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Abstract. In this paper we are concerned with the problem of acquiring knowledge by
integration. Our aim is to construct an integrated knowledge base from several separate
sources. The need to merge knowledge bases can arise, for example, when knowledge
bases are acquired independently from interactions with several domain experts. As
opinions of different domain experts may differ, the knowledge bases constructed in this
way will normally differ too. A similar problem can also arise whenever separate
knowledge bases are generated by learning algorithms. The objective of integration is to
construct one system that exploits all the knowledge that is available and has a good
performance. The aim of this paper is to discuss the methodology of knowledge
integration, describe the implemented system (INTEG.3), and present some concrete
results which demonstrate the advantages of this method.

1. Introduction

The areas of knowledge acquisition (KA) and machine learning (ML) have until
recently existed as two rather distinct areas, despite the fact that both areas share quite
similar concerns. Both areas are attempting to construct systems that model certain
phenomena in the real world so as to aid us in decision making.

Most of the research in KA presupposes that the model is created by a person (an
`expert´) first. The objective of expertise transfer (ET) tools is to help the user to
transfer this expertise into a computer knowledge base first. In machine learning, on the
other hand, the system is usually supplied with data which is stored in the knowledge
base. The process of model creation is left to the system, that is, to the appropriate
empirical inductive tool.

As Gains (1989) has pointed out each approach has its own difficulties. Experts
do often provide a mixture of relevant and irrelevant or erroneous information. The
objective of current expertise transfer tools, such as Aquinas, KSS0 or KADS (Wielinga
& Breuker, 1986) is to help the user to clean up the information provided. The
disadvantages of a pure machine learning approach are also quite obvious. The system is
too dependent on the data that is provided from outside. This data need not necessarily
be complete. Some important cases may simply be missing. Also, a part of the data may
be corrupted. The data may contain incorrect information.



Some people have expressed the view that both methodologies should be
combined (Gaines, 1989; Boose et al., 1989), but not many concrete proposals were put
foward so far. Aquinas, for example, was capable of presenting to the user opinions of
multiple experts, but the user was responsible for weighing opinions and selecting the
solutions to be followed. Also, as Aquinas used repertory grids for representation of
concepts, the language used for representing knowledge is somewhat limited. As Boose
et al. (1989) point out, further facilities are needed for elicitation and analysis of
knowledge from multiple experts, resolving potential conflicts (e.g. by negotiation) and
knowledge base merging.

In this paper we describe a method for merging several separate theories

(knowledge bases)1. We assume that, in general, these will have been generated in
different ways. That is, some theories can be obtained by querying an expert and
transcribing his knowledge in the form of rules. Others can be obtained on the basis of
data, using inductive learning tools (see Fig. 1). System INTEG.3 is capable of analysing
the individual theories and its rules, and selecting (or marking) some to be included in
the integrated theory. These selected rules determine the decision of the overall system.
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Fig. 1  Possible Use of Integration Tools

Most of the experiments we have performed were concerned with a medical domain2. All
the theories that were used by INTEG.3 were generated by inductive learning tools. The
theories differed from one another in various ways, and it was not a priori clear which
theory was right. In the experiments the integrated theory had significantly better
performance than the original theories. The experiments confirmed our belief that
knowledge integration can play an important role in the process of knowledge
acquisition.

                                               
1 In this paper the term "theory" is used interchangeably with the term "knowledge base". Both terms
have a rather restricted meaning here. They are used to identify a collection of rules (e.g. Horn clauses).
2  The tests referred to here were performed on lymphography data (obtained from JSI, Ljubljana) which
contained 4 possible classifications. This may not be exactly the same data as the one used by Gams
(1989) which contained 9 possible classifications.



Knowledge Integration and Incremental Learning

Knowledge integration is concerned with issues that are related to those in
incremental learning systems, such as ID4 (Schlimmer and Fisher, 1988), ID5 (Utgoff,
1988), AQ16 (Janikow, 1989), for example. Both knowledge integration and
incremental learning attempt to construct a theory that explains best the given data.
There are some important differences between the two approaches, however.

