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Abstract. This paper presents an dternative gproach to the problem of
regresson. The methodology we describe dlows the use of classficaion
algorithms in regresson tasks. From a pradicd point of view this enables the use
of a wide range of existing Maciine Leaning (ML) systems in regresson
problems. In effed, most of the widely available systems ded with classfication.
Our method works as a pre-processng step in which the continuous goal variable
values are discretised into a set of intervals. We use misclasdfication costs as a
means to refled the implicit ordering among these intervals. We describe aset of
alternative discretisation methods and, based on our experimental results, justify
the neal for a seach-based approach to choose the best method. The
discretisation process is isolated from the dasdficaion algorithm thus being
applicable to virtualy any existing system. The implemented system (RECLA)
can thus be seen as a generic pre-processng tool. We have tested RECLA with
three different classfication systems and evaluated it in several regresson data
sets. Our experimental results confirm the validity of our search-based approach
to classdiscretisation, and reved the acairacy benefits of adding misclassfication

costs.
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1 Introduction

Madhine leaning (ML) reseachers have traditionally concentrated their efforts in
clasgficaion problems. Few existing system are ale to ded with problems were the target
variable is continuous. However, many interesting red world domains demand for regresson
tools. This may be aserious drawbadk of ML techniques in a data mining context. In this
paper we present and evaluate a pre-processng method that extends the gplicability of
existing clasgfication systems to regresson domains. This is acamplished by discretising the
continuous values of the goa variable. This discretisation process provides a different
granularity of predictions that can be mnsidered more wmprehensible. In effed, it is a
common pradice in gatisticd data analysis to group the observed values of a @ntinuous
variable into classintervals and work with this grouped data[2]. The choice of these intervals
isa iticd issue atoo many intervalsimpair the mmprehensibility of the models and too few
hide important feaures of the variable distribution. The methods we propose provide means
to automatically find the optimal number and width of these intervals.

We ague that mapping regresson into classfication is a two-step process First we
have to transform the observed values of the goal variable into a set of intervals. These
intervals may be mnsidered values of an ordinal variable (i.e. discrete values with an implicit
ordering among them). Classfication systems ded with discrete (or nominal) target variables.
They are not able to take advantage of the given ordering. We propose asemnd step whose
objedive is to overcome this difficulty. We use misclassficaion costs which are caefully
chosen to refled the ordering of the intervals as a means to compensate for the information

loss regarding the ordering.



We describe severa aternative ways of transforming a set of continuous values into a
set of intervals. Initial experiments reveded that there was no clea winner among them. This
fad lead usto try a seach-based approach [15] to this task of finding an adequate set of
intervals.

We have implemented our method in a system cdled RECLAL We can look at our
system as a kind of pre-processng todl that transforms the regresson problem into a
classficaion one before feeding it into a dassficaion system. We have tested RECLA in
several regresson domains with three different classfication systems : C4.5 [12], CN2 [3],
and a linea discriminant [4, 6]. The results of our experiments sow the validity of our
seach-based approach and the gains in acaracy obtained by adding misclassficaion costs to
classification algorithms.

In the next sedion we outline the steps necessary to use dassfication agorithms in
regresson problems. Sedion 3 describes the method we use for discretising the values of a
continuous goal variable. In Sedion 4 we introduce misclassficaion costs as a means to
improve the acaracy of our models. The experimental evaluation of our proposalsis given in

Sectionb. Finally we relate our work to others and present the main conclusions.

2 Regression through Classification

The use of a dasdficaion agorithm in a regresson task involves a series of
transformation steps. The more important consists of pre-processng the given training data
so that the dasdficaion system is able to learn from it. This can be adieved by discretising

the continuous target variable into a set of intervals. Each interval can be used as a dasslabel

1 RECLA stands foREgression usinGLAssification.



in the subsequent learning stage. After learning takes place asecnd step is necessary to make
numeric predictions from the resulting leaned “theory”. The model leaned by the
clasgficaion system describes a set of concepts. In our case these wncepts (or classes) are
the intervals obtained from the original goal variable. When using the leaned theory to make
a prediction, the dassfication algorithm will output one of these dasses (an interval) as its
prediction. The question is how to asert the regresson acaracy of these “predictions’.
Regresson acarragy is usualy measured as a function of the numeric distance between the
adua and the predicted values. We thus need a number that somehow represents eat
interval. The natural choice for this value isto use astatistic of centrality that summearises the
values of the training instances within ead interval. We use the median instead of the more
common mean to avoid undesirable outliers effects.

Summerising, our proposal consists of discretising the ntinuous values of the goal
variable into a set of intervals and take the medians of these intervals as the dass labels for
obtaining a discrete version of the regresson problem. RECLA system uses this grategy to
ded with a regresson problem using a dassficaion system. The system architedure can be

generally described by the following picture :
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Figure 1 - RECLA architecture.



