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Abstract 

In this work we present a metaheuristic method based on tabu search for solving 

the permutation flow shop scheduling problem with sequence dependent setup times, 

with the objective of minimizing total weighted tardiness. The problem is well known 

for its practical applications and for the difficulty in obtaining good solutions. The tabu 

search method proposed is based on the insertion neighborhood, and is characterized, at 

each iteration, by the selection and evaluation of a small subset of this neighborhood; 

this has consequences both on diversification and on speeding up the search. We also 

propose a speed-up based on book keeping information of the current solution, used for 

the evaluation of its neighbors. 

Keywords: Combinatorial Optimization, Metaheuristics, Tabu Search, 

Flowshop, Scheduling 

  



Introduction 

Consider a flow shop with n jobs to process on m machines; let      denote the 

known production time of job j in machine i. We assume that all jobs have the same 

sequence of operations on all the machines, so a solution is completely defined by a 

single permutation. This is known as the permutation flow shop problem, and is widely 

studied mainly for the objective of minimizing makespan, i.e., the completion time of 

the last job on the last machine. However, in order to model real-world production 

systems some additional details have to be taken into account. In our problem, each job 

j has a given due date   , and a weight    is used to assign priorities among the jobs. 

Unproductive times for reconfiguring a machine are sequence dependent;       

represents the changeover time requiring to start the manufacture of a product k after a 

product j was produced on machine i. We denote as     the completion time of job j in 

machine i. Given a permutation  , where    represents the job at position j, the 

completion times can be computed through the recursive formula 

     
            

           
        

       
 

where      
  ,         

   and      
  , for i = 1,...,m, j = 1,...,n. The tardiness of 

job j is                 , and the objective is to minimize the total weighted 

tardiness        
 
   . 

This problem is NP-hard (Gupta, 1986), and the accelerator for incremental 

computation of the objective function proposed by Taillard (1990) is not applicable, as 

the computation of the objective function directly depends on the evaluation of the 

earliest completion time of each job on each machine; hence, large computational times 

are required for its solution. In the literature only a small number of authors focused on 

this problem; in (Parthasarathy & Rajendran, 1997a) and (Parthasarathy & Rajendran, 



1997b) the authors propose a simulated annealing method, in (Rajendran & Ziegler, 

2003) the authors develop a method to minimize the sum of weighted flowtime and 

weighted tardiness, in (Ruiz & Stützle, 2008) the authors apply an iterated greedy 

heuristics and present an extensive analysis of both proposed and adapted algorithms for 

this particular problem. A more generic review of setup related problems can be found 

in (Allahverdi, Ng, Cheng & Kovalyov, 2008). 

In this article we present a tabu search heuristics, enhanced with a speedup 

method that allows significantly reducing the computational times. Follows an 

evaluation of the algorithm's performance, based on widely used literature benchmark 

tests.  We end presenting some conclusions. 

Tabu Search 

Tabu Search was proposed by Glover (1986) as a method to guide a heuristic 

search through the solution space. Its main characteristic is the tabu list, a recent 

memory record that prevents the repetition of moves in the short run. In many cases, 

this avoids cycling, and leads the algorithm to explore promising regions. Our 

implementation is based on the insertion neighborhood, as suggested in (Taillard, 1990). 

Initial solution 

The starting solution for our algorithm is obtained with the heuristics proposed 

in (Ruiz & Stützle, 2008). This is an adaptation of the Nawaz, Enscore & Ham (1983) 

heuristic (NEH), and consists of two steps: first, the jobs are sorted by non-decreasing 

order of weighted due date (EWDD rule); then a greedy construction heuristics is used 

to build a new schedule (NEH_EWDD), according to the following steps:  

1. remove a job from the begin of the EWDD solution;  

2. tentatively insert this job in all possible positions of NEH_EWDD 

(initialy empty);  



3. save the insertion that has the best objective.  

The process is repeated until all jobs are scheduled; the final permutation is the 

NEH_EWDD solution. 

Moves and neighborhood 

Tabu search exploration is based on moving iteratively to a solution in the 

neighborhood. In our algorithm we use insertion moves: given a permutation   and a 

pair of positions          , the permutation    obtained by removing job at position i 

and inserting it at position j is:  

                                    if    ; 

                                    if    . 