When we talk about incremental learning, usually it is assumed that only one
system is constructing theories by employing some incremental version of a given
learning algorithm. In consequence all the data is actually analyzed by this system at one
time or another. Knowledge integration, on the other hand, involves several systems all
of which try to construct their own theories on the basis of their own experience.
Although knowledge integration may require some common experience in the process of
constructing an integrated theory, we are not in favour of simply transferring all the data
to one system. People do not use only "raw data" when they communicate with others
about certain world phenomena.

If we let the systems communicate theories, instead of data, some learning effort
will be saved, but we can expect that some information will be lost in the process. We
could thus expect that the results obtained by knowledge integration may not succeed
the results obtained by incremental learning systems. Our experiments have indicated the
contrary. The performance of the integrated theory was better than the performance of
the incremental system (see Section 2.4 for more details).

Knowledge integration has, however, one additional advantage over incremental
systems which are unable to improve upon theory provided by the user. Incremental
learning systems keep various internal data structures and statistical measures in the
memory (e.g. informativity of various attributes etc.). These enable the system to update
its theory when new data becomes available. If these are not supplied by the user (or
alternatively, if the user does not provide all the examples he has seen), the incremental
systems can do little to improve the given theory.

2. Method of Knowledge Integration

In this section we will describe the method of knowledge integration in more
detail. Basically, the process involves a preparatory phase in which a group of systems
(agents) is selected and organized into a group that can function together. The group can
include systems S1-Sn that are capable of constructing theories from data, responding to
external queries and communicating with one another. Here we shall assume that this has
already been done and that the system organization is fixed3 .

Having defined the organization of the multi-agent system, it is necessary to
determine the overall objectives. That is, for example, one can define which concepts are
to be acquired and/ or describe in some way the required performance. This is important
if we want the multi-agent system to decide when to stop altering its theories. Here we
will follow what has been done in the past and let the user control this issue.

Consequently, here we will be concerned with, basically, the following three
phases:

(1) Generation of independent theories (by consultation or inductive learning),
                                               
3  In general systems can be given the ability tp recognize themselves. These are some of the concerns of
Distributed Artificial Intelligence (see e.g. (Bond and Gasser, 1988)), but they are outside the scope of
this paper.



(2) Competitive characterisation of the system´s theories,
(3) Construction of the integrated theory.

In phase (1) the systems S1-Sn work in an independent manner, and as a result
produce theories T1-Tn. Each system involved constructs its own theory on the basis of
its own experience. Here Sj can represent either human, or an inductive learning tool. In
either case Sj will produce theory Tj .

In phase (2) the individual theories are characterized using tests. Without loss of
generality let us assume that this is actually controlled by some agent SI. This agent
poses a query to all the agents involved, waits for the answers and then proceeds with
the next query. Any of the systems S1-Sn could act as SI. The subsystem responsible for
characterization of theories is referred to as INTEG.3.

Phase (3) is dedicated to the issue of constructing one integrated theory (TI) on
the bases of the results obtained in phase (2). This task is also done by INTEG.3. The
three phases mentioned could be followed by two additional ones:

(4) Adoption of integrated theory by one (or more) systems.
(5) Check whether the process should continue, and if so, go to (1).

In this paper we will be concerned mainly with the phases (1)-(3). The issue of hoe one
could construct a ̀ closed loop system´, capable of taking the integrated theory and using
it as input in further learning will be discussed in a future paper. The next section
describes phases (1)-(3) in more detail.

2.1 Generation of Individual Theories

Use of Inductive Learning Tools

The decision concerning which system we should choose to generate individual
theories is not really too important in the context of we want to prove. Here we require
only that the system(s) are capable of generating theories that perform reasonably well
on tests. As we had earlier reimplemented ID3- and AQ-like systems, we decided to use
these as the basic inductive engines in our set-up.

