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Abstract. This paper describes a rule learning method that obtains
models biased towards a particular class of regression tasks. These tasks
have as main distinguishing feature the fact that the main goal is to
be accurate at predicting rare extreme values of the continuous target
variable. Many real-world applications from scientific areas like ecology,
meteorology, finance,etc., share this objective. Most existing approaches
to regression problems search for the model parameters that optimize
a given average error estimator (e.g. mean squared error). This means
that they are biased towards achieving a good performance on the most
common cases. The motivation for our work is the claim that being
accurate at a small set of rare cases requires different error metrics.
Moreover, given the nature and relevance of this type of applications an
interpretable model is usually of key importance to domain experts, as
predicting these rare events is normally associated with costly decisions.
Our proposed system (R-PREV) obtains a set of interpretable regres-
sion rules derived from a set of bagged regression trees using evaluation
metrics that bias the resulting models to predict accurately rare extreme
values. We provide an experimental evaluation of our method confirming
the advantages of our proposal in terms of accuracy in predicting rare
extreme values.

1 Introduction

In data mining there are several prediction problems for which the rare instances
of the concept to be learned are the most important ones. Forecasting large
changes on stock prices, ecological or meteorological catastrophes, are a few
examples of applications where we are faced with this kind of problems. In all
these applications, domain experts are specially interested in having accurate
and interpretable predictions of such rare events as these are usually associated
with costly actions/decisions. The work presented in this paper addresses this
kind of applications in a regression context. These problems present difficult
challenges to learning methods as we are trying to model a concept that is rare
and less represented than other common concepts in the used data sets.
Predictive data mining tasks fall in two categories: classification, where the
target variable is discrete; and regression, where the target variable is continuous.
Within classification, this kind of problems is a well-known subject of research



and is related to the problem of unbalanced class distributions [14]. According
to some studies (e.g. [5,12,14]), the existence of a minority class brings an addi-
tional difficulty to the traditional classification methods which are biased to the
prediction of the most common values by evaluation criteria such as accuracy.

Most existing work on prediction of rare events within data mining is related
to classification tasks. Still, the same type of problems appear in the context of
regression. As in classification, one should change the evaluation criteria used by
the traditional regression methods that are biased to the prediction of the most
common values. In a previous work [9], we have handled this type of problems
by proposing a new splitting criterion for CART-like regression trees [1]. Based
on this previous work, we now present a rule-based regression system for the
prediction of rare and extreme values of a continuous target variable. Compared
to the former, this new system improves on both accuracy and interpretability
due to the modular characteristics of rule-based systems.

2 Background

Predicting rare events has been receiving an increasing attention from the data
mining community. This interest stems from both the important associated ap-
plications, and from the fact that learning a concept based on cases that are rare
is a non-trivial task for traditional learning methods. Standard machine learning
methods are biased to the prediction of the most common values and usually
assume that all the prediction errors have the same “cost”.

Within classification tasks, one of the proposed approaches to handle rare
cases is to use misclassification costs (e.g. [10]). This allows the errors committed
at some subset of cases belonging to a rare class to be more penalized and thus
models will be biased towards avoiding these errors. Moreover, on these problems
with an unbalanced class distribution, some authors [5, 13, 14] have shown that
evaluating models by classification accuracy is not adequate. In this context, they
proposed different performance metrics based on ROC curves or in measures like
precision and recall. The Two-Phase Rule Induction method proposed by Joshi
et al. [5] is an example of a rule induction system biased towards the minority
class which induces the rule set in two steps considering recall and then precision.
Given the clear tradeoff between precision and recall, some works propose the
use of F-measure [7], one of the measures which combines those two, as shown
in Equation 1.

o (ﬂ2 + 1) - precision - recall

(1)

