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Abstract

This paper presents the Stacking Problem, a hard combinatorial optimization problem concerning handling
and storage of items in a warehouse, where they are handled by a crane and organized into stacks. We
define the problem, study its complexity class, and present a mathematical programming model to solve it. In
order to tackle medium- or large-scale instances, we propose a simulation-based algorithm using semi-greedy
construction heuristics. This simple approach allows for multiple constructions, finding solutions within
reasonable time even for large instances. Three semi-greedy heuristics are proposed and compared in an
extensive computational experiment, where we study the relation between the number of constructions and
the best solution obtained using each heuristic.
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1. Introduction

The Stacking Problem (SP) has its origins in the steel industry, where the production sequence is
very strict, in order to achieve the desired product quality. This sequence is usually very different
from that of customer orders, implying that steel bars have to be kept in warehouses before being
delivered. The bars are commonly kept in stacks, and handled by stacking cranes that can only
access the top item of each stack. Hence, in order to deliver an item that is not at the top of a stack,
all the items above it have to be moved to other places.

The problem we are dealing with is that of minimizing the number of movements that a stacking
crane has to do in order to place each incoming item in a stack, and later deliver it, after moving
all the items that were possibly placed above it in the mean time. SPs such as this one appear in
a variety of application areas, such as port operations (Dekker et al., 2006; Hartmann, 2004) and
ship stowage planning (Avriel et al., 2000, 1998).
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The SP consists of a series of placement decisions for a set of items with known dates for entrance
and exit from a warehouse, known as release and due dates, respectively. If two or more of these
events occur at the same date, they can be processed in an arbitrary order. Inside the warehouse, the
items are manipulated by a stacking crane and organized in stacks, i.e., in a last-in first-out order.
An important operational constraint is that only one item—at the top of a stack or entering the
warehouse—may be moved at a time. This may cause relocations when delivering items that are not
located at the top of a stack.

This forced relocation of upper items is called reshuffling, and becomes necessary when due date
inversions exist. A due date inversion, or simply an inversion, occurs when an item i with due date
Di is placed above any other item j with due date Dj , such that Di > Dj . This means that at some
point in time t ≤ Dj , item i will have to be placed in another stack to allow the delivery of item j.
Taking these rules into consideration, placement decisions can be made at the following points:

� when an incoming item arrives at the warehouse (a release move); in this case, it may go to any
stack;

� when an item that is not at the top of its stack has to be delivered; in this case, the topmost item
must be placed in a different stack (a reshuffling move).

A third case is when, at any time, an unforced relocation of items in the warehouse exists. This
type of movements, called remarshalling, has the objective of reorganizing the warehouse in order
to reduce the total number of relocations later on. For the sake of simplicity, remarshalling is not
considered in the algorithm proposed in this paper.

As the objective of this problem is to find the shortest sequence of crane movements, placement
choices should attempt to minimize the retrieval effort when items’ due dates are reached. In order
to do so, inversions should be avoided. Note that minimizing the number of movements is equivalent
to minimizing the number of relocations, since the number of release and delivery movements is
constant (2N).

Possible variations of the problem include imposing a maximum stack height limit (capacitated
SP), noninstantaneous crane movements, allowing late deliveries with associated penalties, or a crane
movement cost matrix. These additional constraints naturally result in more realistic scenarios;
however, the variant studied in this paper has no limit on stack sizes (uncapacitated SP), crane
movements are assumed instantaneous, and all deliveries must be done on time.

The method used to approximately solve the problem is based on a simulation model of the
warehouse, which is operated with the help of three semi-greedy construction heuristics; for a
detailed description of simulation concepts, see Law (2006). Each simulation corresponds to the
construction of one solution for a particular instance using a given heuristic. At each point of
decision, the heuristic is used to select the destination stack for the item being moved. Since all the
heuristics contain a probabilistic component, making several constructions with the same heuristic
usually leads to different solutions.

When compared to a complete search, running a simulation of the warehouse is computationally
inexpensive. Thus, we can afford to run multiple simulations and exploit the probabilistic component
of the heuristics, recording the best solution obtained in one of those simulations. We compare the
heuristics using repeated construction with the simulation model, and study the expected number
of simulations required to obtain solutions of good quality for the three methods.
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The paper is structured as follows. In Section 2, we present a formal description of the SP.
Section 3 gives a short summary of related research. In Section 4, we present a mathematical
programming formulation for the SP, followed by a description of the construction heuristics in
Section 5. The computational experiment and its results are discussed in Section 6. Section 7 offers
some concluding remarks and possible directions for future research.