The reimplementation of ID3 based on earlier work (e.g. Quinlan (1986), Cestnik
et al. (1987), Clark and Niblett(1987; 1989)) will be referred to as ITL1 (Inductive Tree
Learning System). The decision tree generated by this system is automatically converted
into a rule form which we find more amenable for further manipulation.

The inductive rule learning system IRL1 is an incremental learning program, that
was partially inspired by CN2 (Clark and Niblett, 1989). This system incrementally
updates the existing rules either using generalization and/ or specialization. More details
about this system will be made available in (Torgo, 1990).

Different theories needed by the knowledge integration system (INTEG.3) were
generated by the inductive learning systems (ITL1 and IRL1) in a series of independent
learning tasks. In each task the inductive learning system generated a theory (consisting
of a set of rules) on the basis of its own data. Let us see how the data was prepared for
each experiment.

From the total number of cases available (D), 30% were separated out by a
random process and reserved for the final tests of the integrated theory. Let us call this



test set, set DT. If we disregard the cases in this set, 70% of the original data can be
available for the creation of alternative theories (see Fig. 2). These are constructed with
the help of different inductive learning systems. In most of our experiments we have
generated four theories. Some were generated by ITL1 and others by IRL1.

Data Available

Training data
Test data DT

(to test the integrated theory)

Data D1 Data D2 Data D3 Data D4

Random Split

Random Selection

70% 30%

Fig. 2  Generation of Various Training Sets

In each experiment some cases were selected at random from the pool of data
available (D-DT). Let us call this set Di. Set Di was then supplied to the inductive
learning system to generate theory T1.  This process was then repeated to generate the
next theory (see Fig. 3). As sets D1. .Dn  were selected at random from the same pool of
examples, the sets mentioned could have some cases identical to those used by others.

Data D1 Data D2 Data D3 Data D4

Theory T1 Theory T2 Theory T3 Theory T4

System S1

ITL1
System S2

ITL2
System S3

IRL1
System S4

IRL2
Data DI

Theory TI

System SI
INTEG.3

Fig. 3  The Set-up for Knowledge Integration Experiments

2.2 Competitive Characterization of Theories

After the theories have been constructed by the individual systems they are
characterized on the basis of integration tests for which we need some data. Let us refer
to this data as the set DI. The easiest way to obtain this set is to take the union of the



data sets D1. .Dn. This is the approach we have actually adopted. In general, however,
the set DI may consist of any other representative sample of data.

The results of tests are both qualitative and quantitative. The objective of the
qualitative characterization is to provide detailed information about relative benefits of
individual rules or theories to the integration system. This information takes the form of
lists of cases covered by a particular theory or rule. The objective of the quantitative
characterization is to estimate the overall accuracy of the individual theory (or rule).

Qualitative Characterization of Theories

Qualitative characterization of theories is similar to qualitative characterization of
rules, and so in the following we shall simply speak about qualitative characterization of
rules.

Qualitative characterization of a particular rule R consists of two lists. The first
one mentions all the test cases that were correctly covered by this rule. In other words,
this list refers to the positive examples covered by the rule. The second list mentions all
the cases that were incorrectly covered by the rule. This list represents the negative
examples covered by the rule in question. The list mentioned do not need to contain
complete descriptions of each case. For our purposes it is sufficient to store only case
identifiers (indexes) that uniquely identify each case.

Quantitative Characterization of Theories

Quantitative characterization of a given theory is done using an estimate of
accuracy. These are calculated on the basis of test results on the test set DI.

The tests are done in a usual manner by comparing the classification predicted by
the theory Ti with the classification stored together with the case. This comparison
enables us to decide whether the particular theory classified the case correctly or not.
The classification errors caused by misclassification are sometimes referred to as errors
of commission. Errors of omission arise whenever an expert or a system fails to classify
some case, that is, when no classification is actually predicted.

