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Abstract—Many real world data mining applications involve
analyzing geo-referenced data. Frequently, this type of data
sets are incomplete in the sense that not all geographical
coordinates have measured values of the variable(s) of interest.
This incompleteness may be caused by poor data collection,
measurement errors, costs management and many other fac-
tors. These missing values may cause several difficulties in
many applications. Spatial imputation/interpolation methods
try to fill in these unknown values in geo-referenced data sets.
In this paper we propose a new spatial imputation method
based on machine learning algorithms and a series of data pre-
processing steps. The key distinguishing factor of this method
is allowing the use of data from faraway regions, contrary to
the state of the art on spatial data mining. Images (e.g. from
a satellite or video surveillance cameras) may also suffer from
this incompleteness where some pixels are missing, which again
may be caused by many factors. An image can be seen as a
spatial data set in a Cartesian coordinates system, where each
pixel (location) registers some value (e.g. degree of gray on
a black and white image). Being able to recover the original
image from a partial or incomplete version of the reality is a
key application in many domains (e.g. surveillance, security,
etc.). In this paper we evaluate our general methodology for
spatial interpolation on this type of problems. Namely, we check
the ability of our method to fill in unknown pixels on several
images. We compare it to state of the art methods and provide
strong experimental evidence of the advantages of our proposal.
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I. INTRODUCTION

In spatial data analysis the data is frequently obtained
from measurements of real systems, e.g. wind speed, oil
resources analysis, water quality assessment, satellite im-
ages, pictures and/or paintings repair, etc. This process of
data collection is not fully controllable and it is prone to
failures. These failures can lead to missing values on the
collected data sets, which in turn may have a serious impact
on the posterior analysis. Other constraints, e.g. financial and
human resources, may even increase the amount of missing
data. In this context, it is of key importance to have methods
that help in trying to fill in these gaps, which is confirmed
by the amount of literature and methods available for spatial
interpolation (see [1] for an overview).

The main idea behind any approach to spatial imputation
is the assumption that the value at any location has some
form of dependence on the values on neighboring locations.

This is supported by the first law of the geography that
says that “everything is related to everything else, but near
things are more related than distant things” [2]. Our work
is also based on this assumption. However, the fundamental
difference of our proposal when compared to the state of
the art is the fact that we also allow the use of data from
faraway regions provided these neighborhoods have similar
spatial dynamics to the target location for which we want to
fill in a value. The fact that two neighborhoods are distant
from each other does not preclude them from having similar
spatial behavior. Ignoring these similarities and data seems
a waste. The main contribution of our work is to allow for
the use of this extra data from distant apart regions. This
means that our methods will tend to use much more data
than existing methods to estimate the unknown values. The
hypothesis driving our work is that this extra information
will lead to gains in terms of the precision of the imputation.

We have tested and compared our proposal against a series
of alternative state of the art methods on a particular task -
filling in the missing pixels on pictures. Still, the approach is
by no means restricted to this particular application and can
actually be seen as a general approach to spatial imputation
and even to the problem of formalizing prediction tasks
in the context of spatial data. Our experiments show that
our approach significantly outperforms the most common
techniques used for spatial interpolation (IDW and Kriging
according to [1]). In the research area of image processing
other approaches exist to this problem. One of the most used
approaches is the Inpaint technique [3], [4]. We have also
compared our approach against the Inpaint method and the
results show a clear advantage of our technique.

II. SPATIAL INTERPOLATION - AN OVERVIEW OF THE
STATE OF THE ART

Forecasting the missing values in spatial data sets is not
a new problem and it is usually known as spatial imputation
or interpolation. Spatial interpolation methods address the
problem of estimating unknown values of a variable of
interest, Z, on certain geographical locations, based on a
spatial data set Z = {z1, · · · , zn}, where zi is the value of
the variable Z at location i.



Many different approaches have been applied to solve
this problem. Existing approaches are usually motivated
by the first law of the geography [2] that prescribes
that nearby points should have strongly correlated values.
Li [1] classifies the approaches in three main classes: non-
geostatistical interpolators, geostatistical interpolators and
combined procedures that integrate approaches from the two
former classes.

