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Abstract

Costs and benefits are of key importance
for most real-world data mining applications.
The main work carried out within ML/DM
on cost-sensitive learning has been centered
on classification tasks. Nevertheless, there
are many real-world regression applications
where costs and/or benefits of the predictions
play an important role. On such applications,
the costs and/or benefits of a prediction can
vary across the domain of the target vari-
able. For instance, it may be much more
relevant the be accurate at a certain range
of values than on other parts of the target
variable domain. In this context, it is impor-
tant to address regression tasks from a cost-
sensitive perspective. Using as an example
the case of rare extreme values prediction,
we show why the standard regression error
metrics are no longer effective for this type
of applications. We propose an utility-based
evaluation framework, which allows for dif-
ferentiated scores to be assigned to the pre-
dictions based on their cost/benefit in con-
formity with the application preference bi-
ases. Based on this utility concept, new per-
formance metrics can be developed for a more
reliable evaluation/comparison of models and
also for model development.

1. Introduction

In many real-world applications, the main focus of in-
terest is a small subset of values. Typically, these ap-
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plications are related to cost-sensitive decision prob-
lems, where different predictions can trigger different
decisions in which costs are often involved. Several
cost-sensitive techniques (e.g. Domingos (1999); Fan
et al. (1999); Elkan (2001); Zadrozny et al. (2006))
have been studied and developed in order to address
such kind of applications. Still, in what concerns re-
gression tasks not much has been done.

In effect, there are some real-world applications where
the continuous target variable shows non-uniform costs
across its domain. The anticipation of a critical phe-
nomenon in domains such as finance, meteorology,
ecology, fraud detection, etc. are among this kind of
applications. These critical phenomena are usually de-
scribed by a particular subset of values of the target
continuous variable, and usually trigger some sort of
alarm or action. So, predictions made for this subset
of values should have a differentiated cost/benefit to
be in accordance to the application biases.

Some authors (e.g. Christoffersen and Diebold (1996);
Crone et al. (2005)) have already proposed new er-
ror metrics for handling differentiated costs in regres-
sion tasks. However, as it will be explained, they still
have some drawbacks in terms of addressing the gen-
eral problem of cost-sensitive regression.

In this work, we will present a new utility-based frame-
work, based on some of ours previous works (Ribeiro &
Torgo, 2008; Torgo & Ribeiro, 2007), to address such
cost-sensitive regression applications.

2. The Inadequacy of Standard

Evaluation Approaches

The performance measures more commonly used in
regression are the mean squared error, MSE =
1
n

∑n

i=1 (yi − ŷi)
2
, and the mean absolute deviation,

MAD = 1
n

∑n
i=1 |yi − ŷi|, where yi and ŷi represent
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the true and predicted values of the continuous tar-
get variable Y , respectively. Both measures take all
the prediction errors equally across the domain of the
target variable Y , as they only consider the error am-
plitude For cost-sensitive regression tasks, this type of
performance measures is no longer effective.

Suppose that we have an application problem where
Y has a normal-like shape but with very heavy tails.
Moreover, let us assume the most relevant values are
the ones which lye on these tails of the distribution,
that is, the rare and extreme values. We can find
several prediction tasks in these conditions: anticipa-
tion of ecological or meteorological catastrophes (e.g.
harmful algae bloom in a river, extreme weather con-
ditions), financial forecasting (e.g. big stock market
price changes), etc.. In all these domains, the most rel-
evant values are often described by rare and extremely
high or extremely low values of the target variable.

Imagine that on an example of this type of tasks the
values above 40 are considered the most relevant. In
Figure 1, we show the predictions of two hypothetical
models for a set of test cases of such problem.

Figure 1. Predictions of two models

If we look at the performance of the two models, we
can easily see that model M2 should be regarded as
the best model, given the application preference biases.
With M2 most accurate predictions occur on the rare
extreme cases, whilst the opposite happens with M1,
and thus M2 is much more useful. However, if we esti-
mate their performance using MAD or MSE, we see
that the two models are ranked exequo (c.f. Table 1).