RECLA can ke eally extended to other than the arrently interfacel clasgficaion systems.
This may involve some ding effort in the leaning systems interface module. This effort
should not be high as long as the target classfication system works in a fairly standard way.
In effed, the only coding that it is usually necessary is related to different data set formats

used by RECLA and the target classification systems.

3 Discretising a Continuous Goal Variable

The main task that enables the use of clasgficaion algorithms in regresson problems is the
transformation of a set of continuous values into a set of intervals. Two main questions arise
when performing this task. How many intervals to build and how to define the boundaries of
these intervals. The number of intervals will have adired effed on both the acaracy and the
interpretability of the resulting leaned models. We ague that this dedsion is grongly
dependent on the target clasgficaion system. In effed, dedding how many intervals to build
is equivalent to dedding how many classes to use. This will change the dass frequencies as
the number of training samples remains constant. Different class frequencies may affed
differently the dassfication algorithms due to the way they use the training data. This

motivated us to use a search-based approach to class discretisation.

3.1 Obtaining a Set of Intervals

In this dion we aldressthe question of how to divide aset of continuous values into a set

of N intervals. We propose three alternative methods to achieve this goal :



» Equdly probale intervals (EP) : This creaes a set of N intervals with the same number
of elements. It can be said that this method has the focus on classfrequencies and that it
makes the assumption that equal class frequencies is the best for a classification problem.
» Equal width intervals (EW) The range of values is divided ifticequal width intervals.
» K-means clustering (KM) : In this method the goal is to build N intervals that minimize the
sum of the distances of ead element of an interval to its gravity center [4]. This method
starts with the EW approximation and then moves the dements of ead interval to
contiguous intervals if these changes reducethe referred sum of distances. Thisis the more
sophisticaed method and it seems to be the most coherent with the way we make
predictions with the leaned mode. In effed, as we use the median for making a

prediction,KM method seems to be minimizing the risk of making large errors.

We present a simple example to better ill ustrate these methods. We use the Servo data set?
and we asume that the best number of intervals is 4. In the following figure we have divided
the original values into 20 equal width intervals to obtain a kind of histogram that somehow

captures the frequency distribution of the values.
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Figure 2 - The distribution of the goal variable values in Servo.

2 In the appendix we provide details of the data sets used throughout the paper.



Using each of the three splitting strategies to obtain 4 intervals we get the following :

Table 1. Solutions found by the different methods.

Method Intervals Medians (class labels)
KM 10.13..0.45[ [0.45..0.79[ [0.79..3.20[ [3.20..7.10[ 0.34, 0.54, 1.03, 4.50
EP ]0.13..0.50[ [0.50..0.75[ [0.75..1.30[ [1.30..7.10[ (.36, .054, 0.94, 4.1
Ew  10.13..1.87[ [1.87..3.62[ [3.62..5.36[ [5.36..7.10[ 0.56, 1.90, 4.40, 6.30

Table 2 presents the dassfrequencies resulting from ead method dedsion. We dso give the
sum of the deviations of the dasslabel from the red example values as well as the average of

these deviations. In the bottom of the table we give totals for these two statistics.

Table 2. Consequences of each method classes.

KM EP EW
Classes Statistics Classes Statistics Classes Statistics
Freq. 32 Freq. 42 Freq. 134
0.34 |Sum Dev| 2.29 0.36 |Sum Dev, 3.31 0.56 |Sum Dev| 34.58
Avg.Dev.| 0.07 Avg.Dev.| 0.08 Avg.Dev.| 0.26
Freq. 55 Freq. 42 Freq. 5
0.54 |Sum Dev| 3.61 0.54 |Sum Dev, 2.28 1.9 Sum Dev, 1.40
Avg.Dev.| 0.07 Avg.Dev.| 0.05 Avg.Dev.| 0.28
Freq. 52 Freq. 42 Freq. 24
1.03 |Sum Dev} 13.76]f 0.94 |Sum Dev} 5.93 4.4  |Sum Dev, 8.40
Avg.Dev.| 0.26 Avg.Dev.| 0.13 Avg.Dev.| 0.35
Freq. 28 Freq. 43 Freq. 4
4.5 Sum Deyv, 15.60 4.1 Sum Dev, 40.80 6.3 Sum Dev, 2.80
Avg.Dev.| 0.56 Avg.Dev.| 1.07 Avg.Dev.| 0.70
Total Sum Dev. 35.26|Total Sum Dev. 52.32|Total Sum Dev. 47.18
Overall Average Dey.0.21 |Overall Average Dey.0.31 |Overall Average Dey.0.28

The resulting class frequencies are quite different, namely with the EW method. Knowing
which solution is better involves understanding the sources of the aror made by models
obtained through our discretisation process.