B2 - precision + recall

where 0 < 8 < 1, controls the relative importance of recall to precision.
Nevertheless, all these classification approaches are not directly applicable to
the type of problems we wish to address here because our target variables are
continuous. Although there are several works that handle regression problems
through a classification approach (e.g. [4,8,15]), these approaches do not fully
meet our target applications requirements. Our goal is not only to capture the



rare and extreme values, but also to be able to predict them as accurately as
possible in a numeric perspective. This means that the degree of extremeness
of the target variable is also relevant for domain experts, as different actions
can be taken according to that degree. One could argue that by having several
classes associated to these different degrees of extremeness would overcome this
difficulty and allow classification methods to be applied. Still, we argue that
this would split an already low populated class associated to rare events into
even less frequent classes, thus making the problem even harder. Moreover, this
would always be a coarse approximation of an inherently continuous prediction
problem.

3 Our System: R-PREV

Given the requirements of our target applications, our goal was to develop a
system capable of accurately predict rare extreme values of a continuous target
variable in an interpretable way.

In regression methods, as in most learning tasks, the model parameters esti-
mation process is guided by some preference criterion. The most common choices
are estimators of the true average prediction error (e.g. mean squared error) of
the models. These performance metrics are calculated over all the range of val-
ues of the target variable and thus will tend to bias the models to maximize
performance over the most common values, as these will have a stronger impact
on the overall mean error. This type of preference criteria is not suitable when
the interest resides on the performance on a special subset of values that are not
very frequent. This is the case of our target applications: the obtained model
should perform specially well over the rare and extreme values of the continuous
target variable.

The Rule-based Prediction of Rare Extreme Values system (R-PREV) we pro-
pose in this paper is based on the trees obtained by a system we have described
in a previous work [9]. As such, we will now provide a detailed description of
main features of this later system that we will refer as “Base Tree”. This consists
of a regression tree induction system based on CART [1] but with a different
splitting criterion that enables the induction of trees biased towards the predic-
tion of rare and extreme values. The main idea is to use the F-measure presented
in Equation 1 as splitting criterion for the tree growth. The first step to allow
the use of this metric is to provide a formal definition of what is a rare extreme
value. In cases where no domain knowledge is available to define this notion, we
have used the statistical notion of outlier, given by the box-plot [2], to estab-
lish the two thresholds that define the rare extreme high and low values of the
target variable. The default thresholds are the so-called adjacent values of the
box-plot of a continuous variable. The upper-adjacent value, thrg, is defined as
the largest observation that is less or equal to the 3rd quartile plus 1.5r, where
r is the interquartile range, i.e. the difference between the 3rd and 1st quartiles
of the target variable. In an equivalent way, the lower adjacent value, thry, is
the smallest observation that is greater or equal to the 1st quartile minus 1.5r.



Once we have these two thresholds, obtained either by existing domain knowl-
edge or by using the information of box-plots, we can define our rare extreme
values as,

RE={y€eY |y>thrgVy < thrp}
REg={y €Y |y>thru} (2)
REp, ={y€eY |y <thrp}

Depending on the application, we may have either REy or RE; empty. In
Figure 1, there is an example of a box-plot obtained for a continuous variable
representing the median values of houses in Boston residential areas, using the
well-known Boston Housing data set [11]. The circles are the rare extreme values
determined by the upper adjacent and lower adjacent values represented by the
two horizontal lines outside the box. In this particular case, we only have high
rare extreme values, that is, residential areas with extremely expensive houses
which distinguish themselves from the rest. According to these thresholds, in
this dataset there are no low extremes, i.e. extremely cheap houses.
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Fig. 1. Example of a box-plot for the 'medv’ attribute of Boston dataset.

Once we have the concept of rare extreme value defined, it is necessary to
specify how to calculate recall and precision in a regression context?®, as they are
required for obtaining the F-measure (c.f. Equation 1).