Non-geostatistical interpolators are based on the distance
between the neighbors. The simplest method is the Distance
Interpolator (DI) that consists on the use of the average value
of the spatial neighbors as an approximation to the value at
the missing location, where the neighborhood of point o is
defined as N β

o = {zi ∈ Z : d(o, i) < β}.
The Inverse Distance Weighted Interpolation (IDW) [5] is

a simple improvement of the DI method. It is based on the
assumption that the values that are farther apart within the
neighborhood of a point should contribute less to the average
calculation. In this context, this method approximates the
value at an unknown location as the weighted average of
the known neighborhood values, with weights inversely
proportional to the distance from the target location.

The second class of existing methods are geostatistical
interpolators that have origin in the work of Krige [6].
Kriging is a generic name for a family of generalized
spatial interpolation models. According to Mitas [7] kriging
assumes that the spatial distribution of a geographical region
can be modeled by the realization of a random function,
using a statistical technique to analyze the data. Kriging
uses the same basic principal behind the inverse distance
weighting technique - it approximates the unknown value
at a location by interpolating the values at known locations
given more importance to the closer neighbors. However,
the way the weights are calculated is different as kriging
uses the covariation between known data at various spatial
locations [6]. There are several variants of kriging, most of
which differ on the way these weights are approximated.
Frequently used variants include ordinary kriging and co-
kriging. In this paper we have only considered ordinary
kriging because co-kriging requires an auxiliary variable
(covariable) [5], which was not available in the domain
considered in this paper.

III. OUR PROPOSAL

Spatial interpolation aims at filling in the values of a
variable of interest at geographical locations for which they
are unknown. This problem is usually solved by assuming
that the unknown values can be filled in by using the
information of the known values in their vicinity. It is
possible to look at this task as a prediction problem where
the target variable is the variable of interest at a certain
geographical location and the predictors are the values of
this variable within the respective neighborhood. We have

taken this approach, by mapping the spatial interpolation
problem into a multiple regression problem.

Other authors have addressed the use of regression tools
with spatial data (e.g. [8]). Still, to the best of our knowl-
edge all these works constrained the use of data to make
predictions for a certain location to the neighboring data
(e.g. through kernels [8]). In our approach we do not
impose this constraint. We let the regression methods decide
which observations should be used for a certain prediction.
Depending on the used tools this may lead to data from
different locations being used to make the forecasts. This
will happen if the used tools find these data to be similar in
terms of the predictor variables. With the goal of helping the
models to find neighborhoods with similar spatial dynamics
we propose the use of a series of spatial indicators as
predictors.

Summarizing, our proposal for the spatial interpolation
problem consists of two key ideas:

• Mapping the spatial interpolation problem into a mul-
tiple regression task;

• Propose a series of spatial indicators to better describe
the spatial dynamics of the variable of interest.

The first idea has two main advantages: (i) allowing
the use of the large number of sophisticated function ap-
proximators that are available; and (ii) allowing the use
of data from faraway neighborhoods if the models find
them similar to the region being interpolated in terms of
the predictor variables. Regards the second idea, we have
considered three classes of properties to describe the spatial
dynamics between the variable values in a neighborhood: i)
properties describing the typical value of the target variable;
ii) properties describing the variability of the variable; and
iii) properties describing the tendency (in spatial terms) of
the variable. Among these, the third class is the one that
differentiates more our work from the information used in
standard approaches to spatial interpolation. Still, we should
remark that standard approaches use these indicators for
directly forecasting the unknown values, while we are using
them as predictors in a regression model, thus allowing for
the discovery of possible interactions between the properties.

The typical value of the target variable within a neighbor-
hood can be captured by both the Distance Interpolator (DI)
and the Inverse Distance Weighted Interpolation (IDW), the
difference being that the latter weights the contribution of
the neighbors by the distance to the target. In this context, we
will use these values as predictors in our models. To simplify
our notation we will use z(N β

o ) for the standard averages
(= DI), and z̃(N β

o ) for the weighted averages (= IDW ).