Given a query instance the theory obtained by a dasdficaion agorithm will predict a
classlabel. This label is the median of an interval of the original range of values of the goal

variable. If the testing instance dso belongs to the same interval this would mean that the



clasgficaion system predicted the crred class However, this does not mean, that we have
the crred prediction in terms of regresson. In effed, this predicted label can ke “far” from
the true value being predicted. Thus high classfication acairacy not necessarily corresponds
to high regresson acarragy. The later is clealy damaged if few classes are used. However, if
more dasses are introduced the dass frequencies will start to deaease which will most
probably damage the dasdgficaion acairracy. In order to observe the interadion between
these two types of errors when the number of classsisincreased we have conducted a smple
experiment. Using a permutation of the Housing data set we have set the first 70% examples
as our training set and the remaining as testing set. Using C4.5 as leaning engine we have
varied the number of classes from one to one hundred, colleding two types of error for ead
trial. The first isthe overall prediction error obtained by the resulting model on the testing set.
The second is the eror rate of the same mode (i.e. the percentage of classficaion errors
made by the model). For instance if a testing instance has a Y value of 35 belonging to the
interval 25..40 with median 32, and C4.5 predicts class 57, we would count this as a
classfication error (label 57 dfferent from label 32), and would sum to the overall prediction
error the value 22 (= 57-35). In the following graph we plot two lines as a function of the
number of classes : the overall prediction error in the testing set (lines with label terminating
in “-P"); and the aror rate (percentage of classfication errors) in the same data (lines with

label ending in “-C”). We present these two lines for each of the described splitting methods.
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Figure 3 - Regression error versus classification error rate.

The first interesting observation is that the regresson error quickly deaeases and then stays
more or lessconstant although the eror rate stealily increases. A possble explanation for the
constant increase of error rate isthe fad that classfrequencies gart to become unreliable with
large number of clases. The interesting fad is that this does not seem to be dfeding
regresson acasragy. The reason is that although the number of errors increases this does not
mean that they are larger in metric terms. In effed they should tend to be smaller as the dass
medians get neaer and neaer when more dasss are introduced. This explains why
regresson acaracy does not follows the aror rate tendency. We have repeded this
experiment with other data sets and the overall picture was the same.

The main conclusion of these experiments is that if we want to deaease regresson
error we should look for the types of classficaion errors and not for their number. We should
insure that the dsolute difference between predicted class and the true dassis as gnal as
possble. In Sedion 4 we will present a methodology that aims at minimising the ésolute

difference between the predicted and actual class values.



Finally, an interesting concluson to draw from Figure 3 is that in terms of
comprehensibility it is not worthwhile to try larger number of classes as the acerracy gains do
not compensate for complexity increese. In the following sedion we describe how RECLA
“walks’ through the search spaceof “number of clases’ and the guidance aiteria it uses for

terminating the search for the “ideal” number of intervals.

3.2 Wrapping for the Number of Intervals

The splitting methods described in the previous dion assumed that the number of intervals
was known. This dion addresses the question of how to discover this number. We use a
wrapper [8, 9] approach as general seach methodology. The number of intervals (i.e. the
number of classes) will have adired effed on acarragy so it can be seen as a parameter of the
learning algorithm. Our goal is to set the value of this “parameter” such that the system
acairacy is optimised. Asthe number of ways of dividing a set of values into a set of intervals
istoo large aheuristic search algorithm is necessary. The wrapper approac is a well known
strategy that has been mainly used for feaure subset seledion [8] and parameter estimation
[9]. The use of this iterative goproac to estimate aparameter of a leaning algorithm can be

described by the following figure:

Training set —» Search for New
Parameter settings '\
Induction
Evaluate ’ Algorithm
Parameter settings
Induction Algorithm — i
Find
Test sat > Evaluation

Figure 4 - The wrapper approach.

The components inside of the box are the dements that perform the tuning of the target

parameters. The two main components of the wrapper approach are the way new parameter



settings are generated and how their results are evaluated in the context of the target learning
algorithm. The basic ideais that of an iterative seach procedure where different parameter
settings are tried and the setting that gives the best estimated acairacy is returned as the
result of the wrapper. This best setting will then be used by the learning algorithm in the real
evaluation using an independent test set. In our case thiswill correspond to getting the “best”
estimated number of intervals that will then be used to split the original continuous goal
values.

