Optimization with Gurobi and Python

João Pedro PEDROSO

INESC Porto and Universidade do Porto, Portugal
jpp@fc.up.pt

Workshop at Universidade dos Açores
September 2011
Gurobi – a one-page explanation

- Optimization system by Z. Gu, E. Rothberg, and R. Bixby

- Very high performance, cutting-edge solvers:
 - linear programming
 - quadratic programming
 - mixed-integer programming

- Advanced presolve methods
- MILP and MIQP models:
 - cutting planes
 - powerful solution heuristics

- Free academic license
Why Python?

- Everything can be done after loading a module!
- Optimization allowed:
  ```python
  import gurobipy
  ```
- Use algorithms on graphs:
  ```python
  import networkX
  import matplotlib
  ```
- Allows levitation:
  ```python
  import antigravity (?)
  ```
Python — a one-page explanation

- Simple types: bools, integers, floats, strings (*immutable*)
- Complex types:
 - lists: sequences of elements (of any type; *mutable*)
 - indexed by an integer, from 0 to size-1
 - tuples: as lists, but *immutable* → may be used as indices
 - `T=(1,5,3,7), t=T[3]`
 - dictionaries: mappings composed of pairs *key, value* (*mutable*)
 - indexed by an integer, from 0 to size-1
 - `D = {}, D[872]=6, D["pi"]=3.14159, D[(1,7)]=3`

- Iteration:
 - lists: `for i in A: print i`
 - dictionaries: `for i in D: print i, D[i]`
 - cycles: `i = 0 while i < 10: print i, i += 1`
Putting things together

- import the `gurobipy` module
- create a model object
 - add variables
 - add constraints
- `[debug?]`
- solve
- report solution
Hello world example

minimize 3000x + 4000y
subject to: 5x + 6y ≥ 10
7x + 5y ≥ 5
x, y ≥ 0

from gurobipy import *
model = Model("hello")
x = model.addVar(obj=3000, vtype="C", name="x")
y = model.addVar(obj=4000, vtype="C", name="y")
model.update()
L1 = LinExpr([5,6],[x,y])
model.addConstr(L1,">",10)
L2 = LinExpr([7,5],[x,y])
model.addConstr(L2,">",5)
model.ModelSense = 1 # minimize
model.optimize()
if model.Status == GRB.OPTIMAL:
 print "x* =", x.X
 print "y* =", y.X

#include <stdio.h>
int main()
{
 printf("Hello World");
 return 42;
}
The \textit{k}-median problem

- facility location problem of min-sum type
- \textit{n} customers
- \textit{m} positions for facilities (at some customer’s coordinates)
- \textit{k} maximum open facilities
- minimize service time summed for all the customers
- (Euclidean distance, random uniform \((x, y)\) coordinates)
The \textit{k}-median problem — formulation

- \textit{n} customers, \textit{m} facilities
- Variables:
 - \(x_{ij} = 1 \) if customer \(i \) is served by facility \(j \)
 - \(y_j = 1 \) if facility \(j \) is open

1. All customers must be served
2. Maximum of \(k \) open facilities
3. Customer \(i \) can be served by \(j \) only if \(j \) is open
4. Minimize total, accumulated service time

\[
\begin{align*}
\text{minimize} & \quad \sum_i \sum_j c_{ij} x_{ij} \\
\text{subject to} & \quad \sum_j x_{ij} = 1 \quad \forall i \\
& \quad \sum_j y_j = k \\
& \quad x_{ij} \leq y_j \quad \forall i, j \\
& \quad x_{ij} \in \{0, 1\} \quad \forall i \\
& \quad y_j \in \{0, 1\} \quad \forall j
\end{align*}
\]
def kmedian(m, n, c, k):
 model = Model("k-median")
 y, x = {}, {}
 for j in range(m):
 y[j] = model.addVar(obj=0, vtype="B", name="y[%s]"%j)
 for i in range(n):
 x[i,j] = model.addVar(obj=c[i,j], vtype="B", name="x[%s,%s]"%(i.j))
 model.update()
 for i in range(n):
 coef = [1 for j in range(m)]
 var = [x[i,j] for j in range(m)]
 model.addConstr(LinExpr(coef,var), ",=", 1, name="Assign[%s]"%i)
 for j in range(m):
 for i in range(n):
 model.addConstr(x[i,j], "<", y[j], name="Strong[%s,%s]"%(i,j))
 coef = [1 for j in range(m)]
 var = [y[j] for j in range(m)]
 model.addConstr(LinExpr(coef,var), ",=", rhs=k, name="k_median")
 model.update()
 model.__data = x, y
 return model
```python
import math
import random
def distance(x1, y1, x2, y2):
    return math.sqrt((x2-x1)**2 + (y2-y1)**2)
def make_data(n):
    x = [random.random() for i in range(n)]
    y = [random.random() for i in range(n)]
    c = {}
    for i in range(n):
        for j in range(n):
            c[i,j] = distance(x[i], y[i], x[j], y[j])
    return c, x, y
```
The k-median problem — calling and solving

```python
n = 200
c, x_pos, y_pos = make_data(n)
m = n
k = 20
model = kmedian(m, n, c, k)

model.optimize()
x,y = model._data
dges = [(i,j) for (i,j) in x if x[i,j].X == 1]
nodes = [j for j in y if y[j].X == 1]
print "Optimal value=" , model.ObjVal
print "Selected nodes:" , nodes
print "Edges:" , edges
```
import networkx as NX
import matplotlib.pyplot as P
P.ion() # interactive mode on
G = NX.Graph()