To capture the notion of spread of the values within
a certain vicinity we have used the standard deviation
calculated with the values in this neighborhood,



σz(N β
o ) =

√√√√ 1

|N β
o |

∑
zi∈Nβo

(zi − z(N β
o ))2 (1)

In financial forecasting it is common to describe the
tendency of a price time series by means of a ratio between
two moving averages calculated using two different time
spans. If the value of the moving average with shorter time
span surpasses the longer moving average we know that the
time series is on an upwards tendency, while the opposite
indicates a downwards direction. We have imported this idea
into the spatial dimension. The ratio between two averages
calculated on two spatial neighborhoods with different sizes
around the target location provides us with information on
how the target variable values evolve in the vicinity of this
location. If the shorter average is above the longer, then we
know that values are increasing as we approach the target
location, while the opposite occurs if the shorter average is
smaller. This ratio can be defined as follows,

Z
β1,β2

o =
z(N β1

o )

z(N β2
o )

(2)

where β1 and β2 are two neighborhood sizes (β1 < β2) and
z() is the average of a set of points in the neighborhood of
o.

A variation of this indicator can be easily obtained by
using weighted averages of the values within the spatial
neighborhood,

Z̃β1,β2
o =

z̃(N β1
o )

z̃(N β2
o )

(3)

where z̃() is the weighted average of a set of points in the
neighborhood of o.

Having defined a series of spatial indicators, we can
proceed to map the spatial interpolation problem into a
multiple regression task. The target variable of this task
is the value of the variable Z at a geographical location.
As predictors we propose to use several variants of the
spatial indicators we have described above. Namely, we will
estimate the value of Z at a target location o as a function
of the following predictors,

ẑo = f(z(N k1
o ), z(N k2

o ), z(N k3
o ), Z

k1,k2
o , Z

k2,k3
o ,

z̃(N k1
o ), z̃(N k2

o ), z̃(N k3
o ), Z̃k1,k2o , Z̃k2,k3o ,

σz(N k1
o ), σz(N k2

o ), σz(N k3
o ))

(4)

where f() is the unknown regression function we are trying
to model using a set of training data Z , and k1, k2 and k3
(with k1 < k2 < k3) are 3 spatial neighborhood sizes. In the
experiments described in this paper we have used the values
10, 30 and 50, respectively, for these spatial neighborhood
sizes.

It is important to remark that several other indica-
tors/predictors could have been used. The same can be
said regards the sizes of the spatial neighborhoods. Which
predictors to use is a well-studied problem on predictive
data mining. Several established methods exist to search and
select the best predictors for a given data set and learning
algorithm. It is not the goal of this paper to address this well-
studied subject. Our contribution is the idea of mapping the
problem of spatial interpolation into a multiple regression
task and also to provide some new predictors that capture
the spatial dynamics on a certain vicinity.

In summary, our proposal for the spatial imputation prob-
lem using a spatial data set Z consists on: (i) use these data
to build a new multiple regression data set where the target
variable is the value of Z on a location and the predictor
variables are calculated using the values in the vicinity of
this location (an example are the variables mentioned in
Equation 4 but others could be used); (ii) use this new data
set to build a regression model with some existing algorithm;
and (iii) apply this model to locations where the value of
the target variable is unknown.

IV. A CONCRETE APPLICATION - IMAGE INPAINTING

This section describes a real world application of our
proposed methodology. The application consists on filling
in missing pixels on a image. An image can be seen as
a spatial data set, given that each pixel has a different
location in a system of Cartesian coordinates. At each
location one or more values may be measured. In our
problem it is a single degree of gray (a value in the interval
[0, 255]) that is measured. In the research area of image
processing this type of problems are referred to as “image
inpainting” [3], [4]. The term “inpainting” has its origin
in the manual task of restoring damaged paintings and/or
photos by professional restorers [3]. Digital inpainting is
a relatively new research area with the goal of developing
tools that automatically restore damaged images. Examples
of damages include: noise (missing pixels caused by some
equipment failure), unwanted objects (persons, cars, red-eye,
etc.), logos, stamps, scratches (old pictures), etc.

Since the target application of this work is the repairing
of images, we have also compared our approach against one
successful implementation of an image inpainting algorithm
based on the “exemplar based approach” [3], [4]. In our
experiments we have used an open source implementation1

of this inpainting algorithm.
Figure 1 shows the two original images that were selected

to evaluate and compare our proposal. The first picture
(Figure 1a) is a dog face and the second picture (Figure 1b)
is the Coliseum of Rome. Based on these images we will
generate several data sets with an increasing number of the
original pixels removed.

1Publicly available at http://sourceforge.net/projects/imageinpainting



(a) Dog face (260x222) (b) Coliseum (320x240)

Figure 1: Original pictures.