2. Problem description

Consider the problem of stacking N items in a warehouse with W stacks. Let R ∈ R
N be the list

of release dates, where Ri denotes the release date of item i, i.e. the time at which i will enter the
warehouse. In the same way, let D ∈ R

N be the list of due dates, i.e. the times at which items will
leave the warehouse. We assume that due dates are greater than release dates for every item, i.e.
Ri < Di, for i = 1, . . . , N.

The objective is to store and deliver all the items, satisfying release and due dates, using the
shortest sequence of movements, or equivalently, the sequence containing the least relocations. A
move consists in taking a single item, either incoming or from the top of a stack, and placing it on
top of another stack, or delivering it. Hence, there are three types of moves:

� a release move occurs when an item enters the warehouse at its release date and is placed on the
top of a stack;

� a delivery move occurs when an item, located at the top of its stack, is removed from the warehouse
at its delivery date;

� a relocation move occurs when an item is shifted from the top of its stack to the top of another
stack, either to reorganize the warehouse (remarshalling), or to allow access to another item
which must be delivered immediately (reshuffling).

A solution can be represented as an ordered sequence of movements. In turn, a movement can be
represented as a triplet (i, s j, sk), where i is the item being moved, s j is the source stack, and sk is
the destination stack. For the special case of releases, the movement is represented as having source
stack sR, and for deliveries the destination stack is sD.

A movement sequence is constructed by selecting a stack for items as they arrive at the warehouse.
Also, when an item is delivered, if reshuffling is required, new stacks must be chosen for the upper
items as well. The heuristics presented in this paper do not take remarshalling into consideration,
therefore all relocation moves are due to reshuffling.

3. Background

No previous references to an SP as described in this paper could be found. However, the literature
presents several problems with many similarities.

One such problem is the container ship stowage problem (CSSP), an SP with a similar objective—
minimizing the number of shifts. In the CSSP, a ship that calls at many ports has to transport
containers with known source and destination ports. The containers are stored in a stacking bay
inside the ship, where they can be accessed only from above, one at a time. When a container
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that has port i as destination has to be removed from the ship, any containers above it with
destinations further away from port i are removed from the ship together with the target container,
and afterwards are reloaded into the ship in an arbitrary order, possibly to different positions. This
temporary removal and reloading operation is known as shifting.

In Avriel et al. (1998), an integer programming model to optimally solve the CSSP is presented.
However, the model’s usability is very limited because of the large number of binary variables
and constraints. For this reason, the authors developed a heuristic procedure to solve the problem
approximately.

As for the complexity of the CSSP, a relation between the uncapacitated (no limit on stack height)
CSSP and the graph coloring problem for overlap graphs (equivalently, circle graphs) is presented in
Avriel et al. (2000), in order to show the NP-completeness of the CSSP. The reduction to the coloring
of overlap graphs is obtained by creating a unique overlap graph from a container transportation
matrix. Then, the given stowage problem can be solved without shifts using C stacks if and only if
the corresponding overlap graph is colorable with C colors.

In Unger (1988), the C-coloring problem of overlap graphs for fixed C was shown to be NP-
complete for anyC ≥ 4. ForC = 3, a polynomial time algorithm has been presented in Unger (1992),
and two-coloring of graphs can be done in polynomial time using an algorithm for recognizing
bipartite graphs. Hence, the C-coloring problem of overlap graphs is NP-complete for any fixed C ≥
4, and polynomial for C < 4. Consequently, the uncapacitated zero-shift problem is NP-complete
for any fixed number of columns C ≥ 4.

It should be noted that if an instance of the CSSP can be solved without shifts, an equivalent
instance of the SP, obtained by a trivial transformation (relating the relative order of release and
delivery events with port numbers), can be solved without relocations. Based on this observation, we
conclude that the zero-relocation SP (decision) is NP-complete for any fixed C ≥ 4, and polynomial
for C ∈ {2, 3}. Also, the NP-completeness of the zero-relocation SP implies that the x-relocation
SP is NP-hard for any x ≥ 1. Furthermore, we conclude that the SP (optimization), i.e. finding a
sequence of moves of minimum length for a given set of items and a fixed number of columns, is
NP-hard.