With resped to the search component we use ahill -climbing algorithm coupled with a
settable look-aheal parameter to minimise the well-known problem of locd minima. Given a
tentative solution and the respedive evaluation the seach component is responsible for

generating a new trial. We provide the following two alternative search operators :

» Varying the number of intervals (VNI): This smple dternative consists of incrementing the
previously tried number of intervals by a constant value.

* Incrementally improving the number of intervals (INI) : The ideaof this alternative is to
try to improve the previous st of intervals taking into acount their individual evaluation.
For ead trial we evaluate not only the overall result obtained by the dgorithm but aso the
error committed by ead of the dasses (intervals). The next set of intervals is built using
the median of these individual classerror estimates. All intervals whose eror is above the
median are further split. All the other intervals remain unchanged. This method provides a
kind of hierarchicd interval structure for the goal variable which can also been considered

valuable knowledge in terms of understanding the problem being solved.

The search algorithm of the wrapper used by RECLA can be generally described by :



Agorithml1. The Search Gonponent A gorithmof the Wapper

DO
Generate New Tri al
Bval uate New Tri al
IF Failed Trial THEN
Failures = Failures + 1

B.SE
IF Better than Best Tria THEN
Best Trial = New Tri al
BND F
Failures =0
BND F

WNM L Failures >= Al oned Fai | ures

There ae two fadors that control the termination of this algorithm. One is the number of
alowed failed trias (the look-ahead parameter mentioned above). The other is the notion of
faled trial. One way of defining this concept would be to state that if the tria is worse than
the previous one then it is falure. We ald a further degree of flexibility by defining the
percentage gain (PG) in accuracy of a trial,

_ Eval(T,_,)-Eval(T;)
- Bal(T)

PG(T,) (1)

where
T, andT,, are the current and previous trials, respectively
andEval(.) is the evaluation of a trial (its estimated regression error)

If the value of PG is below a cetain threshold we cnsider the tria a failure even if its
estimated error is lower than the previous trial. The main motivation for thisis that ead tria
isadding a further degreeof complexity to the learned model and as we have seen in Figure 3
this might not be worthwhile if the corresponding gain in accuracy is small.

The other important component of the wrapper approach is the evaluation strategy. We
use aN-fold CrossValidation [14] estimation technique which is well-known for its reliable
estimates of prediction error. This means that ead time anew tentative set of intervals is

generated, RECLA uses an internal N-fold Cross Vaidation (CV) processto evauate it. In



the next subsedion we provide asmall example of a discretisation processto better ill ustrate

our search-based approach.

3.2.1 An illustrative example

In this example we use the Auto-Mpg data set and C4.5 as leaning engine. We have
performed two experiments with the two different seach operators. Table 3 presents a trace
of RECLA discretisation trials using the VNI search operator. The first column shows the
number of intervalstried in ead iteration of the wrapper. The fad that starts with 2 and goes
in increments of 2 is just an adjustable parameter of RECLA. The second column shows the
obtained intervals using one of the splitting strategies described in Sedion 3.1. The second
line of this column includes the crresponding medians of the intervals (the used classlabels).
The last column gives the wrapper 5-fold CV error estimate of the trial. In this example we
have used the value 1 for the look-ahead parameter mentioned before and al error
improvements were @nsidered succesdul trials (corresponding to a “pure” hill-climbing).
This means that as soon the next tria is worse than the previous the seach process $ops. The

solution using this operator is 6 intervals (the trial with best estimated error).

Table 3. Trace ofVNI search operator.

N.Ints Intervals / Class Values Error

2 | [9.0..23.7] [23.7..46.6] 4.16
17.6 29.8

4 |[9.0..16.7] [16.7..22.8] [22.8..29.9] [29.9..46.6] 3.73
14.0 19.2 26.0 33.8

6 |[9.0..15.8] [15.8..19.6][19.6..23.0][23.0..27.5] [27.5..33.0] [33.0..46.6] 3.48
14.0 18.0 21.0 25.0 30.0 36.0

8 |[9.0..14.3] [14.3..17.3] [17.3..19.6] [19.6..22.8] [22.8..25.7] [25.7..29.3] [29.3..34.6] [34.6..46.6] 3.59
13.0 16.0 18.1 21.0 24.0 27.0 32.0 37.3

In the second experiment we use the INI search operator. The results are given in Table 4
using a similar format as in the previous table. We dso include the estimated error of eat

interval (the value in parenthesis). Each next trial is dependent on these individual estimates.



The intervals whose aror is greder or equa than the median of these estimates are split in
two intervals. For instance, in the third tria (5 intervals) we can observe that the last interval
([29.9..46.6]) was maintained from the second trial, while the other were obtained by splitting

a previous interval.

Table 4. Trace ofINI search operator.