The accuracy of theory T is estimated using the following formula:

ACT= CT/ (CT + ENT + ERT)
      = 1 - (ENT + ERT) / (CT + ENT + ERT)

where CT represents the number of correctly classified cases, ERT the number of
misclassifications, and ENT errors of omission. In effect, the coefficient Qi represents a
ration of correctly classified cases (CT) to all cases used in testing (CT + ENT + ERT).

Quantitative Characterization of Rules

Quality of individual rules is estimated in a heuristic manner, using the expression

QT,R = ACT,R * Estimate_of_coverage

where ACT,R represents the accuracy of rule R and Estimate_of_coverage is a number
between 0 and 1 that guides the system to prefer rules with relatively high covergage of
a class. Its value is calculated as follows:



Estimate_of_coverage = exp(CT,R / NC,R - 1)

The value CT,R represents the number of correct classifications. The value of NC,R is
obtained as follows. The consequent of rule R determines which class (C) the rule is
concerned with. Then NC,R represents the total number of examples of that class (C).
The accuracy of individual rules is estimated in a similar way as accuracy of theories
using:

ACT,R= CT,R/ (ERT + CT,R)

Here ACT,R represents the accuracy of rule R belonging to theory T and ERT
represents the number of errors. We notice that this formula takes into account errors of
commission, but not errors of omission. The reason is that whenever several rules are
associated with a particular class, and no rule is activated, it is difficult to decide which
rule is at fault. This is why we have decided not to include these errors in our estimates.

Let us consider an example. In our system, the assertion,

rule(1,5 metastase <----earlyuptakein = no ^ defectinnode = lac_central, 15,3).

for example, represents rule 5 of theory T1. The numbers 15 and 3 represent number of
correctly classified cases (C1,5) and number of misclassifications (ER1,5). The accuracy
of this rule is thus

AC1,5= C1,5/ (ER1,5 + C1,5) = 15/ (3 + 15)= 83%

Supposing we have 30 examples of metastase then Q1,5 would be calculated
using:

Q1,5 = 0.83 * exp(15/30 - 1)= 0.83 * 0.61

Both qualitative and quantitative characterization of theories are used in the construction
of the integrated theory.

2.3 Generation of the Integrated Theory

The integrated theory TI is constructed on the basis of the candidate set TC. Initially, set
TC contains all the rules of the individual theories T1..Tn. The objective is to select some
rules from TC and transfer them into TI so as to achieve good performance (accuracy).
The method relies on the qualitative and quantitative characterization of rules and
includes the following steps:

(1) Order rules in the candidate set according to their estimates of quality.
(2) Select the rule R with the best quality and include it in TI.
(3) Mark the cases covered by R.
(4) Recalculate the quality estimates of rules excluding the marked cases.
(5) Go back to (1).



The process of adding new rules to TI terminates when the accuracy of `best
rulé in TC falls below a certain threshold. In our experiments the limit was set to a rather
low value (1%). Even this low value, however, prevented the inclusion of many rules in
the integrated theory. These were the rules that covered no examples (all the examples
have already been covered).

2.4 Results

We have conducted a series of experiments whose purpose was to compare the
performance of the integrated theory with the performance of the original theories. The
systems were asked to construct theories on the basis of 5, 10, ...30 training examples.
Each theory was obtained by an inductive process on the basis of a given number of
examples which were drawn from a given pool by a random process. In order to exclude
the possibili ty of fortuitous results each experiment was repeated ten times. The
performance of system S1, for example, obtained on the basis of 15 training examples
was assessed by calculating the mean performance of 10 theories generated by this
system. The mean performance in this case was 57.3% (the standard deviation was
10.4%). The results of our experiments are shown in the following table.