Another problem similar to the SP is the Blocks Relocation Problem (BRP). In the BRP, given
an initial configuration of a stacking bay with C columns and R rows, and a sequence of retrieval
of the items, the objective is to find a relocation plan that minimizes the number of movements to
retrieve the blocks in the given order.

It is important to note that, since in the BRP the initial placement of items in the stacking area
is given, and it does not consider the arrival of new items amidst the retrieval of others, the BRP is
a subproblem of the SP.

In Kim and Hong (2006), branch-and-bound algorithms are proposed for the case with prece-
dence relationships among individual blocks and among groups of blocks with similar features.
Additionally, a heuristic rule for the BRP is proposed, and its performance is compared to the
branch-and-bound algorithms, with satisfactory results and a reduced computation time, suitable
for real-time applications. The heuristic is based on the estimated number of additional relocations
for each stack, and uses that information to decide the destination stack of relocated items.

In Caserta et al. (2009), an algorithm based on the corridor method is presented. The corridor
method is a hybrid metaheuristic combining mathematical programming techniques with heuristics.
Its main idea is applying an exact algorithm to smaller areas of the search space, and moving the
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focus of the search to different areas using neighborhood rules similar to those in local search. A
dynamic programming formulation was used in that paper to solve the small subproblems exactly.

4. Mathematical programming formulation

In this section, we present a linear mathematical programming formulation for the SP, using binary
decision variables. The formulation is for the capacitated version of the problem, but it can be used
for the uncapacitated SP by choosing a maximum stack height equal to the number of items. This
formulation is valuable because it defines the problem in a formal and rigorous manner, and it
can be used to obtain optimal solutions. However, due to the large number of binary variables and
constraints, even using state-of-the-art solvers, only toy instances can be tackled within a reasonable
amount of time.

4.1. Problem data

Before presenting the variables, constraints, and objective function, we introduce the parameters of
the model.

T ∈ N – time horizon, i.e. the number of periods in the model.
N ∈ N – number of items

W ∈ N – the number of stacks in the warehouse (warehouse width).
H ∈ N – the maximum number of items that can be in a stack at any given instant

(warehouse height).
R ∈ R

N – item release dates (Ri denotes the release date of item i).
D ∈ R

N – item due dates (Di denotes the due date of item i).

The time horizon is an upper bound of the number of movements required, including the 2N
movements for item releases and deliveries, and an upper bound on the number of relocations given
by the worst-case scenario shown in Fig. 1. The expression for T is then

T = 2N +
N−1∑
n=1

n.

Fig. 1. Worst-case scenario for an instance of the SP having items A, B, C, and D, with due dates 2, 4, 3, and 1,
respectively. From this position, delivering the items in the proper sequence (D → A → C → B) requires

∑N−1
n=1 n

relocations, i.e. 6 relocations.
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4.2. Variables

Our formulation is a multiperiod model that uses three sets of position variables to represent items
that did not enter the warehouse yet (ant), the state of all positions in the warehouse (bi jnt), and the
items that already left the warehouse (cnt), at any given period t.

� ant is equal to 1 if item n has not entered the warehouse yet at period t, and 0 otherwise.
� bi jnt is equal to 1 if item n is in row j of stack i (henceforth referred to as position (i, j)) at period

t, and 0 otherwise.
� cnt is equal to 1 if item n has already left the warehouse at period t, and 0 otherwise.

We use another three sets of variables for all possible movements. As previously mentioned, there
are three types of movements: releases (xi jnt), relocations (yi jklnt), and deliveries (zi jnt).

� xi jnt is equal to 1 if item n is released into position (i, j) at period t, and 0 otherwise.
� yi jklnt is equal to 1 if item n is relocated from position (i, j) into position (k, l) at period t, and 0

otherwise.
� zi jnt is equal to 1 if item n is delivered from position (i, j) at period t, and 0 otherwise.

4.3. Objective function

The goal of the SP is to find the shortest sequence of movements satisfying the constraints for
storage space, as well as release and delivery dates. In other words, the objective is to minimize the
number of crane movements. However, since this number includes the constant 2N for item release
and delivery movements, we are only interested in minimizing the number of relocations, that is,

minimize
W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

T∑
t=1

yi jklnt.

4.4. Constraints

We now define the constraints that enforce the correct placement in the stacks, the order of events,
and the correctness of the solutions according to the definition of the SP.