N.Intg Intervals / Class Values Error

2 [[9.0..23.7][23.7..46.6] 4.16
17.6 (1.6) 29.8 .6)

3 [[9.0..23.7][23.7..29.9][29.9..46.6] 3.96
17.6 (1.7) 26.0(.2) 33.8(.0)

5 [[9.0..17.3][17.3..23.7][23.7..26.5][26.5..29.9][29.9..46.6] 3.85
14.0 0.6 20.0(.5) 25.00.4 28.90.) 33.8(.2

8 [[9.0..14.3][14.3..17.0][17.0..19.6][19.6..23.7][23.7..26.5][26.5..29.9][29.9..34.6][34.6..46.6] 3.25
13.005) 16.000) 18.104) 21.104) 25.00.8) 28.00.1) 32.00.7) 37.30.4)

12 [[9.0..13.5][13.5..14.3][14.3..17.0][17.0..18.4][18.4..19.4][19.4..23.7][23.7..25.0][25.0..26.4][26.4..29.9][29.9..32.3][32.3..34.6][34.6..46.6| 4.40

13.0 0.0 14.00.0) 16.00.6 18.00.2 19.00.0 21.1(.3 24.00.0 26000 280.9 31.00.3 33.50.0 37.30.9

The two methods obtain different solutions for grouping the values. In this example the INI

alternative leads to lower estimated error and consequently would be preferred by RECLA.

4 Misclassfication Costs for Ordinal

Variables

In this dion we describe amethod that tries to deaease one of the caises of the arors
made by RECLA. As mentioned in Sedion 3.1, part of the overall prediction error made by
RECLA is caused by the averaging effed of the discretisation process The other cause of
error isthe fad that the dassficaion system predicts the wrong class (interval). The method
described bellow tries to minimise the dfea of these misclassfications by “preferring “ errors
that lead to lower regression error.

Clasdficaion systems sach for theories that have minimal estimated prediction error
acording to a 0/1 lossfunction, thus al errors are equally important. In regresson, the eror

is a function of the difference between the observed and predicted values (i.e. errors are



metric). Accuragy in regresson is dependent on the amplitude of the eror. In our

experiments we use the Mean Absolute Error (MAE) as regression accuracy measure :

T

|Yi_Yi
N

MAE = (2

where '
y, is the real value ang. is the model prediction.

Thismeans that in terms of regresson acairacy it is not irrelevant the kind of error made by a
theory. Two different misclassfications can have adifferent effed on the overall regresson
error depending on the distance between the predicted “class’ and the value being predicted.
In order to differentiate anong dfferent errors we propose to incorporate misclassficaion
costs in the prediction procedure. If we take ¢ as the cst of classfying a dassj instance &
classi, and if we take p(j|x) as the probability given by our classfier that instancex is of class

j, the task of classifying instangeesumes to finding the clasthat minimises the expression

jq% c,; p(ilx) ©)

)
The question is how to define the misclassfication costs. We propose to estimate the wst of

misclassifying two intervals using the absolute difference between their representatives, i.e.

C, = | yi - gl'j | 4

where
y. is the median of the values that where “discretised” into the interval

By procedaling this way we ensure that the system predictions minimise the expeded absolute
distance between the predicted and observed values.

A drawbadk of this proposd is that not al classficaion systems are prepared to use
information regarding misclasgficaion costs. To use this information the systems need to be
able to compute dassprobability estimates for ead given testing instance. With resped to the

systems we have used with RECLA only CN2 did not provide an easy way of obtaining this



information. The used Linea Discriminant was prepared to work with misclasgfication costs

from scratch. With C4.5 it was necessary to make aprogram that used the dass probability

estimates of the trees leaned by C4.5. This means that athough the “standard” C4.5 is not

able to use misclassification costs, the version used within RECLA is able to use them.

We have caried out a series of experiments with these two classfications s/stems with

our benchmark data sets to assert the benefits of using misclassficaion costs. We have done

these experiments with al combinations of search operators and splitting methods available

within RECLA. The tables presented bellow give the mean average eror estimated by 10-fold

CrossValidation, of ead discretisation method with and without misclasdficaion costs. The

best result is highlighted in grey, and in the cae the difference is gatisticdly significant

(paired t-test at 90% confidence level) we highlighted it with black background.

Table 5. Misclassification costs comparison using C4.5.

with Costs
INI VNI
KM EP EW KM EP EW

without Costs
INI VNI
KM EP EW KM EP EW

Housing
Auto
Machine
Gate
Imports
Servo
Whbc
Price

3.184 3.211 3.313 3.481 3.726 3.213
2.589 2.667 3.096 2.745[EXEH 2.674
50.69 44.64 44.01 39.63 4556 45.33
0.0046 0.0045KXe¥¥ 0.0050 0.0061 0.0064
15.77 13.60 13.68 13.95 14.71 13.
0.471 0.444 0.478 0.417 0.440 0.482
32.87 36.99 33.29 3241 36.97 33.
2286.42133.11854.81970.02044.6 2062.