V. EXPERIMENTAL EVALUATION

The main goal of our experiments is to check the validity
of our proposal for spatial interpolation. We have carried out
an extensive set of experiments under different conditions.
All data, code and extra results not shown due to space
restrictions are provided in a web page2 to ensure that our
work is replicable.

A. Experimental methodology

We have considered several setups in terms of the amount
of missing pixels. Namely, we have created 9 different data
sets from each original image (Figure 1) with an increasing
number of pixels being randomly removed3: 10%, 20%, · · · ,
90%. Moreover, to ensure the statistical significance of the
results we have repeated this random selection 10 times for
each of the 9 settings. This means that we have compared
the models on 180 different data sets generated from the two
original images.

For each data set the models were given the available
pixel data and asked to forecast the value of the target
variable (degree of gray) at the missing pixel locations. The
predictions were compared against the true values (Figure 1)
using the mean absolute error,

MAE =
1

n

n∑
i=1

|ẑi − zi| (5)

where, n is the number of missing pixels, ẑi is the level
of gray predicted by the models, and zi is the real value
according to the pictures in Figure 1.

B. Models

Our methodology is based on the use of a regression
algorithm to obtain the models that are then used to carry
out the spatial imputation of unknown values. In order to
fully test our ideas we have selected a diverse range of
modeling approaches to confirm its validity independently of
the technique used to forecast. We have used the following
regression algorithms:

2http://www.dcc.fc.up.pt/∼ltorgo/ICDM12
3We should remark that the values at these locations were actually

removed, i.e. set as unknown, and not set as white pixels as the graphical
representations of the data sets we will see later, may suggest.

Regression Trees (RT) - a regression tree based on the
R package rpart. In our experiments we have used the
function rpartXse provided in package DMwR [9] and
have tried 4 different variants by using the parameter se
that controls the level of pruning with values: 0, 0.5, 1 and
1.5.

Support Vector Machines (SVM) - an implementation
of SVMs available in the R package e1071. We have
used 6 variants of the parameters cost and gamma. For the
parameter cost we used the values: 1, 10, 100 and for the
parameter gamma the values: 0.1 and 0.5.

Random Forest (RF) - an implementation of random
forests available in the R package randomForest. We
have used 3 variants of the parameter ntree with the values:
500, 1000 and 1500.

These multiple regression algorithms were applied to data
sets obtained using the setup of Equation 4 (cf. Section III).

Regards the competitive approaches for spatial imputation
we have selected a series of techniques that are a good
representation of the state of the art on this area:

Distance Interpolator (DI) - a simple baseline method
that uses the mean value of a circular neighborhood region.
We have considered 3 neighborhood sizes: 10, 30 and 50.

Inverse Distance Weighted Interpolator (IDW) - a
variation of the previous method that uses the weighted
average value within the neighborhood region as the approx-
imation for the unknown location. The weights are inversely
proportional to the distance. We have considered the same
neighborhood sizes as in DI.

Ordinary Kriging (OK) - we have used an implementa-
tion of this method available on the R package automap.
The implementation in this package automatically selects
the best parameters for the kriging method, including the
neighborhood size and the function used in the calculation
of the semivariograms (it considers spherical, exponential,
Gaussian and two variants of the Matern family). To limit the
search space, in our experiments we have set the maximum
neighborhood size to 90.

All the used tools are freely available in the R software
environment [10], ensuring easy replication of our work.

C. Results

Figure 2 summarizes the results obtained by the alter-
native models on the two pictures using the experimental
settings described before. Each bar represents the estimated
MAE value averaged over the 10 repetitions of the best
model variant on the data sets DS30 and DS70. These
are the original pictures with 30% and 70% of the pix-
els removed, respectively. The first two bars present the
results of the distance interpolator (DI) approach, using
the smallest neighborhood size. The second group of bars
show the results of the IDW technique using the same
spatial neighborhood size. Then we have the best variant of
regression trees (se = 0), the best SVM (cost = 100 and



Figure 2: Estimated MAE of the different approaches.

gamma = 0.1) and random forest (ntree = 1000). The last
two bars show the results of the ordinary kriging approach
(OK), whose parameters are automatically tuned by the used
software package.