Constraint 1 ensures that every item is in exactly one location (unreleased, inside the warehouse,
or delivered) at all times. Note that since a movement at any period is only reflected in the position
variables at the next period, the position variables are also defined for a final period T + 1, to reflect
the changes of a possible movement at period T (the final period for movement variables).

ant +
W∑
i=1

H∑
j=1

bi jnt + cnt = 1, for n = 1, . . . , N, t = 1, . . . , T + 1. (1)

C© 2011 The Authors.
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Similarly, a position inside the warehouse can have at most one item at any given instant. This is
ensured by constraint 2.

N∑
n=1

bi jnt ≤ 1, for i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T + 1. (2)

For j > 1, a position (i, j) can only be occupied by an item if position (i, j − 1) is also occupied.
This is achieved in constraint 3, which prevents items from floating in the air.

N∑
n=1

(bi jnt − bi, j−1,nt ) ≤ 0, for i = 1, . . . ,W, j = 2, . . . , H, t = 1, . . . , T + 1. (3)

Before proceeding further, let us define

mt =
W∑
i=1

H∑
j=1

N∑
n=1

(
xi jnt +

W∑
k=1

H∑
l=1

yi jklnt + zi jnt

)

as the number of movements made at period t.
Next, in constraint 4, we state that for each period we may have at most one movement, that is,

mt may not exceed the value one.

mt ≤ 1, for t = 1, . . . , T. (4)

In constraint 5, we state that a move can only be made in period t if one has been made in period
t − 1, therefore forcing all moves to be made in the earliest periods.

mt ≤ mt−1, for t = 2, . . . , T. (5)

Constraint 6 asserts that an item is unreleased at instant t if it was unreleased and not moved at
instant t − 1.

ant = an,t−1 −
W∑
i=1

H∑
j=1

xi jn,t−1, for n = 1, . . . , N, t = 2, . . . , T + 1. (6)

Constraint 7 is used to determine the state of any warehouse position (i, j) at instant t based on
the state at instant t − 1 and possible moves involving position (i, j) made at instant t − 1.

bi jnt = bi jn,t−1 + xi jn,t−1 +
W∑

k=1

H∑
l=1

(ykli jn,t−1 − yi jkln,t−1) − zi jn,t−1 (7)

for i = 1, . . . ,W, j = 1, . . . , H, n = 1, . . . , N, t = 2, . . . , T + 1.

In the same way, constraint 8 is used to determine the state of delivered items at instant t based
on the state at instant t − 1 and a possible delivery move made at instant t − 1.

cnt = cn,t−1 +
W∑
i=1

H∑
j=1

zi jn,t−1, for n = 1, . . . , N, t = 2, . . . , T + 1. (8)

C© 2011 The Authors.
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The next four constraints are related to the order of events (releases and deliveries). Constraint 9
enforces the correct relative order between release events: for an item n released before another item
m, the number of periods that n takes to enter the warehouse (

∑T+1
t=1 ant) is smaller than that value

for item m.
T+1∑
t=1

ant + 1 ≤
T+1∑
t=1

amt, for n = 1, . . . , N, m = 1, . . . , N such that Rn < Rm. (9)

Likewise, in constraint 10 we enforce the relative order between delivery events, using the number
of periods that items are already delivered.

T+1∑
t=1

cnt ≥
T+1∑
t=1

cmt + 1, for n = 1, . . . , N, m = 1, . . . , N such that Dn < Dm. (10)

Constraint 11 imposes the correct order between release and delivery events, by comparing the
number of periods that n takes to enter the warehouse to the number of periods before m is delivered.

T+1∑
t=1

ant + 1 ≤
T+1∑
t=1

(1 − cmt ), for n = 1, . . . , N, m = 1, . . . , N such that Rn < Dm. (11)

Constraint 12 is the inverse of the previous constraint, also relating deliveries and releases.