3.214 3.221 3.401 3.507 3.732 3.3

2.649 2.649 3.058 2.932 2.785 2.71%

50.58 44.64 44.25 39.63 45.57 48.(
0.0044 0.0047 0.0044 0.0051 0.0062 0.0(
81 15 13.39 13.68 13.95 14.71 13.3

0.474 0.416 0.462 0.434 0.491 0.48%

P9 32.87 36.99 33.29 32.41 36.97
B 2286.4 2163.2 1872.5 1982.4 20 2007.G

4
68

33.29

Table 6. Misclassification costs comparison using Linear Discriminant.

without Costs
INI VNI
KM EP EW KM EP EW

Housing
Auto
Machine
Gate
Imports
Servo
Whbc
Price

with Costs
INI VNI
KM EP EW KM EP EW
3.181 6 3.508

pRAXI] 2.53 2.743 WAYYRYR KRR

41.35 34.59 41.68 43.96 485 71.08
0.029 0.026 0.038 eNe ¥ aNoN0 s RRINIpA)
32.92 33.55 29.7z 32.01 Ky 29.72
0.422 0.398 gokilocoReisie] 0.435 0.501
33.29 34.64 33.75 33.29 34.64 33.
2312.62010.6 2414.7 2157.2 2169.5 2934.

3.311 3.381 3.666 3.46 3.486 3.605
2.6 2617 2.761 2.76 2.698 2.772
4456 37.73 42.61 44.77 49. 67.87
0.03 0.027 0.039 0.03 0.027 0.039
32.92 33.55 29.72 32.92 33.55 29
0.462 0.458 0.517 0.531 0.436 0.9

72
01

5 33.29 34.64 33.75 33.29 34.64

33.75

2312.6 2056.2404.42263.9 2196. pLitW;



The results can be summarised by the following table :

Table 7. Summary of misclassification costs results.

using Costs  without Costs

Wins 21 8

C4.5  signif. Wins 2 0
Total Wins 23 8

Wins 18 3

Discrim  signif. Wins 14 1
Total Wins 32 4

Our experiments siow a dea advantage of using misclassficaion costs. This advantage is
more evident with the Linea Discriminant. A possble explanation for the less ggnificant C4.5
results is fad that class probabilities estimates are obtained at the tree leaves. Dedsion tree
algorithms try to discriminate & much as posshle anong classes which means that in most
treeleaves there is a big discrepancy among the probabilities of classes. This originates that
seldom the dassficaion predicted by C4.5 is changed due to the incorporation of costs (see
Eq. 3). Thisis not the cae with the Linea Discriminant where we do not have the reaursive
partitioning effed of trees and thus the dass probabilities may be more smilar, lealing to

more frequent changes in classification decisions.

5 Experimental Evaluation

In this dion we present the results of a set of experiments that we have caried out with
RECLA in our benchmark data sets whose details are given in the Appendix. For all
experiments the used methodology was the following. The initial data set was randomly
permuted to eliminate any ordering effed. In al experiments we estimate the mean average
error as defined by Eq. 2. We use 10-fold Cross Validation as estimation technique.

Whenever paired comparisons are being caried out, al candidate methods are compared



using the same 10 train/test folds. We use paired t-Student tests for asserting the significance

of observed differences.

5.1 Evaluation of the Discretisation M ethods

The method used by RECLA to discretise the goal variable of a regresson problem depends
on two main isaues as we have seen in Sedion 3 : the splitting method and the seach
operator used for generating new trials. This leads to 6 dfferent discretisation methods.
RECLA can use aspedfic method or try all and chose the one that gives better estimated
results. In the following table we let RECLA choose the “best” discretisation method and

record the resulting error for each data set.

Table 8. Results obtained by RECLA.
C4.5 C4.5 Discrim Discrim CN2

w/costs w/costs
Housing MAE 3.184 3.214 3.113 3.311 3.657
Method  INI+KM INI+KM INI+EP INI+KM VNI+EW
Auto MAE 2.589 2.649 2.393 2.600 3.251

Method INI+KM INI+KM VNI+EP INI+KM VNI+EW
Machine MAE 39.63 39.63 34.59 37.73 43.27
Method VNI+KM VNI+KM INI+EP INI+EP VNI+KM
Gate MAE 0.0042 0.0044 0.0215 0.0268 0.0110
Method  INI+EW INI+EW VNI+EP  INLVNI+EP  VNI+KM
Imports MAE 13.31 13.31 29.01 29.72 15.84
Method VNI+EW  VNI+EW VNI+EP INI,VNI+EW  INI+EW