Having a subset U of jobs, we define N(U,  ) as the neighborhood of  , 

containing all the possible insertion moves of the jobs in U. 

Tabu list and search strategy 

In our implementation, tabu information is kept in an array: we assign a value    

to each job j, and at iteration k we say that job j is tabu (i.e., cannot be used in the 

current move) if     . 

In a given iteration k, a job j chosen to perform the current move becomes tabu 

for t iterations, with            , and hence we set       . An exception is 

made when the best found solution is improved; in this case, we set        . 

(                   are parameters of the algorithm.) 

Evaluating the neighborhood generated by trying insertion among any pair of 

jobs is a demanding computational task, so we propose a neighborhood restriction: 

instead of evaluating the complete neighborhood we evaluate a set R of r randomly 

chosen jobs, with             (              are parameters of the algorithm). 



To illustrate the behavior of the algorithm, let us consider an example with 

seven jobs. Suppose that at a given iteration we have as incumbent solution (1, 2, 3, 4, 

5, 6, 7). The operations to perform during a tabu search iteration are the following:  

1. find the list of non-tabu moves L; suppose we obtain L = {1,2,3,4};  

2. draw r to find the number of jobs to evaluate; we obtain, e.g., r = 2;  

3. randomly choose r jobs from L; we obtain, say, jobs 1 and 4, so R = {1,4};  

4. evaluate the solutions of N(R,  ); e.g., for job 1 the neighbor permutations 

are:  

(2, 1, 3, 4, 5, 6, 7) 

(2, 3, 1, 4, 5, 6, 7) 

(2, 3, 4, 1, 5, 6, 7) 

(2, 3, 4, 5, 1, 6, 7) 

(2, 3, 4, 5, 6, 1, 7) 

(2, 3, 4, 5, 6, 7, 1) 

Then, the permutation that yields the best objective is chosen as the incumbent 

solution; suppose the first permutation is chosen; is this case, the job that will become 

tabu is j=1. The final step is to update the tabu list. 

As can be seen from the previous example, when we evaluate the insertion of 

job 1, the information concerning the underlined partial permutations is not changed. 

Carefully bookkeeping this information across all the tentative insertions of each job 

leads to large computational savings. 

The algorithm was experimentally calibrated by evenly dividing the used time in 

two phases. In the first phase, a highly diversified search is performed by setting 

       and         forcing the method to choose with high probability different 

jobs to perform the move. In the second stage we set        ; this was observed to 

act as an intensification strategy, as the program conducts a more focused search. In 



both phases        and       . Also a simple restart mechanism is implemented: if 

more than 300 iterations are performed without improving the best found solution we 

resume the incumbent solution to the best found so far and clear the tabu list, this 

process is also applied in phase transition. The parameters were set in order to obtain a 

good compromise between running time and solution quality. 

Computational results 

To evaluate the quality of the proposed algorithm we conducted a test with the 

four benchmark sets proposed in (Ruiz & Stützle, 2008). These are based on the 120 

instances of Taillard (1993), which are extended with the inclusion of setup times, due 

dates, and weights. The original problems are organized in twelve groups of ten 

instances, containing different combinations of n jobs and m machines. The available 

combinations of n × m are: {20, 50, 100} × {5, 10, 20}, 200 × {10, 20} and 500 × 20. 

The processing times   are integers generated with uniform distribution in [1, 99]. The 

setup times are generated according to the processing times of the original instance, 

being at most 10, 50, 100 and 125% of the sum of the processing times in the original 

instances. Weights are integers, and are generated with uniform distribution in [1, 10]. 

Due dates are generated in a similar way to (Hasija & Rajendran, 2004). The process is 

summarized in three steps:  

1. For each job j, calculate   the total processing time in all the m machines: 

        

 

   
 

2. Let    be the sum in all machines of the average setup time for all possible 

following jobs: 

    
       

 
       

   

 

   
 

3. The due date    of job j is given by: 



                   

where u is a random number uniformly distributed in      . 

The four resulting groups are denominated ssd10, ssd50, ssd100 and ssd125, 

according to the ratio of setup times to processing times. 