T+1∑
t=1

(1 − cnt ) + 1 ≤
T+1∑
t=1

amt, for n = 1, . . . , N, m = 1, . . . , N such that Dn < Rm. (12)

Finally, we conclude our model by specifying the starting and ending conditions. Constraint 13
sets all items as unreleased at period 1, and constraint 14 forces all items to be delivered at instant
T + 1.

an1 = 1, for n = 1, . . . , N. (13)

N∑
n=1

cn,T+1 = N. (14)

4.5. Solution with a general-purpose MIP solver

The model presented above is valuable as a theoretical reference and formal definition of the SP.
However, it is still impractical to obtain optimal solutions of interesting instances, even using state-
of-the-art commercial solvers. This is due to the large number of variables and constraints that does
not allow concluding the search within an acceptable computational time. We studied the limits of
the model with the Gurobi solver, version 3.0.1, and present the results in Table 1.
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Table 1
Results obtained using the Gurobi solver for toy instances within 3600 seconds of CPU time

Items Width Height z*

3 2 3 6
4 2 4 8
5 2 5 10
6 2 6 14
7 2 7 15
8 2 8 *

9 2 9 *

10 2 10 *

*The optimal solution could not be found within the allowed time.

It is evident that the model cannot be used for practical cases, since it has an extremely low
threshold of seven items, for which the optimal solution is found in 3600 seconds. This is probably
because the linear relaxation of the model provides a very loose lower bound (equal to zero in most
cases) on the number of relocations, leading to a very large branch-and-bound tree to be explored
by the MIP solver.

5. Heuristics

Since we are dealing with an NP-complete problem and the exact approach is rather limited, we
propose a set of semi-greedy construction heuristics. The heuristics are used to construct solutions,
in conjunction with a discrete-event simulation model that enforces the storage and event order con-
straints (e.g. does not allow moving items that are not at the top of a stack, and does not allow items
to be released or delivered out of the corresponding dates). All of the proposed heuristics contain a
probabilistic component, so that multiple constructions generally lead to different solutions.

The setting where the heuristics are used is rather complex, as we need to keep track of the
state of all the stacks, including the delivery dates of its items, in addition to the queue of items
to be released. We call the construction of a complete solution a simulation. The end result of
a simulation is a solution to the SP, represented as a sequence of movements, as described in
Section 2. In a simulation, item release and delivery events are executed in a chronological order.
For each release event, the heuristic is used to select a stack for the incoming item. As for delivery
events, the simulator first locates the stack where the target item currently is. Then, as long as there
are items above the target, the heuristic is used to select a different stack for the topmost item in the
stack. Finally, after the necessary reshuffles, the target item is removed from the warehouse.

Every placement decision mentioned above has the following steps: the heuristic evaluates a set
of candidate target stacks T according to given criteria, and builds a restricted candidate list (RCL)
of stacks that obtained at least a given minimum score; the item being moved is placed in a target
stack that is randomly chosen from the RCL with a given probability distribution.

The set of candidate target stacks is computed as follows. For each item being moved, a set T of
stacks exists, such that no two stacks in T are equivalent. Two stacks are equivalent if and only if
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they have the same number of items and, at each height, the items in both stacks have the same due
date. To obtain the set of nonequivalent stacks, we modify the set of all stacks in the warehouse,
replacing a group of equivalent stacks with only the first stack in the group. This technique allows
removing any symmetries in the problem, and can greatly reduce the size of the search space. It is
easy to observe that the SP possesses a great amount of symmetries, e.g. when the first item enters
the warehouse, it can be put in any of the W stacks, leading to W identical subproblems. Removing
these symmetries is crucial in avoiding repetition during the search.

We will now define some notation that will be used for describing the heuristics. We extend the
notation defined in Section 2 with information concerning the current solution.

I – set of all items, I = {1, . . . , N}
S – set of all stacks, S = {1, . . . ,W }
o – item (or object) currently being moved

Li – location of item i, i.e. the stack where it currently is
T – set of nonequivalent candidate target stacks, computed from S in release moves,

or from S \ {Li} in relocation moves
Is – set of items currently in stack s, Is = {i ∈ I : Li = s}

Ms – smallest date at which some item in the stack forcibly has to be moved,
i.e. min{Di : i ∈ Is} if Is �= ∅, +∞ otherwise.

RCL – restricted candidate list, from where the target stack for item o is randomly selected
(for relocation moves, this list never includes the stack where the item is).

5.1. Conflict Minimization (CM)

This is a very simple heuristic that tries to avoid reshuffles by simply distinguishing between moves
that cause inversions and those that do not.

Let X be the set of all noninversion causing stacks, i.e.

X = {s ∈ T : Do ≤ Ms}.
Then, the RCL in the Conflict Minimization heuristic is given by:

RCL =
{

X if X �= ∅
S otherwise.