5 10 15 20 25 30ex.
S1 39.3

(17.2)
51.6
(14.2)

57.3
(10.4)

47.5
(9.4)

58.2
(6.7)

60.9
(7.8)

S2 46.8
(16.5)

55.4
(10.1)

55.5
(14.9)

59.1
(7.4)

62.3
(5.5)

56.8
(8.0)

S3 52.9
(17.5)

54.8
(15.9)

55.2
(7.1)

72.9
(10.3)

57.1
(11.5)

68.1
(3.8)

S4 54.5
(16.1)

57.0
(17.0)

67.5
(10.8)

66.6
(8.3)

73.0
(10.4)

75.7
(4.8)

SM 48.4
(9.6)

54.7
(9.1)

58.9
(5.2)

61.5
(4.7)

65.1
(4.1)

65.4
(3.2)

T1 70.4
(12.9)

73.6
(10.0)

80.0
(7.5)

82.7
(6.6)

83.9
(6.3)

85.4
(3.9)

Gain 22.1
(8.8)

18.9
(8.0)

21.1
(5.1)

21.2
(5.9)

18.8
(6.9)

20.1
(4.7)

Table 1. Performance of the Integrated Theory TI and the Individual Systems (S1 - S4).

The first four rows of the table show the performance figures of the individual systems (S1 - S4).
Systems S1,S2 use ITL1 inductive learning method while systems S3,S4 use IRL1. All the figures shown
are means obtained on the basis of ten independent experiments. The standard deviation is shown in
brackets. The values of SM represent the mean value calculated as follows: SM = (S1 + S2 + S3 + S4)/ 4.
This value is useful when trying to assess the performance gain of the integrated theory TI. The last row
shows the gain (TI - SM). As can be seen the performance gains were around 20%.

Fig. 4 shows some of the results in a graphical form. As we can see system S1

follows a learning curve. It is interesting to note that the performance tends to fluctuate
less as more examples are given. That is, the standard deviation decreases with the
number of examples. The performance of the integrated theory exceeds the performance
of S1 (and the systems). The performance gains obtained were really quite surprising.
They were around 20%. The integrated theory was also quite "stable" in the sense that
its performance did not fluctuate as much as the performance of the individual systems.



An interesting question is whether one particular system, say S1, could obtain a
similar performance as the integrated theory (TI), had it been supplied with all the data.
Here we shall call this system S1+. We have conducted a separate experiment to
compare the performance. The results are shown in Table 2. We have found it rather
surprising that the integrated theory had better performance than system S1+.

5 10 15 20 25 30ex.

S1+ 50.0 (11.9) 58.2 (11.4) 63.7 (9.1) 66.6 (9.1) 66.8 (10.3) 73.4 (7.4)
TI 70.4 (12.9) 73.6 (10.0) 80.0 (7.5) 82.7 (6.6) 83.9 (6.3) 85.4 (3.9)
Gain 19.6 15.4 16.3 16.1 17.1 12.0

Table 2.  Performance of the Integrated Theory and System S1+.

The first row of this table shows the performance of system S1 that has been additionally supplied with

the data of systems S2-S4. The extra data helped S1 to improve its performance, but the performance of
the integrated theory (TI) was better.
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Fig. 4.  Performance of the Integrated Theory TI and System S1. In this figure the performance of the
integrated theory (TI) is contrasted with the performance of systems S1. Standard deviations are
indicated by vertical bars. The graph is based on the data shown in Table 1.

0

20

40

60

80

100

5 10 15 20 25 30

Number of Examples

A
cc

ur
ac

y 
(%

)

TI

S1+

Fig. 5.  Performance of the Integrated Theory and System S1+.

The results of these experiments have exceeded our expectations. We have
expected the integrated theory to perform well, but the performance gains were really
higher than we have expected. Had there been anything wrong with our experiments?



It is conceivable (although unlikely) that the present versions of ITL1 and IRL1
have a suboptimal performance. But this would not be an argument against integration.
System INTEG.3 tries to make the best out of the theory it gets, irrespective of whether
they are optimal or not. INTEG.3 checks them out and produces an integrated theory
that, as we have seen, performs generally well.