The results of Figure 2 (together with the ones available
at the accompanying web page) show an overwhelming
advantage of our approaches when compared to these state
of the art methods. In particular, both the SVM and RF
variants achieve remarkably good scores, although even with
the simple RT approach the results are superior. These
experiments provide clear evidence of the advantage of:
(i) using more sophisticated function approximators; (ii)
using more elaborated information concerning the spatial
dynamics through spatial indicators; and (iii) allowing the
use of data from distance points in space provided the
regression models find this useful in terms of accuracy.
Another noticeable observation is the surprisingly bad scores
obtained by the used ordinary kriging method, which was
unable to beat even the simple DI variants. This may indicate
that the automatic tuning provided by the used software
package may not be adequate for all situations and that
these particular problems could require a more careful hand-
tuning of the kriging parameters. Our approach, however,
did not require any tuning at all, and it may even be the
case that with different variants of our spatial indicators, for
instance through the use of some feature selection algorithm,
the performance could be further improved.

In order to better understand what the methods are doing
in terms of approximating the original image, we have
selected one of the ten repetitions for the two image vari-
ations DS30 and DS70, and represented graphically both
the original data and the approximations provided by the
competing methods. These results are show on Figure 3. The
first row of graphs shows the two original data sets (Dog
Face and Coliseum) with 30% and 70% pixels removed,
respectively. The remaining rows show the approximations

Figure 3: Estimated MAE of the different approaches for the
Figure 1.

provided by each of the alternative approaches. The figure
shows the best variants of each alternative, namely : i) DI
and IDW with the neighborhood size of 10; ii) regression
trees with se = 0; iii) the SVM model with cost = 100 and
gamma = 0.1; and iv) and the random forest (RF) model
with ntree = 1000. These graphs illustrate the remarkable
job that our approaches are able to achieve in terms of
recovering the original image, even at very high levels of
noise. The quality of the pixel imputation even with 70% of
the pixels removed is impressive.

As mentioned before, the problem we are addressing
is named image inpainting within the image processing
research area. We have compared our best variant (RF
ntree = 1000) to one of the most common methods in
image inpainting (see Section IV). We were not able to
compare these two techniques on the 9 data sets with
increasing percentage of removed pixels from Figure 1a,
because the used inpaiting software crashed on data sets
with too many unknown pixels. In this context, we were
only able to collect results for the DS10% and DS20% data
sets.



(a) DS10% (b) Inpaint Fast (c) Inpaint (d) RF

(e) DS20% (f) Inpaint Fast (g) Inpaint (h) RF

Figure 4: Random Forest vs Inpaint Technique

Figure 4 shows the results of this comparison. We show:
i) the original data sets; ii) the approximations provided
by two variants of the inpainting algorithm4 - the fast
implementation (Figures 4b and 4f) and the standard im-
plementation (Figures 4c and 4g); and iii) the results of the
random forest in Figures 4d and 4h. Although the inpainting
algorithm is able to achieve similar results on the data set
with a lower level of unknowns (particularly in the standard
implementation), in the data set with 20% of removed pixels
we already see a marked advantage of our approach.

VI. CONCLUSIONS

This paper describes a novel approach to the problem
of spatial interpolation. Our general methodology is based
on the idea of transforming this problem into a multiple
regression task and then applying standard algorithms to a
data set that is constructed from the original spatial data
using a series of spatial indicators designed to better describe
the spatial dynamics of the variable of interest. The key
distinctive feature of this methodology is the data that is
used to obtain the approximations of the unknown values
of the variable of interest. Existing state of the art methods
use only values within a certain neighborhood of the target
location for which we want an estimate. Our proposal is
based on the assumption that other distant vicinities may
be used provided they show a similar spatial correlation
pattern. The decision to use this extra data is left to the
the optimization process of the regression models. With the
goal of improving the discovery of similar neighborhoods
we have also introduced the notion of spatial indicators.
These are features constructed from the original data that
try to provide useful information on the spatial correlation
dynamics within a neighborhood. Their goal is to help the
models in uncovering similarities among different regions.

Although the described methodology is a general spatial
imputation method, in this paper we have tested it on a

4To apply the inpaint software to our data set variants we needed to
convert the missing pixels to the RGB green color.

particular task with strong impact in several application
domains: image repairing. We have tested and compared
our method under different setups in terms of missing
information on the given images. On all setups we have
observed a strong advantage of our approach that has
achieved impressive results in terms of recovering an image
even at high levels of noise. These initial results are very
encouraging and provide strong empirical evidence towards
the advantages of our approach to spatial imputation.
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