Servo  MAE 0.417 0.416 0.389 0.436 0.405
Method VNI+KM INI+EP VNI+KM VNI+EP INI+EP

Whbc MAE 3241 32.41 33.29 33.29 32.08
Method VNI+KM VNI+KM  INLVNI+KM INLVNI+KM  INI;VNI+EW

Price MAE  1854.8 1872.5 2010.6 2056.3 2186.3
Method INI+EW INI+EW INI+EP INI+EP INI+EP

These results $row a big variety of discretisation methods depending on the problem set up.
This provides empiricd evidence for our seach-based approadh. Table 9 gives the total

number of times each component was chosen by RECLA.



Table 9. Results of the different discretisation methods.

KM EP EW Totals
INI 8 9 7 24
VNI 10 5 6 21
Totals 18 14 13

The main conclusion of these experiments is that the dhoice of the best discretisation method
is clealy dependent on the problem set up. Moreover, we have observed that given a data set
and a dasgficaion algorithm, the differences among the results obtained using dfferent

discretisation methods can be statistically significant.

5.2 RECLA Compared to Other Regresson Approaches

In this sdion we present the results obtained other regresson methods in the same data sets
we have evaluated RECLA (seeTable 9). The goa of these experimentsit is not to compare
RECLA with these dternative methods. RECLA is not aleaning system. As a pre-processng
tool the resulting acaracy is highly dependent on the dassficaion system after the
discretisation takes place.

The first column of Table 10 presents the results M5 [11, 13]. This regresson system is
able to lean tree-based models with linea regresson equations in the leaves (also known as
model trees). By default this gystem mekes the prediction for ead testing instance by
combining the prediction of a model tree with a 3-neaest neighbour [13]. In the second
column we give the result when this combination is disabled thus using only model trees. The
third column of the table gives the results obtained by a standard 3-neaest neighbour
algorithm. The fourth column shows the results using a least squares linea regresson model.
We then have the performance of a regresson treg and finaly we the results obtained with
SwaplR [17]. This later system leans a set of regresson rules after discretising the target

goal variable as RECLA does.




Table 10. Results of other regression methods.

M5 3-NN Linear Regression SwaplR
model trees Regression Tree
Housing  2.205 2.845 3.909 3.361 3.059
Auto 1.892 2.344 17.978 3.223 2.659
Machine  27.68 31.83 35.73 42.37 39.78
Gate 0.0045 0.0044 0.0085 0.0131 0.0052
Imports 13.10 13.08 105.16 27.38 15.02
Servo 0.313 0.585 0.872 0.480 0.406
Whbc 28.54 28.57 28.16 29.76 29.55
Price 1559.4 1972.5 2462.7 1682.1 1822.4

Bellow we present a table that summarises the wins and losses of RECLA (with ead of the

classficaion systems) compared to the other regresson methods. We use the versions with

costs for C4.5 and Discrim. In parenthesis we indicate the number of statisticaly significant

differences (at a 90% confidence level).

Table 11. Summary of comparisons.

Model 3-NN Linear Regr. SwaplR
Tree Regr. Tree

Wins 20) 1@ 6 (3) 5(2) 2 (0)

RECLA Losses 8(6) 6(5) 7(4) 2(2) 3(2) 6 (3)
w/C4.5  Differ. -4(-5) -6(-3) 4(1) 2 (1) -4 (-3)
Wins 00 1 5(2) 4 (1) 1(2)

RECLA Losses 8(8) 8(7) 7(4) 3(3) 4 (4) 7 (5)
w/Discrim  Differ. -8(-7) -6(-3) 2(-1) 0 (-3) -6 (-4)
Wins 10 1) 3(2) 3(1) 0 (0)

RECLA Losses 8(8) 6(5) 7(7) 5(2) 5(5) 8 (7)
w/CN2  Differ. -5(-5) -6 (-6) -2(0) -2 (-4) -8 (-7)

These results $ow that there is an acarragy penalty to pay for the discretisation process as

expeded. This effed can be particularly significant when compared to sophisticaed methods

like M5 that uses prediction combination among dfferent regresson models. The averaging

effed of the discretisation of the target variable damages regresson acaracy. However, the

same kind of averaging is done by standard regresson trees and the usual argument for their

use is the interpretability of their models. The same agument can be gplied to RECLA with



either C4.5 or CN2. It is interesting to notice that RECLA with C4.5 is quite mmpetitive
with the regression tree.