For each item o being placed in the warehouse, or relocated, its destination stack is picked from the
RCL with uniform distribution.

5.2. Flexibility Optimization (FO)

Another way to interpret Ms is to view it as a measure of stack flexibility, that is, the range of item
due dates that can be placed in a stack without causing an inversion. The higher Ms, the more
flexible the stack is.

C© 2011 The Authors.
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Fig. 2. Flexibility maximization (left) and relocation postponing (right) strategies. Items are placed in noninversion
stacks when possible, maximizing flexibility by putting items with close due dates together. When placing an item that

forcibly causes an inversion, postponing the forced relocation is beneficial in some cases. The letters A, B, and C
represent item names, and the numbers represent their due dates DA, DB, and DC .

Like in the CM heuristic, items are placed without creating new inversions whenever possible.
However, the FO heuristic places items with close due dates together, in order to maximize stack
flexibility (Fig. 2, left). When inversions are unavoidable, we propose the rule of thumb of postponing
the relocation as much as possible (Fig. 2, right); in many cases, this leads to less relocations.

For formalizing these ideas, let us define the scoring function f , taking an item i and a stack s as
arguments, as

f (i, s) =
⎧⎨
⎩

K if Is = ∅
Ms if Ms ≥ Di
2K − Ms if Ms < Di

where K is defined as the constant 1 + max{D}. This function maps moves to values, such that
noninversion-causing moves (first and second branches) are mapped to lower values, and inversion-
causing moves (third branch) are mapped to higher values. In both cases, the function assigns lower
values to moves that place item i above items with due dates closer to Di.

We can now define the RCL as the set of stacks that have the minimum value of f for the item o
being moved, i.e.

RCL = {s ∈ T : f (o, s) ≤ f (o, s′), ∀s′ ∈ T }.
As in CM, the destination stack for any item o being moved is picked from the RCL with uniform
distribution.

5.3. Parameterized Flexibility Optimization (PFO)

As presented above, the FO heuristic builds an RCL containing stacks with the same value of f (o, s).
However, in many cases the RCL will have only one element; in these cases, repeated construction
with FO can lead to very similar or identical solutions.

The PFO heuristic builds on FO by considering a second-best candidate when FO’s RCL would
contain only one element. The second-best stack is chosen with probability ρ, and the best stack
is chosen with probability 1 − ρ, i.e. following a Bernoulli distribution. The parameter ρ controls
how likely the second-best candidate is chosen; in particular, if ρ = 0, this heuristic is equivalent to
FO. The inclusion of second-best stacks in the RCL leads to increased solution diversity, which is
exploited when making multiple constructions.

C© 2011 The Authors.
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The RCL in PFO is created as follows (using function f defined in Section 5.2):

1. Let Y = {s ∈ T : f (o, s) ≤ f (o, s′), ∀s′ ∈ T }.
2. Pick a stack s1 ∈ Y (randomly chosen with uniform distribution).
3. Then, let T ′ = T \ {s1}, and Z = {s ∈ T ′ : f (o, s) ≤ f (o, s′), ∀s′ ∈ T ′}.
4. Pick a stack s2 ∈ Z (randomly chosen with uniform distribution).
5. Finally, let RCL = {s1, s2}, where s1 is chosen with probability 1 − ρ and s2 with probability ρ.

6. Computational experiment

In order to assess the quality of the heuristics, we performed a computational experiment where all
the transactions in the warehouse, corresponding to the release and delivery of a series of items, were
simulated using the heuristics for selecting a stack for each of the items being released or relocated.

The heuristics presented in this paper were extensively tested on a set of 12 challenging instances,
two for each number of stacks W ∈ {2, 3, 4, 10, 20, 40}. All instances have 1000 items (N = 1000).
In addition to the heuristics presented here, a completely random placement heuristic (RAND) was
also part of the experiment, to serve as a basis of comparison for the other heuristics. For the PFO
heuristic, the value used for the probability parameter ρ was 0.01 (determined empirically). On each
of the test instances, 10,000 independent simulations were executed with each heuristic, making a
total of 480,000 simulations; in each of them, the number of relocations was recorded. The system
used for the experiment has a Intel Core2-Duo T7500 processor at 2.2 GHz, 3 GB of memory, and
is running Windows Vista. All the algorithms mentioned in the paper were implemented in Python
version 2.6.