The experiments confirmed our belief that it is worth pursuing this issue further.
In the next section we discuss the relationship of this method to other work. We also
describe some of the shortcomings of our approach and possible extensions that could be
made in future.

3. Discussion

Integration is a Form of Learning

The process of constructing a theory from several individual theories can be
regarded as a form of learning. The process can be regarded as learning, because the
system´s internal representation becomes reformulated and this leads to an improvement
of performance. We notice that the reformulations are rather simple. They involve
inclusion (or non inclusion) of rules in the integrated theory and modification of
coefficients affecting their selection. Consequently, we use the term weak form of
learning to distinguish it from other more complex forms of theory reformulation which
could also involve modifications of individual rules. Despite its simplicity, however, this
method leads to noticeable improvements in performance. More work can, of course, be
done in this area. In the following sections, we will discuss some possible extensions of
this work.

Knowledge Integration and Redundant Knowledge

Gams (1989) has argued that redundant knowledge is essential for superior
behaviour of learning systems and his measurements support this claim. Gams further
justifies this approach as follows: "It is commonly accepted that cross checking of
several knowledge sources is generally better than using one source of knowledge
alone."

It is conceivable that INTEG.3  achieves higher performance than expected
thanks to some kind of in-built redundancy mechanism. It is worth pointing out,
however, that Gam´s approach is different from ours. Gams attempts to represent the
redundant knowledge in an explicit manner. Although INTEG.3 also exploits several
theories in the process of constructing an integrated theory, there is no attempt to
represent redundant knowledge within the system. The integrated theory has a similar
structure as the original theories. Also, it is not much bigger in size than any of the
original theories. Thanks to the fact that the integrated theory has relatively simple form,
it can be used as input in further learning.



Analytic Versus Empirical Approaches

Our system could be extended to perform an analysis of the rules that have been
obtained. The system could try to merge the existing rules and reformulate them so as to
avoid possible conflicts and overlaps, as was suggested, for example, by Steels and Van
de Welde (1989). Our system constructs the integrated theory solely on the basis of
empirical evidence. However, empirical approaches are quite powerful.

Consider, for example, the problem of determining whether one rule subsumes
another. This is a difficult task in general. The failure to conclude the proof within a
given time does not mean that proof will not possibly succeed later. If on the other hand,
one relies on an empirical approach, the task is somewhat easier. INTEG.3, for example,
will analyze the given cases to get a rule that covers some of them. Then it will consider
the cases that have not been covered yet, and so on. The chances that INTEG.3 would
generate rules that subsume others seem to be small. However, if the domain were very
noisy, it could perhaps happen that inconsistent rules would appear in the integrated
theory. Of course, preference would always be given to the rule that is qualitatively
better, so the problem would not really affect much of the system´s function. But one
could argue that whenever the data is noisy, it is wrong to try to generate perfect rules
that `hide the problem under the carpet´.

Knowledge Integration and Theory Revision

The BLIP system (Emde, 89) is capable of representing several competing
theories. Emde points out that the decision whether some fact is consistent with the
theory depends much on the viewpoint. A particular fact can contradict one theory, and
at the same time can be consistent with another theory. Contradictions can thus act as a
driving force for changing the individual theories. Each competing theory will then
follow a certain evolution path. This process continues until, presumably, some theory is
obtained that is found to be satisfactory. In BLIP no attention has, however, been paid
to the issue of how different parts of theories can be combined. In our view this is
important, as it can speed up the process of constructing the required theory.

3.1  Future Directions

Retaining Justifications in the Integrated Theory

We notice that many recent ET tools (such as Aquinas) do not try to represent
knowledge in one homogenous knowledge base, but rather provide capabili ties for
representing different views. This argument seems to suggest that we should not really
try to construct an integrated knowledge base. One could argue that integration might
not really be desirable.