Let §; be the prediction obtained for the case (x;) whose target true value is
yi- We can define the following two sets:

- ?RE ={y; € v | yi < thrp Vy; > thrg},ie., ?RE is the set of ¢ predictions
of the model for the rare extreme value cases;

3 These measures are originally defined in a classification context.



- ?ﬁ ={ji € Y | §; < thrp V g; > thrg}, i.e.,?ﬁ is the set of § predictions
of the model that are rare extreme values.

Given these sets, we define recall as the proportion of rare extreme values in
our data that are predicted as such (i.e. covered) by our model, by the following
equation,

| {3 € Vag | 9: < thry Vi > thrg} |
| Yre |
Regarding precision, if we use its standard definition it would be defined

as the proportion of predicted rare extreme values that are really extremes
(c.f. Equation 4).

3)

recall =

| {:l)z € YI/{E‘ | y; < thrp Vy; > thT‘H} |
| Yoz

However, because we are in a regression context, we adapted the concept of

precision so that the amplitude of the differences between predictions and true

values is taken into account (c.f. [9]). In this context, we have proposed and used
the following definition of precision,

(4)

Precisiongiand =

precision =1— NMSE (5)

where NM SEEE is the normalized squared error of the model for the cases
predicted as rare extreme values,

> i — i)

~

i € Y;E
NMSEg; = (6)

> T-w)

7€ Y~
RE

Suppose that in some application thry = 10. If we have a test case with a
true value of 12, the proposed definition allows us to signal a prediction of 11
as much better (more precise) than a prediction of 30 for the same test case.
Thus, with this proposed definition of precision, we are able to bias the models
to be accurate in the degree of extremeness. The use of a normalized metric
like NMSE ensures that precision varies between 0 and 1 like recall. For rare
situations where N M S E goes above 1, which means that the model is performing
worse than the naive average model, we consider that the precision of the model
is 0.

As mentioned before the tree growth procedure is guided by a split criterion
based on precision and recall, namely the F-measure (c.f. Equation 1). The
best split will be the one that maximizes the F-measure in one of the partitions
generated by the split. The tree continues its growing process until the F-measure



value of a split goes above some pre-specified threshold f#, or until there are no
more rare extreme values in the current node partition. Full details on the growth
of these trees can be obtained in [9].

Interpretability is of key importance to our target applications as the pre-
dicted rare events are usually associated with costly decisions. In this context,
we have decided to select a rule-based formalism to represent our models. Rules
are usually considered to have greater explanatory power then trees, mainly due
to their modular characteristics.

We have obtained a set of rules based on trees generated by the “Base Tree”
system we have just described. A set of rules can be easily obtained from a
regression tree. Each path from the root of the tree to a leaf is transformed into
a rule of the form:

if condy N conds A ... A cond,, then v;

where each condy, is a test over some predictor variable in the considered path
1, and v; is the value of the leaf at the end of that path.

Trees generate a mutually exclusive partition of the input space of a problem.
This means that given any test case, only one rule will cover it. We have decided
to obtain our set of rules from a set of trees obtained through a bagging process
in order to both decrease the variance component of the error of the resulting
model and also to eliminate this mutually exclusivity property, thus ensuring
a higher modularity of each rule in the final model. We start by obtaining a
pre-specified number of stratified bootstrap samples, so that for each sample we
can have a similar distribution function for the target variable. For each sample
we run the regression tree method referred above and then transform it into a
set of rules. This process is repeated for all trees obtained from the bootstrap
samples.

Once we get this large set of rules, R, originated from different trees we try
to simplify it in two forms: individually, using some simple logical simplifications
of the conditions on each rule; and globally by eliminating some rules from this
set using the information regarding their specificity and F-measure. As a result
of this process we obtain an ordered rule set, also known as a decision list.

We measure the specificity of a rule by the number of cases that are uniquely
covered by that rule,

spec(r) = | {(xi) | cover(R, (x;})) = {r}} | (7)
where R is the entire rule set and cover(R, {x;)) is the set of rules that cover the
case (x;).