The large set of results mentioned above is used to compute the statistics of interest. As mentioned
in Section 1, the size of the search space forces the use of incomplete search methods, so we will base
our statistics on the multiple simulation method. The main indicator that we want to estimate is the
expected number of relocations, for each of the heuristics, if we execute a given number of simulations
and select the best of them. The maximum, minimum, median, and quartiles to be expected,
with respect to the number of simulations, were also computed and plotted. For computing these
statistics, we used a bootstrap method (Moore and McCabe, 2005) where the main sample consists
of the 10,000 values obtained from the simulations of one heuristic in one instance. This set was
then resampled 10,000 times using a resampling scheme without replacement. To compute the best
solution obtained after a given number of simulations θ ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024},
the value μθ

x, representing the minimum of resample x (or subsample minimum) with size θ , was
taken and recorded for each resample.

The bootstrap method was chosen for several reasons. It allows us to obtain many possible
versions of the data from a single sample, therefore it is very useful when it is computationally
costly to obtain enough samples to estimate the distribution of a given statistic. In our case, since
we are studying the distribution of the minimum number of relocations after a certain number of
simulations, we have a large pool of data for each instance and heuristic pair, and we take many
resamples that represent possible cases when we make a number θ of simulations. From each of
those resamples (in this case each resample has size θ ) we take the minimum, and so estimate the
sampling distribution of the subsample minimum. The method is straightforward and allows us
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to estimate arbitrarily complex statistics. The number of resamples traditionally used is 1000, but
increasing the number of resamples can reduce the effect of random sampling errors, therefore we
decided to take 10,000 resamples.

Figures 3 and 4 show the observed bootstrap distributions of the subsample minimum μθ
x for all

combinations of instance, heuristic, and subsample size.
The graphics show a number of interesting facts. First of all, we were probably expecting the

RAND heuristic, which represents the naive brute-force approach, to be by far worse than any other
heuristic, since it does not possess any form of “intelligence.” However, the graphics surprisingly
reveal that it was the best heuristic for both two-stack instances after 1024 simulations. Another
surprising fact is that, despite being far from the best, the RAND heuristic performed better than
CM in the remaining instances, with the only exception being the 40-stack instances.

If we consider all instances with more than two stacks, we see that RAND generally beats CM,
but is still far from the performance of the flexibility heuristics (FO and PFO). This indicates that
simply avoiding inversions without looking into stack flexibility is worse than a brute-force method,
but if we also take flexibility into account the results are much better than brute-force, except for
instances with two stacks.

There is also an interesting observation about the variability in the results of the two flexibility
heuristics (FO and PFO). The inclusion of second-best stacks in PFO’s RCL allows it to produce
more solutions than FO, consequently having a higher variability in its results. In Fig. 3, this
is especially visible in the two-stack instances, where the increased diversity allows PFO to reach
better results. However, this advantage is apparently negligible and brings no benefit in the remaining
instances, where the performance of the two heuristics is roughly equivalent, with only a small
advantage for PFO on instances with 10 or more stacks.

Numerical results for subsample size θ = 1024 are presented in Table 2. The table shows, for each
heuristic and instance, the expected value of the minimum, average, and maximum of the subsample
minimum, i.e. the best solution after 1024 simulations. These values estimate the best, most likely,
and worst scenarios, respectively, giving us an idea of the variability of the best solution obtained
with each heuristic.

We can observe very small amplitude in FO’s interval for most instances, indicating that the
heuristic’s performance is very consistent after 1024 simulations. PFO shows a larger amplitude,
but slightly better average performance in most cases, which means that, despite being less reliable,
it can achieve better results as the number of constructions increases. In addition, this suggests that
more solid and possibly better results can be achieved with PFO by increasing the subsample size.

The table also confirms that, at the end of 1024 simulations, the RAND heuristic is better than CM
in all but the 40-stack instances. This exception may be related to having few necessary inversions
on these instances, thus being generally better to avoid them.

The heuristics presented in this paper are greedy construction heuristics that use very simple
rules. Due to their simplicity, the computational time required to solve even large-scale instances
is reduced (less than 1 second in the system used). This allows us to quickly obtain solutions
of reasonable quality, and can be exploited by e.g. repeating simulations to take advantage of
their probabilistic component, or by using the heuristics as a guide for a depth—first tree search
algorithm. Additionally, this simplicity eases understanding, verification, and predictability of the
heuristics’ behavior.