In our view this argument is false. Knowledge integration does not exclude the
possibili ty of keeping different views within the system. Keeping this information has the
advantage that the system can explain its decisions. The system can tell us, for example,
where the rule came from (i.e. from which system), and why it was included in the
integrated theory. It also possible to let the system revise its theories in the light of new
experience or as  a result of communication with other systems.



Using Integrated Theory in Further Learning

One of our future aims is to extend the system so as to be able to improve the
integrated theory after new information has become available. The system would then
function as a ̀ closed loop system´: it would be capable of using the integrated theory as
input for further learning. But which part of the theory should we attempt to modify?

One rather obvious strategy tries to focus on the attention on `weak partś  of the
theory so as not to waste too much effort with unnecessary modifications. Identifying
weak parts of the theory is a bit like debugging, only it is more complex. In debugging
one tries to identify a faulty step, by comparing, for example, the user´s answer with the
system´s answer.  Here one needs to consider how a particular step contributes to a
overall system´s performance. If some particular step degrades the system´s
performance, it is a good candidate for further changes.

Murray and Porter (1989) have done some work in this area. They have
developed a system called PROTOKI, which is a prototype of a larger system called KI.
This system works as a knowledge integration tool. Its aim is to integrate a new piece of
knowledge in the existing knowledge base. This process includes the following three
main steps.

The first one is called recognition. This step is concerned with the identification
of the part of existing knowledge that could be affected by new information. The second
step is referred to as elaboration. In this step, the system tries to determine the
consequences of new information and verify whether some anomalies could be detected.
An anomaly will arise if conflicting conclusions could be reached using different chains
of reasoning, or if the system´s answer conflicts the answer supplied by the user. The
third step is called adaptation. This step is concerned with the problem of resolving
anomalies. The prototype system inspects the explanation that lead to the observed
anomaly. Heuristics are used to determine what could be considered the "weakest
premise" of the chain of reasoning, and this premise is then modified.

The system described uses a great deal of domain dependent knowledge in the
process. There is no harm in using such knowledge - as long as the general principles are
clearly spelled out. These have not been described in great depth. So far, PROTOKI has
been oriented towards one example. Also, it is not clear what should happen if the user
did not quite agree with the changes made by the system.

Overcoming Language Differences Between Agents

Another line that could be investigated is how to overcome the problem of
language differences between agents. This problem typically arises when knowledge is
elicited from several (human) experts. Experts can disagree on the vocabulary and the
meaning. As Shaw and Gaines (1989) have pointed out the same term can have different
meanings for different systems. They call this situation a conflict. Different terms may,
however, have identical meanings. Shaw and Gaines call this situation correspondence.

It is easy to see that INTEG.3 deals with the problem of conflict, but not of
correspondence. That is, the system uses empirical evidence to decide whose definition
of the given concept is ̀ best´. There is no contention as to the concept names. These are
assumed to behave like rigid designators (Genesereth & Nilsson, 1987 (p. 234)). Work
is under way to construct a system capable of overcoming the problems of
correspondence. The prototype system that is described in (Bradzil et al., 1990) can
learn to define the concept of one agent using agent´s terminology.

Some of these issues may be rather diff icult to resolve. Different agents may not
only use different predicate vocabulary in their conceptualization, but also rather



different conceptualizations (Morik, 1989). The AI community has been concerned with
these problems, but no simple solution is in view. Obviously, we cannot provide a simple
solution here, although we intend to work on some of these issues in future.

Conclusion

In this paper we have discussed the method of knowledge integration and
described the implemented system INTEG.3. Our experimental results have exceeded
our expectations. The integrated theory had a significantly better performance than the
original theories. This work suggests that the method could be incorporated into some of
the existing knowledge acquisition tools. This would provide a way for integrating the
knowledge obtained from experts with the knowledge obtained inductively on the basis
of data.
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