We want to retain rules with high specificity because they represent knowl-
edge that is not captured by any other rule. Regarding the remaining rules

4 Experiments carried out in a previous work [6], have shown that the “best” setting
for the threshold f is domain dependent and thus for achieving top performance
for a particular problem, some tunning process is recommended. In the context of
the experiments of this paper we have used a the default value of 0.7, which these
experiments have shown as a generally reasonable setup in many domains.



(whose specificity is zero), we order them by their evaluation criterion (F-measure
score) and then select the top k rules according to a user-specified margin pa-
rameter, m.

This means that the final theory, T, is given by the rules belonging to the
initial set, R, ordered by their F-measure, such that,

T={reR|spec(r) >0VEF(r)>1—-—m)- - F(rwp) } (8)

where F(r) is the F-measure of the rule r, 74, is the rule with the best F-measure
and m is the margin parameter.

Notice that if we want a theory formed only by rules that have some specificity
then we can set the margin parameter (m) to 0. This is also the setting that
leads to a smaller theory, as larger values will increase the number of rules.

This rule selection process removes the complete coverage property that re-
sults from the mutual exclusivity of a tree, which means that there may exist
a test case that is not covered by any of the rules in the final theory, T. For
these situations we have added a default rule at the end of our ordered set of
rules, T'. This default rule basically predicts the mean value of the target variable
(c.f. Equation 9).

Ty =T U {if null then Y } 9)

Obtaining a forecast for a test case {x;) involves averaging all the predictions
of the rules satisfied by (x;), weighted by their respective F-measure,

5, — Sk F(CI) -predict(CIH], ()
’ ik F(CIRD

(10)

where C' = cover(TYy, (x;)).
The algorithm of R-PREV can be summarized by the steps given in Figure 2.

establish thrr and thry for the target variable Y;
specify 8 and f parameters;

specify a margin parameter m;

generate n bootstrap stratified samples;

R = null;

for each i from 1 to n

(a) t; = BaseTree(sample;,thrr thru,B,f);

(b) obtain the rule set R; from the tree ¢;;

(c) perform logic simplifications over R;;

(d) R=RUR;;

7. sort the rules in set R by their F-measure values;
8. obtain the final theory:

Ty ={r€R|spec(r) >0V F(r)>(1—m) F(rip) yU{ if null thenY }

OOl WN

Fig. 2. R-PREV main algorithm.



4 An Analysis of System R-PREV

In this section we analyze the performance of our proposal with respect to the
two main features that distinguish it from our previous work [9]: the improved
accuracy at forecasting rare extreme values; and the interpretability advantages
of its rule-based formalism.

4.1 Predictive Accuracy

We have carried out a set of experiments with the goal of estimating the per-
formance of our proposed system in the task of predicting rare extreme values,
when compared to related regression methods. Namely, we have compared sev-
eral variants of our system (R-PREV) with different settings in terms of the
margin parameter (m = 0%, 25%, 50%, 75%, 100%), with: the base system used
to obtain the trees (“BaseTree” [9]); a CART-like regression tree; and a bagged
CART-like regression tree (BaggCART). The selection of competitors was car-
ried out with the goal of having a better understanding of the gains caused by
each of the added features of our system when compared to a simple CART-like
tree.

The experiments were carried out on a set of real-world problems, some
of which are commercial applications. The methods were tested over 24 data
sets using 10 repetitions of a 10-fold cross-validation procedure. Regarding the
methods that use bagging we have used 50 bootstrap stratified samples.

Taking into account recent results reported in [3] regarding the comparison of
multiple models over several data sets, we have used the Friedman test and the
post-hoc Nemenyi test for asserting the statistical significance of the observed
differences in performance.