C© 2011 The Authors.
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Fig. 3. Boxplots of the bootstrap distributions (10,000 resamples) of the best solution (resample minimum) after θ

simulations (subsample size). Results for increasing number of stacks (2, 3, and 4) are shown from top to bottom.
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Fig. 4. Boxplots of the bootstrap distributions (10,000 resamples) of the best solution (resample minimum) after θ

simulations (subsample size). Results for increasing number of stacks (10, 20, and 40) are shown from top to bottom.
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Table 2
Minimum, average, and maximum of the best solution after 1024 simulations, obtained with bootstrap without replace-
ment (10,000 resamples)

Instance RAND CM

min avg max min avg max

2 stacks - A 48,153 48,764.12 49,896 48,240 48,854.17 49,850
2 stacks - B 48,447 48,882.95 49,691 48,767 49,251.49 50,157
3 stacks - A 41,610 43,567.45 45,178 45,126 45,931.16 47,184
3 stacks - B 42,330 43,515.76 45,080 44,672 45,358.99 46,468
4 stacks - A 34,402 34,846.84 35,843 37,798 38,193.11 39,164
4 stacks - B 32,391 32,858.65 33,867 35,082 35,640.65 36,589
10 stacks - A 15,231 15,564.27 15,921 18,121 18,834.99 19,315
10 stacks - B 15,159 15,239.04 15,547 17,899 18,126.28 18,636
20 stacks - A 7412 7547.02 7788 7898 8097.58 8375
20 stacks - B 7907 8101.57 8286 8964 9084.90 9384
40 stacks - A 4021 4084.53 4207 2773 2858.70 2993
40 stacks - B 4185 4225.26 4322 3081 3126.23 3234

Instance FO PFO(0.01)

min avg max min avg max
2 stacks - A 52,867 52,922.14 53,028 50,420 50,856.81 51,541
2 stacks - B 50,807 50,824.97 50,858 48,974 49,901.30 50,537
3 stacks - A 24,084 24,660.63 25,319 24,300 24,876.96 25,719
3 stacks - B 23,724 24,151.24 24,948 23,832 24,380.79 25,411
4 stacks - A 14,156 14,556.20 14,959 14,500 14,837.15 15,278
4 stacks - B 13,086 13,483.66 13,753 13,453 13,655.12 14,086
10 stacks - A 3643 3667.77 3718 3378 3442.08 3574
10 stacks - B 3418 3435.40 3473 3358 3389.99 3473
20 stacks - A 883 886.90 891 861 866.69 884
20 stacks - B 1032 1036.63 1044 954 968.57 1003
40 stacks - A 41 41.00 41 34 35.40 37
40 stacks - B 156 156.00 156 133 137.89 145

7. Conclusion

We presented a hard combinatorial optimization problem with direct application in real life. We
developed a mathematical formulation of the problem, which proved to be unusable for any real-
life case. Therefore, to tackle the problem, we proposed three different heuristics for placement
decisions, which can be used within a simulation model to construct complete solutions. The main
contribution of this work is an in-depth study of the behavior of the heuristics, analyzed through
the bootstrap distribution of the best solution found after a given number of simulations.

The first heuristic studied in this paper was named Conflict Minimization (CM), and simply
places items in a random noninversion stack, if possible; otherwise it chooses a random target from
all available stacks. The second heuristic is FO, which tries to preserve stack flexibility by putting
items with close due dates together, while also avoiding inversion moves. On unavoidable inversions,
the item is placed in the stack where it will be moved latest, postponing the relocation move for as
long as possible. The last heuristic is PFO, a variant of FO that attempts to increase the diversity
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of its solutions by including a second-best stack in the RCL when FO would consider only one
possibility.

Our experimental results show that the PFO heuristic performs slightly better than FO in most
instances. The difference is greatest in the two-stack instances, where PFO greatly outperforms FO,
possibly due to the need of counterintuitive moves (not considered by FO) to obtain better results.

We also observed that a brute-force method can (generally) outperform the CM heuristic, but
is worse than a flexibility approach, indicating that solely avoiding inversions without looking into
flexibility does not bring any advantage over brute-force, but using both criteria we can achieve
consistently better results.

Directions for future work include testing different methods of solving the SP, namely variants of
branch-and-bound, and possibly other metaheuristics. Also, since the problem naturally lends itself
to a recursive definition, developing a dynamic programming formulation for solving it is another
interesting research possibility.
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