In order to have a term for comparison for our algorithm, we used the Iterated 

Greedy (IG) method proposed in (Ruiz & Stützle, 2008). IG is as adaptation of an 

algorithm initially proposed for makespan, which iteratively applies a greedy 

construction to an incumbent solution. At each iteration, four jobs are randomly 

removed, and inserted back by means of the greedy insertion heuristics of 

NEH_EWDD; the process is followed by a local optimization descent. Finally, an 

acceptance criterion similar to that of simulated annealing with constant temperature is 

used to update the incumbent solution. 

In Table 1 we present the average of the relative percentage deviation errors 

(RPD), obtained by the algorithms IG, IGS and TS. Let f be the objective value obtained 

by a method on a given run, and b be the best known solution for the corresponding 

instance; RPD is defined as: 

    
   

 
    . 

IG represents the original results of (Ruiz & Stützle, 2008) with ten runs of each 

instance in an AMD Athlon XP 1600+ processor with 512 Mbytes of RAM and CPU 

time limit of n × m × 90 ms. IGS is our implementation of the iterated greedy algorithm 

with the referred speed up due to information bookkeeping, and TS is our proposed tabu 

search; results correspond to the average of 5 runs on each instance, with an allowed 

CPU time of n × m × 45 ms. In our experiment, tests were performed in a computer 

AMD Athlon 64 X2 Dual Core 3800+ with 2Gb of RAM. The algorithms are coded in 

mixed Python/Fortran wrapped with f2py (Peterson, 2009). 



We can observe that, although using half of the computational time of IG, the 

results of IGS are far superior. The results of TS are still superior, obtaining the best 

results in 44 of the 48 groups of instances. 

Conclusions 

In this work we present a version of tabu search for the permutation flow shop 

problem, with sequence dependent setup times, and the objective of minimizing total 

weighted tardiness. The algorithm is based on the exploration of a small neighborhood 

with a dynamic tabu list, being supported by a speedup due to bookkeeping of solution 

information. Tests performed with standard benchmarks confirm the quality of the 

method proposed, as we obtain better results than those published using half of the CPU 

time. In future work we will apply the developed method to other flow shop problems, 

and experiment with different diversification/intensification strategies to try enhancing 

the performance even further. 
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ssd10 ssd50 ssd100 ssd125 

 

IG IGS TS IG IGS TS IG IGS TS IG IGS TS 

20 x 5 0,00 0,01 0,00 0,00 0,00 0,00 0,40 0,02 0,03 0,40 0,41 0,00 

20 x 10 0,00 0,00 0,00 0,15 0,04 0,00 0,10 0,07 0,00 0,04 0,00 0,00 

20 x 20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

50 x 5 0,77 0,62 0,60 1,79 1,33 0,85 3,46 2,08 1,68 3,62 2,91 1,86 

50 x 10 1,22 1,02 0,64 2,41 1,50 0,96 2,93 1,73 1,20 3,79 2,68 1,91 

50 x 20 1,51 1,44 1,17 2,80 1,54 1,18 2,36 2,03 1,12 2,74 1,63 0,91 

100 x 5 1,39 1,07 1,12 2,14 1,30 1,15 2,76 1,30 0,69 2,01 1,08 0,60 

100 x 10 2,12 1,20 1,14 2,51 1,18 0,91 2,57 0,99 0,96 2,52 0,84 0,68 

100 x 20 3,41 1,59 1,28 3,29 1,15 0,91 3,29 1,19 1,21 2,79 0,76 0,30 

200 x 10 1,35 0,84 0,59 1,07 0,24 0,05 1,27 0,30 0,20 0,99 0,73 0,72 

200 x 20 2,30 0,03 -0,50 1,61 -0,33 -0,70 1,60 -0,28 -0,37 1,17 -0,31 -0,50 

500 x 20 0,66 -0,43 -0,83 0,95 -0,28 -0,54 0,63 0,76 0,58 0,45 1,59 1,38 

average 1,23 0,62 0,43 1,56 0,64 0,40 1,78 0,85 0,61 1,71 1,03 0,66 

Table 1: Relative percentage deviation errors obtained by Ruiz and Stützle (2008), by our implementation of their 
algorithm (IGS), and by tabu search (TS). Best results marked at bold. 