We have estimated the performance of the different methods by means of the
F-measure values as this statistic is better at characterizing the performance in
rare extreme values. We have used a 3 value of 0.5 for the F-measure calculation.
This choice is justified by the fact that, given that we are addressing a numeric
prediction task, precision is always the most important factor. With g = 0.5,
we are giving it doubled importance relatively to recall. For each dataset, we
calculated the mean value of F' obtained by each method over all repetitions. In
order to check whether the systems can be considered equivalent, we applied the
Friedman test. This test ranks internally the obtained results for each dataset
over all the compared methods and obtains rank data like the one shown in
Table 1.

In these experiments we have used the default parameters of all systems as
our goal was not to optimize their performance on each individual problem.
Therefore, some individual results may not be as good as possible. This is par-
ticularly noticeable in our R-PREV system, as previous experiments [6] have
revealed a certain sensitivity to the setting of parameter f.

Regardless of this, the Friedman test applied over the rank data, reported
a significant difference between the 8 compared methods at a significance level
of 5%. Given this result, we proceed by applying the post-hoc Nemenyi test to



R-PREV R-PREV R-PREV R-PREV R-PREV Base

datasets m=0 m=25 m=50 m=75 m=100 Tree CART BaggCART
servo 8.0 7.0 4.0 3.0 5.0 6.0 2.0 1.0
triazines 7.5 4.0 3.0 2.0 1.0 5.0 6.0 7.5
algael 7.5 6.0 3.0 2.0 1.0 4.0 5.0 7.5
algae2 6.5 6.5 3.0 2.0 1.0 4.0 6.5 6.5
algae3 7.5 7.5 3.0 2.0 1.0 5.0 4.0 6.0
algaed 7.5 7.5 4.0 2.0 1.0 6.0 3.0 5.0
algaeb 7.0 7.0 3.0 2.0 1.0 4.0 5.0 7.0
algae6 7.5 7.5 5.0 2.0 1.0 6.0 3.0 4.0
algae7 8.0 7.0 3.0 2.0 1.0 6.0 4.0 5.0
machine-cpu 8.0 6.0 7.0 1.0 2.0 4.0 5.0 3.0
china 7.0 7.0 3.0 2.0 1.0 5.0 4.0 7.0
sard0 8.0 7.0 6.0 2.0 1.0 5.0 4.0 3.0
sard2 8.0 4.0 3.0 2.0 1.0 6.0 7.0 5.0
sard3 8.0 4.0 3.0 1.0 2.0 6.0 5.0 7.0
sard4 7.5 3.0 4.0 2.0 1.0 7.5 6.0 5.0
sardb 7.0 3.0 2.0 5.0 1.0 7.0 7.0 4.0
sard0-new 8.0 7.0 5.0 2.0 1.0 6.0 4.0 3.0
sardl-new 8.0 4.0 3.0 2.0 1.0 6.0 7.0 5.0
Boston 8.0 6.0 7.0 4.0 2.0 5.0 3.0 1.0
onekm 7.0 5.0 1.0 2.0 3.0 4.0 7.0 7.0
cw-drag 8.0 7.0 5.0 4.0 3.0 6.0 1.0 2.0
co2-emission 8.0 5.0 4.0 2.0 1.0 3.0 6.0 7.0
acceleration 8.0 6.0 5.0 2.0 1.0 3.0 7.0 4.0
available-power 8.0 7.0 6.0 4.0 5.0 3.0 2.0 1.0
avg.ranks 7.65 5.88 3.96 2.33 1.62 5.1 4.73 4.73

Table 1. Ranking of the different regression methods over the set of datasets.