Table 1. Estimated performance of two different models
MAD MSE

M1 1.5978 4.7454

M2 1.5978 4.7454

In effect, these are two artificially generated models de-
signed to illustrate the drawbacks of standard metrics
on cost-sensitive applications. M2 is obtained from
M1 in such a way that the smaller errors (in ampli-

tude) are allocated to the cases which have rare ex-
treme values on the target variable. This means that
both models have exactly the same error amplitudes
but these occur for different test cases, M2 having the
smaller errors on the most important test cases. This
illustrates the problems of using metrics that are insen-
sitive to the concrete values involved in the predictions,
only looking at the error amplitudes. This is more se-
rious when the values have non-uniform costs/benefits
as it is the case on this small toy problem.

We could try to overcome this problem by considering
a weighted error measure, such that higher weights are
given to the rare extreme values cases. Nonetheless,
this would only partially meet our application require-
ments. In effect, we want to avoid bad predictions for
a relevant values (missed events), but also predictions
of relevant values for irrelevant test cases (i.e. false
alarms). Therefore, the cost/benefit of a prediction
should depend on both the true and predicted values.

Christoffersen and Diebold (1996) and Crone et al.
(2005) have addressed the issue of differentiated pre-
diction costs in the context of financial applications,
proposing asymmetric loss functions. Their main goal
was to be able to distinguish two types of errors, and
assign costs accordingly, namely, the cost of under-
predictions (ŷ < y) and the cost of over-predictions
(ŷ > y). Although this is a step in the direction of cost-
sensitive regression, they only distinguish two types
of situations and moreover, they consider all under-
(over-) predictions as equally serious, taking only in
consideration the error magnitude as in the standard
error metrics. As such, this approaches are far from
satisfying our goal of having a general framework for
handling cost-sensitive regression tasks.

3. An Utility-based Evaluation

Framework

Our proposal builds upon the notion of utility, which
incorporates both costs and benefits of the predictions
of a model. The utility of a prediction ŷ for a true
value y will be defined by two factors: the relevance
of ŷ and y according to the application biases; and the
relevance of the prediction error, given by a loss func-
tion L(Ŷ , Y ), and by a threshold t within the range of
this loss function that establishes a kind of maximum
admissible error.

3.1. Relevance Function

We define the relevance of the values of the target
variable as in Torgo and Ribeiro (2007). We assume
that the end-user provides us with a relevance func-
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tion φ. This function maps the domain of the target
variable into 0..1 scale, where 1 represents maximum
relevance, i.e. φ(Y ) : R → [0, 1]. This step is equiva-
lent to the specification of a cost matrix in the context
cost-sensitive classification tasks. Still, on several ap-
plications the concept of relevance is often associated
to the notion of rarity and extremeness of values. For
such applications, if a relevance function is not avail-
able, we can obtain a reasonable approximation using
the box-plot, as shown in Figure 2. With the statis-
tical indicators returned by the box-plot of the target
variable Y , we can setup a sigmoid-like function that
grows smoothly as the level of rarity increases.
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Figure 2. A sigmoid-based relevance function (φ)

3.2. From Prediction Errors to Utility Scores

The second factor of our proposal is related to the
mapping of the prediction errors into cost/benefits, i.e.
into a score of utility. Considering costs as negative
benefits, we have single scale of benefits. We define
the utility scores through the specification of the func-
tion ζ : R

+
0 → [−B,B], shown in Equation 1, where

B is the maximum benefit, t establishes a maximum
admissible error, and η is a decay parameter which
ensures that the maximum benefit is achieved.

ζ(L(Ŷ , Y )) = sgn(t − L(Ŷ , Y )) · B · (1 − e
−η·|t−L(Ŷ ,Y )|

) (1)

Without any crisp divisions, this function provides
a smooth decrease from the maximum benefit B,
achieved when the prediction error is zero, to the min-
imum benefit −B (c.f. Figure 3).