other = [j for j in y if j not in nodes]
G.add_nodes_from(nodes)
G.add_nodes_from(other)
for (i, j) in edges:
 G.add_edge(i, j)

position = {}
for i in range(n):
 position[i] = (x_pos[i], y_pos[i])

NX.draw(G, position, node_color='y', nodelist=nodes)
NX.draw(G, position, node_color='g', nodelist=other)
Optimize a model with 40201 rows, 40200 columns and 120200 nonzeros
Presolve time: 1.67s
Presolved: 40201 rows, 40200 columns, 120200 nonzeros
Variable types: 0 continuous, 40200 integer (40200 binary)
Found heuristic solution: objective 22.1688378
Root relaxation: objective 1.445152e+01, 2771 iterations, 0.55 seconds

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj</td>
<td>Depth</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>14.45152</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Cutting planes:
 Gomory: 1
 Zero half: 1

Explored 0 nodes (2771 simplex iterations) in 2.67 seconds
Thread count was 1 (of 8 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.445286097717e+01, best bound 1.445151681275e+01, gap 0.0093%
Optimal value = 14.4528609772
Edges: [(57, 106), (85, 85), (67, 151), (174, 142), (139, 31), (136, 40), (35, 37), (105, 197),
max c: 0.257672494705
The k-center problem

- facility location problem of min-max type
- n customers
- m positions for facilities (at some customer’s coordinates)
- k maximum open facilities
- minimize service time for the **latest-served** customer
- (Euclidean distance, random uniform (x, y) coordinates)
The k-center problem — formulation (min-max type)

- $x_{ij} = 1$ if customer i is served by facility j
- $y_j = 1$ if a facility j is open
- All customers must be served
- Maximum of k open facilities
- Customer i can be served by j only if j is open
- Update service time for the latest-served customer

Minimize z

Subject to

- $\sum_j x_{ij} = 1 \quad \forall i$
- $\sum_j y_j = k$
- $x_{ij} \leq y_j \quad \forall i, j$
- $c_{ij} x_{ij} \leq z \quad \forall i, j$
- $x_{ij} \in \{0, 1\} \quad \forall i, j$
- $y_j \in \{0, 1\} \quad \forall j$
The k-center problem — Python/Gurobi model

```python
def kcenter(m, n, c, k):
    model = Model("k-center")
    z = model.addVar(obj=1, vtype="C", name="z")
    y, x = {}, {}
    for j in range(m):
        y[j] = model.addVar(obj=0, vtype="B", name="y[%s]"%j)
        for i in range(n):
            x[i,j] = model.addVar(obj=0, vtype="B", name="x[%s,%s]"%(i,j))
    model.update()
    for i in range(n):
        coef = [1 for j in range(m)]
        var = [x[i,j] for j in range(m)]
        model.addConstr(LinExpr(coef,var), ",=", 1, name="Assign[%s]%i")
    for j in range(m):
        for i in range(n):
            model.addConstr(x[i,j], ",<", y[j], name="Strong[%s,%s]"%(i,j))
    for i in range(n):
        for j in range(n):
            model.addConstr(LinExpr(c[i,j],x[i,j]), ",<", z, name="Max_x[%s,%s]"%(i,j))
    coef = [1 for j in range(m)]
    var = [y[j] for j in range(m)]
    model.addConstr(LinExpr(coef,var), ",=", rhs=k, name="k_center")
    model.update()
    model.__data = x,y
    return model
```

João Pedro PEDROSO
Optimization with Gurobi and Python
The \(k\)-center problem — solver output