the rank data in order to compare all methods to each other. The results of
this test are better visualized by the CD (critical difference) Diagram proposed
by [3] and presented in Figure 3. This diagram represents the information on
the statistical significance regarding every pairwise comparison between meth-
ods, which means that each method is represented by 7 symbols as we have 8
methods being compared. The methods are plotted at their respective average
ranking value in terms of the X axis (notice that CART and BaggCART have
the same average ranking). The vertical axis position has no meaning. A dotted
line connecting two symbols has the meaning that according to the Nemenyi
test, the methods are significantly different at a 5% level. Bold lines indicate
that the difference in average ranking is not statistically significant at the same
confidence level. An ideal performance would be a method whose symbols are
at the right most position of the graph (lowest average ranking), and are con-
nected only by dotted lines to every other method (all pairwise comparisons are
statistically significant). Thus, we can observe that R-PREV with m = 100 and
with m = 75 are clearly the two best methods with a very high statistical sig-
nificance in almost all pairwise comparisons. In particular, they are significantly
better than CART, BaggCART and “BaseTree”. Still, we should also remark
that R-PREV with m = 0 is significantly worse than all standard CART related
methods. This clearly indicates the importance of having more rules contributing
to the predictions, but unfortunately also means that our model needs theories
with more rules (thus less interpretable) to achieve top performance.



Critical Difference Diagram
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Fig. 3. The Critical Difference Diagram obtained from our experiments.

In summary, these results provide clear evidence that R-PREV can achieve
very competitive predictive performance in terms of accuracy at predicting rare
extreme values measured by the F' statistic.

4.2 Interpretability

As we have seen in the previous section, in order to achieve top performance
we need a larger number of rules. Still, for each test case only a reduced num-
ber of rules is used to obtain the prediction and domain experts can analyze
these before taking any action associated with rare events. This was a property
that we were seeking when developing our system: provide domain experts with
comprehensible explanations of the system predictions.

In order to illustrate this comprehensibility issue we have selected the Boston
Housing data set. This selection was guided by the fact that this domain concerns
a topic (housing prices as a function of socio-economical factors) that is easily
understandable by non-expert readers. Other data sets would require domain
knowledge in order to comment the interpretability and/or reasonability of the
rules obtained by R-PREV.

Figure 4 shows two of the top most valuable rules obtained by R-PREV for the
Boston Housing data set. These two rules give some interesting insights regarding
the more expensive areas in Boston. One of the rules tells us that an area where



houses have more than 7 rooms tends to have a very high median price of houses.
The second rule says that areas with a low crime rate, near the city center, with
a small percentage of lower status population and with small houses, are also
quite expensive. Both seem to capture quite common sense knowledge and would
probably be regarded as correct by an expert of this domain, which would then
mean that this expert would easily “accept” the model predictions. This kind
of knowledge cannot be captured by standard methods like CART, because the
models they obtain are focused on being accurate at the more frequent cases
and not the rare extreme values like ours.

DOMAIN: Boston
Rare Extreme Thresholds: < 5 and > 37
Number of outliers: 37 of 506 examples.

If If
rm >= 7.43700 crim < 8.81054 and
dis in [1.13330,1.38485[ and
1stat < 12.30000 and
rm < 7.43700
Then Then
medv = 45.2129 medv = 50
coverage : coverage :
nr exs = 30 nr exs = 3
nr rare extreme values = 28 nr rare extreme values = 3
specificity = 0 specificity = 0
stats : stats :
F = 0.8913744 F = 0.3061224

Fig. 4. Example of two of top best rules obtained by R-PREV for Boston domain.

5 Conclusions

In this paper we have described a rule-based regression system, called R-PREV,
conceived to address a particular class of problems that occur in several real-
world applications. The applications we envisage have as main objective to pro-
duce accurate and interpretable predictions of rare extreme values of a continu-
ous target variable. We claim that this particularity makes these problems hard
to solve by the standard regression methods as they are biased to achieve a
good performance on the most common values of a target variable. A different
evaluation criterion is needed to overcome this limitation.

In this paper we present an extension of our previous approach to this class
of problems. The extension was developed with the goal of improving both the
accuracy and the interpretability of the models. The experimental evaluation we
have carried out provides clear evidence that R-PREV outperforms a set of other
systems with a high degree of statistical confidence. Regarding interpretability,



which is crucial in most applications we are addressing, the use of a rule-based
formalism leads to highly interpretable models, as we have shown by some ex-
amples.
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