It is clea from the experiments we have caried out that the used leaning engine can
originate significant differences in terms of regresson acaracy. This can be confirmed when
looking at Swapl1R results. This gstem deds with regresson using the same process of
transforming it into a dasgficaion problem. It uses an algorithm cdled P-classthat splits the
continuous values into a set of K intervals. This algorithm is basicdly the same & K-means
(KM). SwaplR asks for the number of classs (intervals) to use3, athough the aithors
suggest that this number could be found by crossvalidation [17]. As the discretisation method
is equal to one of the methods provided by RECLA, the better results of Swap1R can only be
caused by its clasdficaion leaning algorithm. This means that the results obtained by

RECLA could also be better if other learning engines were tried.

6 Related Work

Mapping regresson into classfication was first proposed in Weissand Indurkhya' s work [16,
17]. These aithors incorporate the mapping within their regresson system. They use an
algorithm cdled P-classwhich is basicdly the same & ours KM method. Compared to this
work we alded other dternative discretisation methods and empiricdly proved the
advantages of a seach-based approach to class discretisation. Moreover, by separating the
discretisation process from the leaning agorithm we extended this approach to other

systems. Finally, we have introduced the use of misclassficaion costs to overcome the

3 In these experiments we have always used 5 classes foll owing a suggestion d one of the authors of
Swapl1R Kitin Indurkhya).



inadequacy of clasdgficaion systems to ded with ordina target variables. This originated a
significant gain in regression accuracy as our experiments have shown.

The vast research are on continuous attribute discretisation usualy proceeals by trying
to maximise the mutual information between the resulting dscrete dtribute and the dasses
[5]. This grategy is applicable only when the dasss are given. Ours is a different problem, as

we are determining which classes to consider.

7 Conclusions

The method described in this paper enables the use of classficaion systems on regresson
tasks. The significance of this work is two-fold. First, we have managed to extend the
applicability of a wide range of ML systems. Sewond, our methodology provides an
aternative trade-off between regresson acaracy and comprehensbility of the leaned
models. Our method also provides a better insight about the structure of the target variable by
dividing its values into significant intervals, which extends our understanding of the domain.

We have presented a set of aternative discretisation methods and demonstrated their
validity through experimenta evaluation. Moreover, we have alded misclassficaions costs
which provide abetter theoreticd justificaion for using classficaion systems on regresson
tasks. We have used a seach-based approach which is justified by our experimental results
which show that the best discretisation is often dependent on both the domain and the
induction tool.

Our proposals were implemented in a system cdled RECLA which we have gplied in
conjunction with threedifferent classficaion systems. These systems are quite different from

ead other which again provides evidence for the high generality of our methods. The system



is easlly extendible to other classfication algorithms thus being a useful toadl for the users of
existing classification systems.

Finally, we have compared the results obtained by RECLA using the three leaning
engines, to other standard regresson methods. The results of these comparisons $ow that
although RECLA can be competitive with some dgorithms, till it is has lower acairagy than
some state-of-the-art regresson systems. These results are obvioudy dependent on the
learning engine used as our experiments have shown. Comparison with Swap1R, that uses a
similar mapping strategy, reved that better regresson acairacy is achievable if other leaning

engines are used.
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Appendix

Most of the data sets we have used were obtained from the UCI Madine Leaning
Repository [http://www.ics.uci.edWMLRepository.html]. The main charaderistics of the used
domains as well as eventua modificaions made to the origina databases are described
bellow:

* Housing - this data set contains 506 instances described by 13 continuous input variables.
The goal consists of predicting the housing values in suburbs of Boston.

* Auto (Auto-Mpg daabase) - 398 instances described by 3 nominal and 4 continuous
variables. The target variable is the fuel consumption (miles per gallon).

* Servo- 167 instances; 4 nominal attributes.

* Machine (Computer Hardware database) - 209 instances; 6 continuous attributes. The
goal is to predict the cpu relative performance based on other computer characteristics.

* Price (Automobil e database) - 159 cases, 16 continuous attributes. This data set is built
from the Automobile database by removing al instances with unknown values from the
original 205 cases. Nominal attributes were dso removed. The goal is to predict the ca
prices based on other characteristics.

* Imports (Automobil e database) - based on the same database we have built a different data
set consisting of 164 instances described by 11 nominal attributes and 14 continuous
variables. From the origina data we only removed the caes with unknown value on the
attribute “normalized-losses’. This attribute describes the ca insurance normalized losses.
This variable was taken as the predicting goal.

* Whbc (Wisconsin Breast Cancer databases) - predicting reaurrence time in 194 breast
cancer cases (4 instances with unknowns removed); 32 continuous attributes.

* Gate (non-UCI data set) - 300instances; 10 continuous variables. The problem consists of
predicting the time to collapse of an eledricd network based on some monitoring variable
values.



