pages 568–573, New York, NY, USA, 1999.
ACM.

[6] F. F. Ferreira and J. F. Fontanari. Probabilistic analysis of the number partitioning problem.
Journal of Physics A, 31:3417–3428, 1998.

[7] M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman, New York,
1979.

[8] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. Optimiza-
tion by simulated annealing: an experimental evaluation. part i, graph partitioning. Oper.
Res., 37(6):865–892, 1989.

[9] N. Karmarkar and R. Karp. The differencing method of set partitioning. Technical Report
UCB/CSD 82/113, University of California - Berkeley, Computer Science Division, 1982.

[10] N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M. Odlyzko. Probabilistic analysis of
optimum partitioning. Journal of Applied Probability, 23:626–645, 1986.

[11] Richard E. Korf. A complete anytime algorithm for number partitioning. Artificial
Intelligence, 106(2):181–203, 1998.

[12] R.C. Merkle and M.E. Hellman. Hiding information and signatures in trapdoor knapsack.
IEEE Transactions on Information Theory, 24(5):525–530, 1978.

[13] Stephan Mertens. The easiest hard problem: Number partitioning. In A.G. Percus,
G. Istrate, and C. Moore, editors, Computational Complexity and Statistical Physics, pages
125–139, New York, 2006. Oxford University Press.

[14] João P. Pedroso. Branch-and-bound for number partitioning: an imple-
mentation in the Python language. Internet repository, version 1.0, 2008.
http://www.dcc.fc.up.pt/˜jpp/partition and http://modern-heuristics.com.

[15] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood Cliffs,
1995.

[16] Benjamin Yakir. The differencing algorithm LDM for partitioning: a proof of a conjecture
of Karmarkar and Karp. Math. Oper. Res., 21(1):85–99, 1996.

15