The final utility of a prediction ŷ for a true value of
y also takes into consideration the relevance of both ŷ

and y. This value depends on whether we are facing
a positive benefit (L(ŷ, y) ≤ t) or a negative benefit
(L(ŷ, y) > t), as described in Equation 2. In the first
case, we are facing an admissible error, i.e. a kind

Figure 3. From prediction errors to utility scores.

of “accurate” prediction. Our utility value is propor-
tional to the smallest relevance of both ŷ and y. The
idea is that the smallest of these two relevances should
condition how much utility score (i.e. benefits) we get.
In the second case, we are facing a kind of predic-
tion “error”. The cost we incur is proportional to the
weighted average of the relevances of both ŷ and y.
This process allows us to distinguish the importance
of false alarms from missed events (also known as op-
portunity costs), using a parameter p that sets the
relative importance of these two types of errors.

U(Ŷ , Y ) =

8

>

<

>

:

min
n

φ(Y ), φ(Ŷ )
o

· ζ(L(Ŷ , Y )) L(Ŷ , Y ) ≤ t

((1−p)·φ(Ŷ )+p·φ(Y )) · ζ(L(Ŷ , Y )) L(Ŷ , Y ) > t

(2)

The function U() defines an utility surface that can be
regarded as a kind of continuous and smooth version
of cost matrices. For instance, using this function, the
relevance function shown in Figure 2, and a maximum
admissible error amplitude of 15 (i.e. t = 15) we obtain
the utility surface shown in Figure 4. In this figure we
have set p = 0.6, making missed events slightly more
serious than false alarms.

This surface reflects the application preference bias on
rare high extreme values prediction. Near the diagonal

Figure 4. An utility surface
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(smaller errors) we have a positive utility which grows
fast as we reach higher values of both predicted and
true values. On the contrary corners of the surface are
the more serious errors and, as such, lead to costs (i.e.
negative utility). Given the p value specified for this
example, the higher costs are on the area of missed
events, that is, a prediction of an irrelevant value for
a true relevant value

3.3. An Utility-based Performance Measure

Once we have a fully specified utility surface, several
performance measures can be derived, such as the av-
erage utility per test case Ū = 1

n
·
∑n

i U(ŷi, yi).

Such metric is able to properly evaluate the perfor-
mance of different models according to the applications
preference biases in terms of different costs/benefits
across the domain of the target variable. For instance,
using a parametrization similar to the one resulting
on the surface shown in Figure 4, we can evaluate the
two artificial models presented in Figure 1, and obtain
a correct ranking of the models as shown on Table 2.

Table 2. Estimated performance of M1 and M2.
MAD MSE Ū

M1 1.5978 4.7454 -0.1332

M2 1.5978 4.7454 0.1968

As it can be observed, contrary to the standard error
metrics, with the Ū metric we get a model ranking
that is according to what is expected given the appli-
cation preference bias and, moreover, we get a proper
feedback on the performance of model M1 that gets a
negative value of average utility, which means that its
predictions on average lead to a cost.

Moreover, an extensive set of comparative experi-
ments (Ribeiro & Torgo, 2008) confirmed the useful-
ness of the Ū metric in the context of cost-sensitive
regression applications, in terms of being able to cor-
rectly rank a set of alternative models. These experi-
ments have also shown that the use of standard error
metrics can be misleading in the sense that models
that are ranked top according to these metrics may
actually be sub-optimal according to the application
preference biases.

4. Conclusions and Future Work

In this paper we have presented a new utility-based
framework that allows a reliable evaluation and com-
parison of regression models under a cost-sensitive con-
text. We have illustrated the drawbacks of using stan-
dard error metrics and have shown the ability of our

proposed evaluation metric to overcome these difficul-
ties. The use of our proposal can provide better results
in terms of model comparisons for cost-sensitive regres-
sion applications. Moreover, if this metric is plugged
in into a regression algorithm we can expect to ob-
tain models that are better according to the applica-
tions preference biases. Based on this framework of
utility scores, we are currently working on regression
versions of precision-recall and cost curves for better
model comparisons under different setups.
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