Optimize a model with 20101 rows, 10101 columns and 50000 nonzeros
Presolve removed 100 rows and 0 columns
Presolve time: 0.35s
Presolved: 20001 rows, 10101 columns, 49900 nonzeros
Variable types: 1 continuous, 10100 integer (10100 binary)
Found heuristic solution: objective 0.9392708
Found heuristic solution: objective 0.9388764
Found heuristic solution: objective 0.9335182
Root relaxation: objective 3.637572e-03, 13156 iterations, 1.88 seconds

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl Unexpl</td>
<td>Obj Depth IntInf</td>
<td>Incumbent BestBd Gap</td>
<td>It/Node Time</td>
</tr>
<tr>
<td>0 0 0.00364 0 9255 0.93352 0.00364 100% - 3s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[...]
H 7 0 0.2187034 0.21870 0.0% 603 454s

Cutting planes:
 Gomory: 1
 Zero half: 2
Explored 7 nodes (83542 simplex iterations) in 454.11 seconds
Thread count was 1 (of 8 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 2.187034280810e-01, best bound 2.187034280810e-01, gap 0.0%
Optimal value= 0.218703428081
Selected nodes: [12, 14, 23, 33, 41, 51, 53, 72, 80, 92]
Edges: [(53, 53), (36, 80), (54, 33), (69, 12), (39, 14), (86, 51), (99, 53), (37, 41), (49, 14), (26, 72), (2]
CPU usage

- k-median instance: $n = m = 200$, $k = 20$, CPU = 5s
- k-center instance: $n = m = 100$, $k = 10$, CPU = 454s
- k-center: for an instance that is **half size** the one solved for k-median, used **almost ten times** more CPU
- can we do better?
The *k*-center problem — formulation (min type)

- $a_{ij} = 1$ if customer *i* **can be** served by facility *j*
- $y_j = 1$ if a facility *j* is open
- $\xi_i = 1$ if customer *i* **cannot** be served
- parameter: distance θ for which a client can be served
 - if $c_{ij} < \theta$ then set $a_{ij} = 1$
 - else, set $a_{ij} = 1$

1. either customer *i* is served
2. or $\xi = 1$
3. maximum of *k* open facilities

minimize

$$\sum_i \xi_i$$

subject to

$$\sum_j a_{ij} y_j + \xi_i \geq 1 \quad \forall i$$

$$\sum_j y_j = k$$

$$\xi_i \in \{0, 1\} \quad \forall i$$

$$y_j \in \{0, 1\} \quad \forall j$$
def kcenter(m, n, c, k, max_c):
 model = Model("k-center")
 z, y, x = {}, {}, {}
 for i in range(n):
 z[i] = model.addVar(obj=1, vtype="B", name="z[\%s]"%i)
 for j in range(m):
 y[j] = model.addVar(obj=0, vtype="B", name="y[\%s]"%j)
 for i in range(n):
 x[i,j] = model.addVar(obj=0, vtype="B", name="x[\%s,%s]"%(i,j))
 model.update()
 for i in range(n):
 coef = [1 for j in range(m)]
 var = [x[i,j] for j in range(m)]
 var.append(z[i])
 model.addConstr(LinExpr(coef,var), ",", 1, name="Assign[\%s]"%i)
 for j in range(m):
 for i in range(n):
 model.addConstr(x[i,j], ",", y[j], name="Strong[\%s,%s]"%(i,j))
 coef = [1 for j in range(m)]
 var = [y[j] for j in range(m)]
 model.addConstr(LinExpr(coef,var), ",", rhs=k, name="k_center")
 model.update()
 model.__data = x,y,z
 return model
The \textit{k}-center problem — binary search

```python
def solve_kcenter(m, n, c, k, max_c, delta):
    model = kcenter(m, n, c, k, max_c)
    x, y, z = model.__data
    LB = 0
    UB = max_c
    while UB-LB > delta:
        theta = (UB+LB) / 2.
        for j in range(m):
            for i in range(n):
                if c[i,j] > theta:
                    x[i,j].UB = 0
                else:
                    x[i,j].UB = 1.0
        model.update()
        model.optimize()
        infeasibility = sum([z[i].X for i in range(m)])
        if infeasibility > 0:
            LB = theta
        else:
            UB = theta
    nodes = [j for j in y if y[j].X == 1]
    edges = [(i,j) for (i,j) in x if x[i,j].X == 1]
    return nodes, edges
```

João Pedro PEDROSO
Optimization with Gurobi and Python
The k-center problem: CPU usage

![Graph showing CPU time vs. number of nodes for different methods: k-center, k-center (bin search), k-median. The graph highlights the performance differences among the methods.]
The k-center problem: solution
The k-median (left) and k-center (right) solutions